(0) Obligation:
Clauses:
minus(X, Y, Z) :- ','(f(X, 0), ','(!, =(Z, 0))).
f(X, Y) :- ','(!, =(X, Y)).
f(X, Y) :- f(X, Y).
=(X, X).
Queries:
minus(g,g,a).
(1) PrologToPrologProblemTransformerProof (SOUND transformation)
Built Prolog problem from termination graph.
(2) Obligation:
Clauses:
minus1(0, T5, 0).
Queries:
minus1(g,g,a).
(3) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
minus1_in_gga(0, T5, 0) → minus1_out_gga(0, T5, 0)
The argument filtering Pi contains the following mapping:
minus1_in_gga(
x1,
x2,
x3) =
minus1_in_gga(
x1,
x2)
0 =
0
minus1_out_gga(
x1,
x2,
x3) =
minus1_out_gga(
x1,
x2,
x3)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(4) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
minus1_in_gga(0, T5, 0) → minus1_out_gga(0, T5, 0)
The argument filtering Pi contains the following mapping:
minus1_in_gga(
x1,
x2,
x3) =
minus1_in_gga(
x1,
x2)
0 =
0
minus1_out_gga(
x1,
x2,
x3) =
minus1_out_gga(
x1,
x2,
x3)
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
P is empty.
The TRS R consists of the following rules:
minus1_in_gga(0, T5, 0) → minus1_out_gga(0, T5, 0)
The argument filtering Pi contains the following mapping:
minus1_in_gga(
x1,
x2,
x3) =
minus1_in_gga(
x1,
x2)
0 =
0
minus1_out_gga(
x1,
x2,
x3) =
minus1_out_gga(
x1,
x2,
x3)
We have to consider all (P,R,Pi)-chains
(6) Obligation:
Pi DP problem:
P is empty.
The TRS R consists of the following rules:
minus1_in_gga(0, T5, 0) → minus1_out_gga(0, T5, 0)
The argument filtering Pi contains the following mapping:
minus1_in_gga(
x1,
x2,
x3) =
minus1_in_gga(
x1,
x2)
0 =
0
minus1_out_gga(
x1,
x2,
x3) =
minus1_out_gga(
x1,
x2,
x3)
We have to consider all (P,R,Pi)-chains
(7) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,R,Pi) chain.
(8) TRUE