(0) Obligation:
Clauses:
minus(X, Y, Z) :- ','(f(X, 0), ','(!, =(Z, 0))).
f(X, Y) :- ','(!, =(X, Y)).
f(X, Y) :- f(X, Y).
=(X, X).
Queries:
minus(g,g,a).
(1) CutEliminatorProof (SOUND transformation)
Eliminated all cuts by simply ignoring them[PROLOG].
(2) Obligation:
Clauses:
minus(X, Y, Z) :- ','(f(X, 0), =(Z, 0)).
f(X, Y) :- =(X, Y).
f(X, Y) :- f(X, Y).
=(X, X).
Queries:
minus(g,g,a).
(3) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
minus_in: (b,b,f)
f_in: (b,b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
minus_in_gga(X, Y, Z) → U1_gga(X, Y, Z, f_in_gg(X, 0))
f_in_gg(X, Y) → U3_gg(X, Y, =_in_gg(X, Y))
=_in_gg(X, X) → =_out_gg(X, X)
U3_gg(X, Y, =_out_gg(X, Y)) → f_out_gg(X, Y)
f_in_gg(X, Y) → U4_gg(X, Y, f_in_gg(X, Y))
U4_gg(X, Y, f_out_gg(X, Y)) → f_out_gg(X, Y)
U1_gga(X, Y, Z, f_out_gg(X, 0)) → U2_gga(X, Y, Z, =_in_ag(Z, 0))
=_in_ag(X, X) → =_out_ag(X, X)
U2_gga(X, Y, Z, =_out_ag(Z, 0)) → minus_out_gga(X, Y, Z)
The argument filtering Pi contains the following mapping:
minus_in_gga(
x1,
x2,
x3) =
minus_in_gga(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x4)
f_in_gg(
x1,
x2) =
f_in_gg(
x1,
x2)
U3_gg(
x1,
x2,
x3) =
U3_gg(
x3)
=_in_gg(
x1,
x2) =
=_in_gg(
x1,
x2)
=_out_gg(
x1,
x2) =
=_out_gg
f_out_gg(
x1,
x2) =
f_out_gg
U4_gg(
x1,
x2,
x3) =
U4_gg(
x3)
0 =
0
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x4)
=_in_ag(
x1,
x2) =
=_in_ag(
x2)
=_out_ag(
x1,
x2) =
=_out_ag(
x1)
minus_out_gga(
x1,
x2,
x3) =
minus_out_gga(
x3)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(4) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
minus_in_gga(X, Y, Z) → U1_gga(X, Y, Z, f_in_gg(X, 0))
f_in_gg(X, Y) → U3_gg(X, Y, =_in_gg(X, Y))
=_in_gg(X, X) → =_out_gg(X, X)
U3_gg(X, Y, =_out_gg(X, Y)) → f_out_gg(X, Y)
f_in_gg(X, Y) → U4_gg(X, Y, f_in_gg(X, Y))
U4_gg(X, Y, f_out_gg(X, Y)) → f_out_gg(X, Y)
U1_gga(X, Y, Z, f_out_gg(X, 0)) → U2_gga(X, Y, Z, =_in_ag(Z, 0))
=_in_ag(X, X) → =_out_ag(X, X)
U2_gga(X, Y, Z, =_out_ag(Z, 0)) → minus_out_gga(X, Y, Z)
The argument filtering Pi contains the following mapping:
minus_in_gga(
x1,
x2,
x3) =
minus_in_gga(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x4)
f_in_gg(
x1,
x2) =
f_in_gg(
x1,
x2)
U3_gg(
x1,
x2,
x3) =
U3_gg(
x3)
=_in_gg(
x1,
x2) =
=_in_gg(
x1,
x2)
=_out_gg(
x1,
x2) =
=_out_gg
f_out_gg(
x1,
x2) =
f_out_gg
U4_gg(
x1,
x2,
x3) =
U4_gg(
x3)
0 =
0
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x4)
=_in_ag(
x1,
x2) =
=_in_ag(
x2)
=_out_ag(
x1,
x2) =
=_out_ag(
x1)
minus_out_gga(
x1,
x2,
x3) =
minus_out_gga(
x3)
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
MINUS_IN_GGA(X, Y, Z) → U1_GGA(X, Y, Z, f_in_gg(X, 0))
MINUS_IN_GGA(X, Y, Z) → F_IN_GG(X, 0)
F_IN_GG(X, Y) → U3_GG(X, Y, =_in_gg(X, Y))
F_IN_GG(X, Y) → =_IN_GG(X, Y)
F_IN_GG(X, Y) → U4_GG(X, Y, f_in_gg(X, Y))
F_IN_GG(X, Y) → F_IN_GG(X, Y)
U1_GGA(X, Y, Z, f_out_gg(X, 0)) → U2_GGA(X, Y, Z, =_in_ag(Z, 0))
U1_GGA(X, Y, Z, f_out_gg(X, 0)) → =_IN_AG(Z, 0)
The TRS R consists of the following rules:
minus_in_gga(X, Y, Z) → U1_gga(X, Y, Z, f_in_gg(X, 0))
f_in_gg(X, Y) → U3_gg(X, Y, =_in_gg(X, Y))
=_in_gg(X, X) → =_out_gg(X, X)
U3_gg(X, Y, =_out_gg(X, Y)) → f_out_gg(X, Y)
f_in_gg(X, Y) → U4_gg(X, Y, f_in_gg(X, Y))
U4_gg(X, Y, f_out_gg(X, Y)) → f_out_gg(X, Y)
U1_gga(X, Y, Z, f_out_gg(X, 0)) → U2_gga(X, Y, Z, =_in_ag(Z, 0))
=_in_ag(X, X) → =_out_ag(X, X)
U2_gga(X, Y, Z, =_out_ag(Z, 0)) → minus_out_gga(X, Y, Z)
The argument filtering Pi contains the following mapping:
minus_in_gga(
x1,
x2,
x3) =
minus_in_gga(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x4)
f_in_gg(
x1,
x2) =
f_in_gg(
x1,
x2)
U3_gg(
x1,
x2,
x3) =
U3_gg(
x3)
=_in_gg(
x1,
x2) =
=_in_gg(
x1,
x2)
=_out_gg(
x1,
x2) =
=_out_gg
f_out_gg(
x1,
x2) =
f_out_gg
U4_gg(
x1,
x2,
x3) =
U4_gg(
x3)
0 =
0
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x4)
=_in_ag(
x1,
x2) =
=_in_ag(
x2)
=_out_ag(
x1,
x2) =
=_out_ag(
x1)
minus_out_gga(
x1,
x2,
x3) =
minus_out_gga(
x3)
MINUS_IN_GGA(
x1,
x2,
x3) =
MINUS_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4) =
U1_GGA(
x4)
F_IN_GG(
x1,
x2) =
F_IN_GG(
x1,
x2)
U3_GG(
x1,
x2,
x3) =
U3_GG(
x3)
=_IN_GG(
x1,
x2) =
=_IN_GG(
x1,
x2)
U4_GG(
x1,
x2,
x3) =
U4_GG(
x3)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x4)
=_IN_AG(
x1,
x2) =
=_IN_AG(
x2)
We have to consider all (P,R,Pi)-chains
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MINUS_IN_GGA(X, Y, Z) → U1_GGA(X, Y, Z, f_in_gg(X, 0))
MINUS_IN_GGA(X, Y, Z) → F_IN_GG(X, 0)
F_IN_GG(X, Y) → U3_GG(X, Y, =_in_gg(X, Y))
F_IN_GG(X, Y) → =_IN_GG(X, Y)
F_IN_GG(X, Y) → U4_GG(X, Y, f_in_gg(X, Y))
F_IN_GG(X, Y) → F_IN_GG(X, Y)
U1_GGA(X, Y, Z, f_out_gg(X, 0)) → U2_GGA(X, Y, Z, =_in_ag(Z, 0))
U1_GGA(X, Y, Z, f_out_gg(X, 0)) → =_IN_AG(Z, 0)
The TRS R consists of the following rules:
minus_in_gga(X, Y, Z) → U1_gga(X, Y, Z, f_in_gg(X, 0))
f_in_gg(X, Y) → U3_gg(X, Y, =_in_gg(X, Y))
=_in_gg(X, X) → =_out_gg(X, X)
U3_gg(X, Y, =_out_gg(X, Y)) → f_out_gg(X, Y)
f_in_gg(X, Y) → U4_gg(X, Y, f_in_gg(X, Y))
U4_gg(X, Y, f_out_gg(X, Y)) → f_out_gg(X, Y)
U1_gga(X, Y, Z, f_out_gg(X, 0)) → U2_gga(X, Y, Z, =_in_ag(Z, 0))
=_in_ag(X, X) → =_out_ag(X, X)
U2_gga(X, Y, Z, =_out_ag(Z, 0)) → minus_out_gga(X, Y, Z)
The argument filtering Pi contains the following mapping:
minus_in_gga(
x1,
x2,
x3) =
minus_in_gga(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x4)
f_in_gg(
x1,
x2) =
f_in_gg(
x1,
x2)
U3_gg(
x1,
x2,
x3) =
U3_gg(
x3)
=_in_gg(
x1,
x2) =
=_in_gg(
x1,
x2)
=_out_gg(
x1,
x2) =
=_out_gg
f_out_gg(
x1,
x2) =
f_out_gg
U4_gg(
x1,
x2,
x3) =
U4_gg(
x3)
0 =
0
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x4)
=_in_ag(
x1,
x2) =
=_in_ag(
x2)
=_out_ag(
x1,
x2) =
=_out_ag(
x1)
minus_out_gga(
x1,
x2,
x3) =
minus_out_gga(
x3)
MINUS_IN_GGA(
x1,
x2,
x3) =
MINUS_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4) =
U1_GGA(
x4)
F_IN_GG(
x1,
x2) =
F_IN_GG(
x1,
x2)
U3_GG(
x1,
x2,
x3) =
U3_GG(
x3)
=_IN_GG(
x1,
x2) =
=_IN_GG(
x1,
x2)
U4_GG(
x1,
x2,
x3) =
U4_GG(
x3)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x4)
=_IN_AG(
x1,
x2) =
=_IN_AG(
x2)
We have to consider all (P,R,Pi)-chains
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 7 less nodes.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
F_IN_GG(X, Y) → F_IN_GG(X, Y)
The TRS R consists of the following rules:
minus_in_gga(X, Y, Z) → U1_gga(X, Y, Z, f_in_gg(X, 0))
f_in_gg(X, Y) → U3_gg(X, Y, =_in_gg(X, Y))
=_in_gg(X, X) → =_out_gg(X, X)
U3_gg(X, Y, =_out_gg(X, Y)) → f_out_gg(X, Y)
f_in_gg(X, Y) → U4_gg(X, Y, f_in_gg(X, Y))
U4_gg(X, Y, f_out_gg(X, Y)) → f_out_gg(X, Y)
U1_gga(X, Y, Z, f_out_gg(X, 0)) → U2_gga(X, Y, Z, =_in_ag(Z, 0))
=_in_ag(X, X) → =_out_ag(X, X)
U2_gga(X, Y, Z, =_out_ag(Z, 0)) → minus_out_gga(X, Y, Z)
The argument filtering Pi contains the following mapping:
minus_in_gga(
x1,
x2,
x3) =
minus_in_gga(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x4)
f_in_gg(
x1,
x2) =
f_in_gg(
x1,
x2)
U3_gg(
x1,
x2,
x3) =
U3_gg(
x3)
=_in_gg(
x1,
x2) =
=_in_gg(
x1,
x2)
=_out_gg(
x1,
x2) =
=_out_gg
f_out_gg(
x1,
x2) =
f_out_gg
U4_gg(
x1,
x2,
x3) =
U4_gg(
x3)
0 =
0
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x4)
=_in_ag(
x1,
x2) =
=_in_ag(
x2)
=_out_ag(
x1,
x2) =
=_out_ag(
x1)
minus_out_gga(
x1,
x2,
x3) =
minus_out_gga(
x3)
F_IN_GG(
x1,
x2) =
F_IN_GG(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(9) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(10) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
F_IN_GG(X, Y) → F_IN_GG(X, Y)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
(11) PiDPToQDPProof (EQUIVALENT transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F_IN_GG(X, Y) → F_IN_GG(X, Y)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(13) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
s =
F_IN_GG(
X,
Y) evaluates to t =
F_IN_GG(
X,
Y)
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequenceThe DP semiunifies directly so there is only one rewrite step from F_IN_GG(X, Y) to F_IN_GG(X, Y).
(14) FALSE
(15) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
minus_in: (b,b,f)
f_in: (b,b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
minus_in_gga(X, Y, Z) → U1_gga(X, Y, Z, f_in_gg(X, 0))
f_in_gg(X, Y) → U3_gg(X, Y, =_in_gg(X, Y))
=_in_gg(X, X) → =_out_gg(X, X)
U3_gg(X, Y, =_out_gg(X, Y)) → f_out_gg(X, Y)
f_in_gg(X, Y) → U4_gg(X, Y, f_in_gg(X, Y))
U4_gg(X, Y, f_out_gg(X, Y)) → f_out_gg(X, Y)
U1_gga(X, Y, Z, f_out_gg(X, 0)) → U2_gga(X, Y, Z, =_in_ag(Z, 0))
=_in_ag(X, X) → =_out_ag(X, X)
U2_gga(X, Y, Z, =_out_ag(Z, 0)) → minus_out_gga(X, Y, Z)
The argument filtering Pi contains the following mapping:
minus_in_gga(
x1,
x2,
x3) =
minus_in_gga(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x1,
x2,
x4)
f_in_gg(
x1,
x2) =
f_in_gg(
x1,
x2)
U3_gg(
x1,
x2,
x3) =
U3_gg(
x1,
x2,
x3)
=_in_gg(
x1,
x2) =
=_in_gg(
x1,
x2)
=_out_gg(
x1,
x2) =
=_out_gg(
x1,
x2)
f_out_gg(
x1,
x2) =
f_out_gg(
x1,
x2)
U4_gg(
x1,
x2,
x3) =
U4_gg(
x1,
x2,
x3)
0 =
0
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
=_in_ag(
x1,
x2) =
=_in_ag(
x2)
=_out_ag(
x1,
x2) =
=_out_ag(
x1,
x2)
minus_out_gga(
x1,
x2,
x3) =
minus_out_gga(
x1,
x2,
x3)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(16) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
minus_in_gga(X, Y, Z) → U1_gga(X, Y, Z, f_in_gg(X, 0))
f_in_gg(X, Y) → U3_gg(X, Y, =_in_gg(X, Y))
=_in_gg(X, X) → =_out_gg(X, X)
U3_gg(X, Y, =_out_gg(X, Y)) → f_out_gg(X, Y)
f_in_gg(X, Y) → U4_gg(X, Y, f_in_gg(X, Y))
U4_gg(X, Y, f_out_gg(X, Y)) → f_out_gg(X, Y)
U1_gga(X, Y, Z, f_out_gg(X, 0)) → U2_gga(X, Y, Z, =_in_ag(Z, 0))
=_in_ag(X, X) → =_out_ag(X, X)
U2_gga(X, Y, Z, =_out_ag(Z, 0)) → minus_out_gga(X, Y, Z)
The argument filtering Pi contains the following mapping:
minus_in_gga(
x1,
x2,
x3) =
minus_in_gga(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x1,
x2,
x4)
f_in_gg(
x1,
x2) =
f_in_gg(
x1,
x2)
U3_gg(
x1,
x2,
x3) =
U3_gg(
x1,
x2,
x3)
=_in_gg(
x1,
x2) =
=_in_gg(
x1,
x2)
=_out_gg(
x1,
x2) =
=_out_gg(
x1,
x2)
f_out_gg(
x1,
x2) =
f_out_gg(
x1,
x2)
U4_gg(
x1,
x2,
x3) =
U4_gg(
x1,
x2,
x3)
0 =
0
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
=_in_ag(
x1,
x2) =
=_in_ag(
x2)
=_out_ag(
x1,
x2) =
=_out_ag(
x1,
x2)
minus_out_gga(
x1,
x2,
x3) =
minus_out_gga(
x1,
x2,
x3)
(17) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
MINUS_IN_GGA(X, Y, Z) → U1_GGA(X, Y, Z, f_in_gg(X, 0))
MINUS_IN_GGA(X, Y, Z) → F_IN_GG(X, 0)
F_IN_GG(X, Y) → U3_GG(X, Y, =_in_gg(X, Y))
F_IN_GG(X, Y) → =_IN_GG(X, Y)
F_IN_GG(X, Y) → U4_GG(X, Y, f_in_gg(X, Y))
F_IN_GG(X, Y) → F_IN_GG(X, Y)
U1_GGA(X, Y, Z, f_out_gg(X, 0)) → U2_GGA(X, Y, Z, =_in_ag(Z, 0))
U1_GGA(X, Y, Z, f_out_gg(X, 0)) → =_IN_AG(Z, 0)
The TRS R consists of the following rules:
minus_in_gga(X, Y, Z) → U1_gga(X, Y, Z, f_in_gg(X, 0))
f_in_gg(X, Y) → U3_gg(X, Y, =_in_gg(X, Y))
=_in_gg(X, X) → =_out_gg(X, X)
U3_gg(X, Y, =_out_gg(X, Y)) → f_out_gg(X, Y)
f_in_gg(X, Y) → U4_gg(X, Y, f_in_gg(X, Y))
U4_gg(X, Y, f_out_gg(X, Y)) → f_out_gg(X, Y)
U1_gga(X, Y, Z, f_out_gg(X, 0)) → U2_gga(X, Y, Z, =_in_ag(Z, 0))
=_in_ag(X, X) → =_out_ag(X, X)
U2_gga(X, Y, Z, =_out_ag(Z, 0)) → minus_out_gga(X, Y, Z)
The argument filtering Pi contains the following mapping:
minus_in_gga(
x1,
x2,
x3) =
minus_in_gga(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x1,
x2,
x4)
f_in_gg(
x1,
x2) =
f_in_gg(
x1,
x2)
U3_gg(
x1,
x2,
x3) =
U3_gg(
x1,
x2,
x3)
=_in_gg(
x1,
x2) =
=_in_gg(
x1,
x2)
=_out_gg(
x1,
x2) =
=_out_gg(
x1,
x2)
f_out_gg(
x1,
x2) =
f_out_gg(
x1,
x2)
U4_gg(
x1,
x2,
x3) =
U4_gg(
x1,
x2,
x3)
0 =
0
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
=_in_ag(
x1,
x2) =
=_in_ag(
x2)
=_out_ag(
x1,
x2) =
=_out_ag(
x1,
x2)
minus_out_gga(
x1,
x2,
x3) =
minus_out_gga(
x1,
x2,
x3)
MINUS_IN_GGA(
x1,
x2,
x3) =
MINUS_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4) =
U1_GGA(
x1,
x2,
x4)
F_IN_GG(
x1,
x2) =
F_IN_GG(
x1,
x2)
U3_GG(
x1,
x2,
x3) =
U3_GG(
x1,
x2,
x3)
=_IN_GG(
x1,
x2) =
=_IN_GG(
x1,
x2)
U4_GG(
x1,
x2,
x3) =
U4_GG(
x1,
x2,
x3)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x2,
x4)
=_IN_AG(
x1,
x2) =
=_IN_AG(
x2)
We have to consider all (P,R,Pi)-chains
(18) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MINUS_IN_GGA(X, Y, Z) → U1_GGA(X, Y, Z, f_in_gg(X, 0))
MINUS_IN_GGA(X, Y, Z) → F_IN_GG(X, 0)
F_IN_GG(X, Y) → U3_GG(X, Y, =_in_gg(X, Y))
F_IN_GG(X, Y) → =_IN_GG(X, Y)
F_IN_GG(X, Y) → U4_GG(X, Y, f_in_gg(X, Y))
F_IN_GG(X, Y) → F_IN_GG(X, Y)
U1_GGA(X, Y, Z, f_out_gg(X, 0)) → U2_GGA(X, Y, Z, =_in_ag(Z, 0))
U1_GGA(X, Y, Z, f_out_gg(X, 0)) → =_IN_AG(Z, 0)
The TRS R consists of the following rules:
minus_in_gga(X, Y, Z) → U1_gga(X, Y, Z, f_in_gg(X, 0))
f_in_gg(X, Y) → U3_gg(X, Y, =_in_gg(X, Y))
=_in_gg(X, X) → =_out_gg(X, X)
U3_gg(X, Y, =_out_gg(X, Y)) → f_out_gg(X, Y)
f_in_gg(X, Y) → U4_gg(X, Y, f_in_gg(X, Y))
U4_gg(X, Y, f_out_gg(X, Y)) → f_out_gg(X, Y)
U1_gga(X, Y, Z, f_out_gg(X, 0)) → U2_gga(X, Y, Z, =_in_ag(Z, 0))
=_in_ag(X, X) → =_out_ag(X, X)
U2_gga(X, Y, Z, =_out_ag(Z, 0)) → minus_out_gga(X, Y, Z)
The argument filtering Pi contains the following mapping:
minus_in_gga(
x1,
x2,
x3) =
minus_in_gga(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x1,
x2,
x4)
f_in_gg(
x1,
x2) =
f_in_gg(
x1,
x2)
U3_gg(
x1,
x2,
x3) =
U3_gg(
x1,
x2,
x3)
=_in_gg(
x1,
x2) =
=_in_gg(
x1,
x2)
=_out_gg(
x1,
x2) =
=_out_gg(
x1,
x2)
f_out_gg(
x1,
x2) =
f_out_gg(
x1,
x2)
U4_gg(
x1,
x2,
x3) =
U4_gg(
x1,
x2,
x3)
0 =
0
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
=_in_ag(
x1,
x2) =
=_in_ag(
x2)
=_out_ag(
x1,
x2) =
=_out_ag(
x1,
x2)
minus_out_gga(
x1,
x2,
x3) =
minus_out_gga(
x1,
x2,
x3)
MINUS_IN_GGA(
x1,
x2,
x3) =
MINUS_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4) =
U1_GGA(
x1,
x2,
x4)
F_IN_GG(
x1,
x2) =
F_IN_GG(
x1,
x2)
U3_GG(
x1,
x2,
x3) =
U3_GG(
x1,
x2,
x3)
=_IN_GG(
x1,
x2) =
=_IN_GG(
x1,
x2)
U4_GG(
x1,
x2,
x3) =
U4_GG(
x1,
x2,
x3)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x2,
x4)
=_IN_AG(
x1,
x2) =
=_IN_AG(
x2)
We have to consider all (P,R,Pi)-chains
(19) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 7 less nodes.
(20) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
F_IN_GG(X, Y) → F_IN_GG(X, Y)
The TRS R consists of the following rules:
minus_in_gga(X, Y, Z) → U1_gga(X, Y, Z, f_in_gg(X, 0))
f_in_gg(X, Y) → U3_gg(X, Y, =_in_gg(X, Y))
=_in_gg(X, X) → =_out_gg(X, X)
U3_gg(X, Y, =_out_gg(X, Y)) → f_out_gg(X, Y)
f_in_gg(X, Y) → U4_gg(X, Y, f_in_gg(X, Y))
U4_gg(X, Y, f_out_gg(X, Y)) → f_out_gg(X, Y)
U1_gga(X, Y, Z, f_out_gg(X, 0)) → U2_gga(X, Y, Z, =_in_ag(Z, 0))
=_in_ag(X, X) → =_out_ag(X, X)
U2_gga(X, Y, Z, =_out_ag(Z, 0)) → minus_out_gga(X, Y, Z)
The argument filtering Pi contains the following mapping:
minus_in_gga(
x1,
x2,
x3) =
minus_in_gga(
x1,
x2)
U1_gga(
x1,
x2,
x3,
x4) =
U1_gga(
x1,
x2,
x4)
f_in_gg(
x1,
x2) =
f_in_gg(
x1,
x2)
U3_gg(
x1,
x2,
x3) =
U3_gg(
x1,
x2,
x3)
=_in_gg(
x1,
x2) =
=_in_gg(
x1,
x2)
=_out_gg(
x1,
x2) =
=_out_gg(
x1,
x2)
f_out_gg(
x1,
x2) =
f_out_gg(
x1,
x2)
U4_gg(
x1,
x2,
x3) =
U4_gg(
x1,
x2,
x3)
0 =
0
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
=_in_ag(
x1,
x2) =
=_in_ag(
x2)
=_out_ag(
x1,
x2) =
=_out_ag(
x1,
x2)
minus_out_gga(
x1,
x2,
x3) =
minus_out_gga(
x1,
x2,
x3)
F_IN_GG(
x1,
x2) =
F_IN_GG(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(21) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(22) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
F_IN_GG(X, Y) → F_IN_GG(X, Y)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
(23) PiDPToQDPProof (EQUIVALENT transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(24) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F_IN_GG(X, Y) → F_IN_GG(X, Y)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(25) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
s =
F_IN_GG(
X,
Y) evaluates to t =
F_IN_GG(
X,
Y)
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceThe DP semiunifies directly so there is only one rewrite step from F_IN_GG(X, Y) to F_IN_GG(X, Y).
(26) FALSE