(0) Obligation:

Clauses:

q(X, Y) :- m(X, Y, Z).
m(X, 0, X).
m(0, Y, 0) :- !.
m(X, Y, Z) :- ','(p(X, A), ','(p(Y, B), m(A, B, Z))).
p(0, 0).
p(s(X), X).

Queries:

q(g,g).

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph.

(2) Obligation:

Clauses:

m20(T10, T10, X18).
m20(0, 0, X18).
m20(s(T12), X35, X18) :- m20(T12, X35, X34).
m3(T5, 0, T5).
m3(0, T6, 0).
m3(s(T10), 0, T10).
m3(s(0), 0, 0).
m3(s(s(T12)), 0, X35) :- m20(T12, X35, X34).
m3(s(T9), s(T13), X19) :- m3(T9, T13, X19).
q1(T5, 0).
q1(0, T6).
q1(s(T10), 0).
q1(s(0), 0).
q1(s(s(T12)), 0) :- m20(T12, X35, X34).
q1(s(T9), s(T13)) :- m3(T9, T13, X19).

Queries:

q1(g,g).

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
q1_in: (b,b)
m20_in: (b,f,f)
m3_in: (b,b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

q1_in_gg(T5, 0) → q1_out_gg(T5, 0)
q1_in_gg(0, T6) → q1_out_gg(0, T6)
q1_in_gg(s(T10), 0) → q1_out_gg(s(T10), 0)
q1_in_gg(s(0), 0) → q1_out_gg(s(0), 0)
q1_in_gg(s(s(T12)), 0) → U4_gg(T12, m20_in_gaa(T12, X35, X34))
m20_in_gaa(T10, T10, X18) → m20_out_gaa(T10, T10, X18)
m20_in_gaa(0, 0, X18) → m20_out_gaa(0, 0, X18)
m20_in_gaa(s(T12), X35, X18) → U1_gaa(T12, X35, X18, m20_in_gaa(T12, X35, X34))
U1_gaa(T12, X35, X18, m20_out_gaa(T12, X35, X34)) → m20_out_gaa(s(T12), X35, X18)
U4_gg(T12, m20_out_gaa(T12, X35, X34)) → q1_out_gg(s(s(T12)), 0)
q1_in_gg(s(T9), s(T13)) → U5_gg(T9, T13, m3_in_gga(T9, T13, X19))
m3_in_gga(T5, 0, T5) → m3_out_gga(T5, 0, T5)
m3_in_gga(0, T6, 0) → m3_out_gga(0, T6, 0)
m3_in_gga(s(T10), 0, T10) → m3_out_gga(s(T10), 0, T10)
m3_in_gga(s(0), 0, 0) → m3_out_gga(s(0), 0, 0)
m3_in_gga(s(s(T12)), 0, X35) → U2_gga(T12, X35, m20_in_gaa(T12, X35, X34))
U2_gga(T12, X35, m20_out_gaa(T12, X35, X34)) → m3_out_gga(s(s(T12)), 0, X35)
m3_in_gga(s(T9), s(T13), X19) → U3_gga(T9, T13, X19, m3_in_gga(T9, T13, X19))
U3_gga(T9, T13, X19, m3_out_gga(T9, T13, X19)) → m3_out_gga(s(T9), s(T13), X19)
U5_gg(T9, T13, m3_out_gga(T9, T13, X19)) → q1_out_gg(s(T9), s(T13))

The argument filtering Pi contains the following mapping:
q1_in_gg(x1, x2)  =  q1_in_gg(x1, x2)
0  =  0
q1_out_gg(x1, x2)  =  q1_out_gg
s(x1)  =  s(x1)
U4_gg(x1, x2)  =  U4_gg(x2)
m20_in_gaa(x1, x2, x3)  =  m20_in_gaa(x1)
m20_out_gaa(x1, x2, x3)  =  m20_out_gaa(x2)
U1_gaa(x1, x2, x3, x4)  =  U1_gaa(x4)
U5_gg(x1, x2, x3)  =  U5_gg(x3)
m3_in_gga(x1, x2, x3)  =  m3_in_gga(x1, x2)
m3_out_gga(x1, x2, x3)  =  m3_out_gga(x3)
U2_gga(x1, x2, x3)  =  U2_gga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

q1_in_gg(T5, 0) → q1_out_gg(T5, 0)
q1_in_gg(0, T6) → q1_out_gg(0, T6)
q1_in_gg(s(T10), 0) → q1_out_gg(s(T10), 0)
q1_in_gg(s(0), 0) → q1_out_gg(s(0), 0)
q1_in_gg(s(s(T12)), 0) → U4_gg(T12, m20_in_gaa(T12, X35, X34))
m20_in_gaa(T10, T10, X18) → m20_out_gaa(T10, T10, X18)
m20_in_gaa(0, 0, X18) → m20_out_gaa(0, 0, X18)
m20_in_gaa(s(T12), X35, X18) → U1_gaa(T12, X35, X18, m20_in_gaa(T12, X35, X34))
U1_gaa(T12, X35, X18, m20_out_gaa(T12, X35, X34)) → m20_out_gaa(s(T12), X35, X18)
U4_gg(T12, m20_out_gaa(T12, X35, X34)) → q1_out_gg(s(s(T12)), 0)
q1_in_gg(s(T9), s(T13)) → U5_gg(T9, T13, m3_in_gga(T9, T13, X19))
m3_in_gga(T5, 0, T5) → m3_out_gga(T5, 0, T5)
m3_in_gga(0, T6, 0) → m3_out_gga(0, T6, 0)
m3_in_gga(s(T10), 0, T10) → m3_out_gga(s(T10), 0, T10)
m3_in_gga(s(0), 0, 0) → m3_out_gga(s(0), 0, 0)
m3_in_gga(s(s(T12)), 0, X35) → U2_gga(T12, X35, m20_in_gaa(T12, X35, X34))
U2_gga(T12, X35, m20_out_gaa(T12, X35, X34)) → m3_out_gga(s(s(T12)), 0, X35)
m3_in_gga(s(T9), s(T13), X19) → U3_gga(T9, T13, X19, m3_in_gga(T9, T13, X19))
U3_gga(T9, T13, X19, m3_out_gga(T9, T13, X19)) → m3_out_gga(s(T9), s(T13), X19)
U5_gg(T9, T13, m3_out_gga(T9, T13, X19)) → q1_out_gg(s(T9), s(T13))

The argument filtering Pi contains the following mapping:
q1_in_gg(x1, x2)  =  q1_in_gg(x1, x2)
0  =  0
q1_out_gg(x1, x2)  =  q1_out_gg
s(x1)  =  s(x1)
U4_gg(x1, x2)  =  U4_gg(x2)
m20_in_gaa(x1, x2, x3)  =  m20_in_gaa(x1)
m20_out_gaa(x1, x2, x3)  =  m20_out_gaa(x2)
U1_gaa(x1, x2, x3, x4)  =  U1_gaa(x4)
U5_gg(x1, x2, x3)  =  U5_gg(x3)
m3_in_gga(x1, x2, x3)  =  m3_in_gga(x1, x2)
m3_out_gga(x1, x2, x3)  =  m3_out_gga(x3)
U2_gga(x1, x2, x3)  =  U2_gga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

Q1_IN_GG(s(s(T12)), 0) → U4_GG(T12, m20_in_gaa(T12, X35, X34))
Q1_IN_GG(s(s(T12)), 0) → M20_IN_GAA(T12, X35, X34)
M20_IN_GAA(s(T12), X35, X18) → U1_GAA(T12, X35, X18, m20_in_gaa(T12, X35, X34))
M20_IN_GAA(s(T12), X35, X18) → M20_IN_GAA(T12, X35, X34)
Q1_IN_GG(s(T9), s(T13)) → U5_GG(T9, T13, m3_in_gga(T9, T13, X19))
Q1_IN_GG(s(T9), s(T13)) → M3_IN_GGA(T9, T13, X19)
M3_IN_GGA(s(s(T12)), 0, X35) → U2_GGA(T12, X35, m20_in_gaa(T12, X35, X34))
M3_IN_GGA(s(s(T12)), 0, X35) → M20_IN_GAA(T12, X35, X34)
M3_IN_GGA(s(T9), s(T13), X19) → U3_GGA(T9, T13, X19, m3_in_gga(T9, T13, X19))
M3_IN_GGA(s(T9), s(T13), X19) → M3_IN_GGA(T9, T13, X19)

The TRS R consists of the following rules:

q1_in_gg(T5, 0) → q1_out_gg(T5, 0)
q1_in_gg(0, T6) → q1_out_gg(0, T6)
q1_in_gg(s(T10), 0) → q1_out_gg(s(T10), 0)
q1_in_gg(s(0), 0) → q1_out_gg(s(0), 0)
q1_in_gg(s(s(T12)), 0) → U4_gg(T12, m20_in_gaa(T12, X35, X34))
m20_in_gaa(T10, T10, X18) → m20_out_gaa(T10, T10, X18)
m20_in_gaa(0, 0, X18) → m20_out_gaa(0, 0, X18)
m20_in_gaa(s(T12), X35, X18) → U1_gaa(T12, X35, X18, m20_in_gaa(T12, X35, X34))
U1_gaa(T12, X35, X18, m20_out_gaa(T12, X35, X34)) → m20_out_gaa(s(T12), X35, X18)
U4_gg(T12, m20_out_gaa(T12, X35, X34)) → q1_out_gg(s(s(T12)), 0)
q1_in_gg(s(T9), s(T13)) → U5_gg(T9, T13, m3_in_gga(T9, T13, X19))
m3_in_gga(T5, 0, T5) → m3_out_gga(T5, 0, T5)
m3_in_gga(0, T6, 0) → m3_out_gga(0, T6, 0)
m3_in_gga(s(T10), 0, T10) → m3_out_gga(s(T10), 0, T10)
m3_in_gga(s(0), 0, 0) → m3_out_gga(s(0), 0, 0)
m3_in_gga(s(s(T12)), 0, X35) → U2_gga(T12, X35, m20_in_gaa(T12, X35, X34))
U2_gga(T12, X35, m20_out_gaa(T12, X35, X34)) → m3_out_gga(s(s(T12)), 0, X35)
m3_in_gga(s(T9), s(T13), X19) → U3_gga(T9, T13, X19, m3_in_gga(T9, T13, X19))
U3_gga(T9, T13, X19, m3_out_gga(T9, T13, X19)) → m3_out_gga(s(T9), s(T13), X19)
U5_gg(T9, T13, m3_out_gga(T9, T13, X19)) → q1_out_gg(s(T9), s(T13))

The argument filtering Pi contains the following mapping:
q1_in_gg(x1, x2)  =  q1_in_gg(x1, x2)
0  =  0
q1_out_gg(x1, x2)  =  q1_out_gg
s(x1)  =  s(x1)
U4_gg(x1, x2)  =  U4_gg(x2)
m20_in_gaa(x1, x2, x3)  =  m20_in_gaa(x1)
m20_out_gaa(x1, x2, x3)  =  m20_out_gaa(x2)
U1_gaa(x1, x2, x3, x4)  =  U1_gaa(x4)
U5_gg(x1, x2, x3)  =  U5_gg(x3)
m3_in_gga(x1, x2, x3)  =  m3_in_gga(x1, x2)
m3_out_gga(x1, x2, x3)  =  m3_out_gga(x3)
U2_gga(x1, x2, x3)  =  U2_gga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
Q1_IN_GG(x1, x2)  =  Q1_IN_GG(x1, x2)
U4_GG(x1, x2)  =  U4_GG(x2)
M20_IN_GAA(x1, x2, x3)  =  M20_IN_GAA(x1)
U1_GAA(x1, x2, x3, x4)  =  U1_GAA(x4)
U5_GG(x1, x2, x3)  =  U5_GG(x3)
M3_IN_GGA(x1, x2, x3)  =  M3_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3)  =  U2_GGA(x3)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x4)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

Q1_IN_GG(s(s(T12)), 0) → U4_GG(T12, m20_in_gaa(T12, X35, X34))
Q1_IN_GG(s(s(T12)), 0) → M20_IN_GAA(T12, X35, X34)
M20_IN_GAA(s(T12), X35, X18) → U1_GAA(T12, X35, X18, m20_in_gaa(T12, X35, X34))
M20_IN_GAA(s(T12), X35, X18) → M20_IN_GAA(T12, X35, X34)
Q1_IN_GG(s(T9), s(T13)) → U5_GG(T9, T13, m3_in_gga(T9, T13, X19))
Q1_IN_GG(s(T9), s(T13)) → M3_IN_GGA(T9, T13, X19)
M3_IN_GGA(s(s(T12)), 0, X35) → U2_GGA(T12, X35, m20_in_gaa(T12, X35, X34))
M3_IN_GGA(s(s(T12)), 0, X35) → M20_IN_GAA(T12, X35, X34)
M3_IN_GGA(s(T9), s(T13), X19) → U3_GGA(T9, T13, X19, m3_in_gga(T9, T13, X19))
M3_IN_GGA(s(T9), s(T13), X19) → M3_IN_GGA(T9, T13, X19)

The TRS R consists of the following rules:

q1_in_gg(T5, 0) → q1_out_gg(T5, 0)
q1_in_gg(0, T6) → q1_out_gg(0, T6)
q1_in_gg(s(T10), 0) → q1_out_gg(s(T10), 0)
q1_in_gg(s(0), 0) → q1_out_gg(s(0), 0)
q1_in_gg(s(s(T12)), 0) → U4_gg(T12, m20_in_gaa(T12, X35, X34))
m20_in_gaa(T10, T10, X18) → m20_out_gaa(T10, T10, X18)
m20_in_gaa(0, 0, X18) → m20_out_gaa(0, 0, X18)
m20_in_gaa(s(T12), X35, X18) → U1_gaa(T12, X35, X18, m20_in_gaa(T12, X35, X34))
U1_gaa(T12, X35, X18, m20_out_gaa(T12, X35, X34)) → m20_out_gaa(s(T12), X35, X18)
U4_gg(T12, m20_out_gaa(T12, X35, X34)) → q1_out_gg(s(s(T12)), 0)
q1_in_gg(s(T9), s(T13)) → U5_gg(T9, T13, m3_in_gga(T9, T13, X19))
m3_in_gga(T5, 0, T5) → m3_out_gga(T5, 0, T5)
m3_in_gga(0, T6, 0) → m3_out_gga(0, T6, 0)
m3_in_gga(s(T10), 0, T10) → m3_out_gga(s(T10), 0, T10)
m3_in_gga(s(0), 0, 0) → m3_out_gga(s(0), 0, 0)
m3_in_gga(s(s(T12)), 0, X35) → U2_gga(T12, X35, m20_in_gaa(T12, X35, X34))
U2_gga(T12, X35, m20_out_gaa(T12, X35, X34)) → m3_out_gga(s(s(T12)), 0, X35)
m3_in_gga(s(T9), s(T13), X19) → U3_gga(T9, T13, X19, m3_in_gga(T9, T13, X19))
U3_gga(T9, T13, X19, m3_out_gga(T9, T13, X19)) → m3_out_gga(s(T9), s(T13), X19)
U5_gg(T9, T13, m3_out_gga(T9, T13, X19)) → q1_out_gg(s(T9), s(T13))

The argument filtering Pi contains the following mapping:
q1_in_gg(x1, x2)  =  q1_in_gg(x1, x2)
0  =  0
q1_out_gg(x1, x2)  =  q1_out_gg
s(x1)  =  s(x1)
U4_gg(x1, x2)  =  U4_gg(x2)
m20_in_gaa(x1, x2, x3)  =  m20_in_gaa(x1)
m20_out_gaa(x1, x2, x3)  =  m20_out_gaa(x2)
U1_gaa(x1, x2, x3, x4)  =  U1_gaa(x4)
U5_gg(x1, x2, x3)  =  U5_gg(x3)
m3_in_gga(x1, x2, x3)  =  m3_in_gga(x1, x2)
m3_out_gga(x1, x2, x3)  =  m3_out_gga(x3)
U2_gga(x1, x2, x3)  =  U2_gga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
Q1_IN_GG(x1, x2)  =  Q1_IN_GG(x1, x2)
U4_GG(x1, x2)  =  U4_GG(x2)
M20_IN_GAA(x1, x2, x3)  =  M20_IN_GAA(x1)
U1_GAA(x1, x2, x3, x4)  =  U1_GAA(x4)
U5_GG(x1, x2, x3)  =  U5_GG(x3)
M3_IN_GGA(x1, x2, x3)  =  M3_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3)  =  U2_GGA(x3)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x4)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 8 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

M20_IN_GAA(s(T12), X35, X18) → M20_IN_GAA(T12, X35, X34)

The TRS R consists of the following rules:

q1_in_gg(T5, 0) → q1_out_gg(T5, 0)
q1_in_gg(0, T6) → q1_out_gg(0, T6)
q1_in_gg(s(T10), 0) → q1_out_gg(s(T10), 0)
q1_in_gg(s(0), 0) → q1_out_gg(s(0), 0)
q1_in_gg(s(s(T12)), 0) → U4_gg(T12, m20_in_gaa(T12, X35, X34))
m20_in_gaa(T10, T10, X18) → m20_out_gaa(T10, T10, X18)
m20_in_gaa(0, 0, X18) → m20_out_gaa(0, 0, X18)
m20_in_gaa(s(T12), X35, X18) → U1_gaa(T12, X35, X18, m20_in_gaa(T12, X35, X34))
U1_gaa(T12, X35, X18, m20_out_gaa(T12, X35, X34)) → m20_out_gaa(s(T12), X35, X18)
U4_gg(T12, m20_out_gaa(T12, X35, X34)) → q1_out_gg(s(s(T12)), 0)
q1_in_gg(s(T9), s(T13)) → U5_gg(T9, T13, m3_in_gga(T9, T13, X19))
m3_in_gga(T5, 0, T5) → m3_out_gga(T5, 0, T5)
m3_in_gga(0, T6, 0) → m3_out_gga(0, T6, 0)
m3_in_gga(s(T10), 0, T10) → m3_out_gga(s(T10), 0, T10)
m3_in_gga(s(0), 0, 0) → m3_out_gga(s(0), 0, 0)
m3_in_gga(s(s(T12)), 0, X35) → U2_gga(T12, X35, m20_in_gaa(T12, X35, X34))
U2_gga(T12, X35, m20_out_gaa(T12, X35, X34)) → m3_out_gga(s(s(T12)), 0, X35)
m3_in_gga(s(T9), s(T13), X19) → U3_gga(T9, T13, X19, m3_in_gga(T9, T13, X19))
U3_gga(T9, T13, X19, m3_out_gga(T9, T13, X19)) → m3_out_gga(s(T9), s(T13), X19)
U5_gg(T9, T13, m3_out_gga(T9, T13, X19)) → q1_out_gg(s(T9), s(T13))

The argument filtering Pi contains the following mapping:
q1_in_gg(x1, x2)  =  q1_in_gg(x1, x2)
0  =  0
q1_out_gg(x1, x2)  =  q1_out_gg
s(x1)  =  s(x1)
U4_gg(x1, x2)  =  U4_gg(x2)
m20_in_gaa(x1, x2, x3)  =  m20_in_gaa(x1)
m20_out_gaa(x1, x2, x3)  =  m20_out_gaa(x2)
U1_gaa(x1, x2, x3, x4)  =  U1_gaa(x4)
U5_gg(x1, x2, x3)  =  U5_gg(x3)
m3_in_gga(x1, x2, x3)  =  m3_in_gga(x1, x2)
m3_out_gga(x1, x2, x3)  =  m3_out_gga(x3)
U2_gga(x1, x2, x3)  =  U2_gga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
M20_IN_GAA(x1, x2, x3)  =  M20_IN_GAA(x1)

We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

M20_IN_GAA(s(T12), X35, X18) → M20_IN_GAA(T12, X35, X34)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
M20_IN_GAA(x1, x2, x3)  =  M20_IN_GAA(x1)

We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

M20_IN_GAA(s(T12)) → M20_IN_GAA(T12)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(14) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • M20_IN_GAA(s(T12)) → M20_IN_GAA(T12)
    The graph contains the following edges 1 > 1

(15) TRUE

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

M3_IN_GGA(s(T9), s(T13), X19) → M3_IN_GGA(T9, T13, X19)

The TRS R consists of the following rules:

q1_in_gg(T5, 0) → q1_out_gg(T5, 0)
q1_in_gg(0, T6) → q1_out_gg(0, T6)
q1_in_gg(s(T10), 0) → q1_out_gg(s(T10), 0)
q1_in_gg(s(0), 0) → q1_out_gg(s(0), 0)
q1_in_gg(s(s(T12)), 0) → U4_gg(T12, m20_in_gaa(T12, X35, X34))
m20_in_gaa(T10, T10, X18) → m20_out_gaa(T10, T10, X18)
m20_in_gaa(0, 0, X18) → m20_out_gaa(0, 0, X18)
m20_in_gaa(s(T12), X35, X18) → U1_gaa(T12, X35, X18, m20_in_gaa(T12, X35, X34))
U1_gaa(T12, X35, X18, m20_out_gaa(T12, X35, X34)) → m20_out_gaa(s(T12), X35, X18)
U4_gg(T12, m20_out_gaa(T12, X35, X34)) → q1_out_gg(s(s(T12)), 0)
q1_in_gg(s(T9), s(T13)) → U5_gg(T9, T13, m3_in_gga(T9, T13, X19))
m3_in_gga(T5, 0, T5) → m3_out_gga(T5, 0, T5)
m3_in_gga(0, T6, 0) → m3_out_gga(0, T6, 0)
m3_in_gga(s(T10), 0, T10) → m3_out_gga(s(T10), 0, T10)
m3_in_gga(s(0), 0, 0) → m3_out_gga(s(0), 0, 0)
m3_in_gga(s(s(T12)), 0, X35) → U2_gga(T12, X35, m20_in_gaa(T12, X35, X34))
U2_gga(T12, X35, m20_out_gaa(T12, X35, X34)) → m3_out_gga(s(s(T12)), 0, X35)
m3_in_gga(s(T9), s(T13), X19) → U3_gga(T9, T13, X19, m3_in_gga(T9, T13, X19))
U3_gga(T9, T13, X19, m3_out_gga(T9, T13, X19)) → m3_out_gga(s(T9), s(T13), X19)
U5_gg(T9, T13, m3_out_gga(T9, T13, X19)) → q1_out_gg(s(T9), s(T13))

The argument filtering Pi contains the following mapping:
q1_in_gg(x1, x2)  =  q1_in_gg(x1, x2)
0  =  0
q1_out_gg(x1, x2)  =  q1_out_gg
s(x1)  =  s(x1)
U4_gg(x1, x2)  =  U4_gg(x2)
m20_in_gaa(x1, x2, x3)  =  m20_in_gaa(x1)
m20_out_gaa(x1, x2, x3)  =  m20_out_gaa(x2)
U1_gaa(x1, x2, x3, x4)  =  U1_gaa(x4)
U5_gg(x1, x2, x3)  =  U5_gg(x3)
m3_in_gga(x1, x2, x3)  =  m3_in_gga(x1, x2)
m3_out_gga(x1, x2, x3)  =  m3_out_gga(x3)
U2_gga(x1, x2, x3)  =  U2_gga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x4)
M3_IN_GGA(x1, x2, x3)  =  M3_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(17) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

M3_IN_GGA(s(T9), s(T13), X19) → M3_IN_GGA(T9, T13, X19)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
M3_IN_GGA(x1, x2, x3)  =  M3_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(19) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

M3_IN_GGA(s(T9), s(T13)) → M3_IN_GGA(T9, T13)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(21) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • M3_IN_GGA(s(T9), s(T13)) → M3_IN_GGA(T9, T13)
    The graph contains the following edges 1 > 1, 2 > 2

(22) TRUE