(0) Obligation:
Clauses:
m(X, 0, Z) :- ','(!, =(Z, X)).
m(0, Y, Z) :- ','(!, =(Z, 0)).
m(X, Y, Z) :- ','(p(X, A), ','(p(Y, B), m(A, B, Z))).
p(0, 0).
p(s(0), 0).
p(s(s(X)), s(Y)) :- p(s(X), Y).
=(X, X).
Queries:
m(g,g,a).
(1) BuiltinConflictTransformerProof (SOUND transformation)
Renamed defined predicates conflicting with built-in predicates [PROLOG].
(2) Obligation:
Clauses:
m(X, 0, Z) :- ','(!, user_defined_=(Z, X)).
m(0, Y, Z) :- ','(!, user_defined_=(Z, 0)).
m(X, Y, Z) :- ','(p(X, A), ','(p(Y, B), m(A, B, Z))).
p(0, 0).
p(s(0), 0).
p(s(s(X)), s(Y)) :- p(s(X), Y).
user_defined_=(X, X).
Queries:
m(g,g,a).
(3) PrologToDTProblemTransformerProof (SOUND transformation)
Built DT problem from termination graph.
(4) Obligation:
Triples:
p33(s(T33), s(X48)) :- p33(T33, X48).
m1(s(0), s(s(T30)), T26) :- p33(T30, X37).
m1(s(s(T55)), T24, T26) :- p33(T55, X83).
m1(s(s(T55)), s(s(T60)), T26) :- ','(pc33(T55, T56), p33(T60, X94)).
m1(s(s(T55)), T24, T26) :- ','(pc33(T55, T56), ','(pc62(T24, T57), m1(s(T56), T57, T26))).
Clauses:
pc33(0, 0).
pc33(s(T33), s(X48)) :- pc33(T33, X48).
mc1(T11, 0, T11).
mc1(0, T14, 0).
mc1(s(0), T24, 0) :- pc24(T24, 0).
mc1(s(0), T24, 0) :- pc24(T24, T47).
mc1(s(s(T55)), T24, T26) :- ','(pc33(T55, T56), ','(pc62(T24, T57), mc1(s(T56), T57, T26))).
pc24(s(0), 0).
pc24(s(s(T30)), s(X37)) :- pc33(T30, X37).
pc62(s(0), 0).
pc62(s(s(T60)), s(X94)) :- pc33(T60, X94).
Afs:
m1(x1, x2, x3) = m1(x1, x2)
(5) TriplesToPiDPProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
m1_in: (b,b,f)
p33_in: (b,f)
pc33_in: (b,f)
pc62_in: (b,f)
Transforming
TRIPLES into the following
Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:
M1_IN_GGA(s(0), s(s(T30)), T26) → U2_GGA(T30, T26, p33_in_ga(T30, X37))
M1_IN_GGA(s(0), s(s(T30)), T26) → P33_IN_GA(T30, X37)
P33_IN_GA(s(T33), s(X48)) → U1_GA(T33, X48, p33_in_ga(T33, X48))
P33_IN_GA(s(T33), s(X48)) → P33_IN_GA(T33, X48)
M1_IN_GGA(s(s(T55)), T24, T26) → U3_GGA(T55, T24, T26, p33_in_ga(T55, X83))
M1_IN_GGA(s(s(T55)), T24, T26) → P33_IN_GA(T55, X83)
M1_IN_GGA(s(s(T55)), s(s(T60)), T26) → U4_GGA(T55, T60, T26, pc33_in_ga(T55, T56))
U4_GGA(T55, T60, T26, pc33_out_ga(T55, T56)) → U5_GGA(T55, T60, T26, p33_in_ga(T60, X94))
U4_GGA(T55, T60, T26, pc33_out_ga(T55, T56)) → P33_IN_GA(T60, X94)
M1_IN_GGA(s(s(T55)), T24, T26) → U6_GGA(T55, T24, T26, pc33_in_ga(T55, T56))
U6_GGA(T55, T24, T26, pc33_out_ga(T55, T56)) → U7_GGA(T55, T24, T26, T56, pc62_in_ga(T24, T57))
U7_GGA(T55, T24, T26, T56, pc62_out_ga(T24, T57)) → U8_GGA(T55, T24, T26, m1_in_gga(s(T56), T57, T26))
U7_GGA(T55, T24, T26, T56, pc62_out_ga(T24, T57)) → M1_IN_GGA(s(T56), T57, T26)
The TRS R consists of the following rules:
pc33_in_ga(0, 0) → pc33_out_ga(0, 0)
pc33_in_ga(s(T33), s(X48)) → U10_ga(T33, X48, pc33_in_ga(T33, X48))
U10_ga(T33, X48, pc33_out_ga(T33, X48)) → pc33_out_ga(s(T33), s(X48))
pc62_in_ga(s(0), 0) → pc62_out_ga(s(0), 0)
pc62_in_ga(s(s(T60)), s(X94)) → U17_ga(T60, X94, pc33_in_ga(T60, X94))
U17_ga(T60, X94, pc33_out_ga(T60, X94)) → pc62_out_ga(s(s(T60)), s(X94))
The argument filtering Pi contains the following mapping:
m1_in_gga(
x1,
x2,
x3) =
m1_in_gga(
x1,
x2)
s(
x1) =
s(
x1)
0 =
0
p33_in_ga(
x1,
x2) =
p33_in_ga(
x1)
pc33_in_ga(
x1,
x2) =
pc33_in_ga(
x1)
pc33_out_ga(
x1,
x2) =
pc33_out_ga(
x1,
x2)
U10_ga(
x1,
x2,
x3) =
U10_ga(
x1,
x3)
pc62_in_ga(
x1,
x2) =
pc62_in_ga(
x1)
pc62_out_ga(
x1,
x2) =
pc62_out_ga(
x1,
x2)
U17_ga(
x1,
x2,
x3) =
U17_ga(
x1,
x3)
M1_IN_GGA(
x1,
x2,
x3) =
M1_IN_GGA(
x1,
x2)
U2_GGA(
x1,
x2,
x3) =
U2_GGA(
x1,
x3)
P33_IN_GA(
x1,
x2) =
P33_IN_GA(
x1)
U1_GA(
x1,
x2,
x3) =
U1_GA(
x1,
x3)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
U4_GGA(
x1,
x2,
x3,
x4) =
U4_GGA(
x1,
x2,
x4)
U5_GGA(
x1,
x2,
x3,
x4) =
U5_GGA(
x1,
x2,
x4)
U6_GGA(
x1,
x2,
x3,
x4) =
U6_GGA(
x1,
x2,
x4)
U7_GGA(
x1,
x2,
x3,
x4,
x5) =
U7_GGA(
x1,
x2,
x4,
x5)
U8_GGA(
x1,
x2,
x3,
x4) =
U8_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
M1_IN_GGA(s(0), s(s(T30)), T26) → U2_GGA(T30, T26, p33_in_ga(T30, X37))
M1_IN_GGA(s(0), s(s(T30)), T26) → P33_IN_GA(T30, X37)
P33_IN_GA(s(T33), s(X48)) → U1_GA(T33, X48, p33_in_ga(T33, X48))
P33_IN_GA(s(T33), s(X48)) → P33_IN_GA(T33, X48)
M1_IN_GGA(s(s(T55)), T24, T26) → U3_GGA(T55, T24, T26, p33_in_ga(T55, X83))
M1_IN_GGA(s(s(T55)), T24, T26) → P33_IN_GA(T55, X83)
M1_IN_GGA(s(s(T55)), s(s(T60)), T26) → U4_GGA(T55, T60, T26, pc33_in_ga(T55, T56))
U4_GGA(T55, T60, T26, pc33_out_ga(T55, T56)) → U5_GGA(T55, T60, T26, p33_in_ga(T60, X94))
U4_GGA(T55, T60, T26, pc33_out_ga(T55, T56)) → P33_IN_GA(T60, X94)
M1_IN_GGA(s(s(T55)), T24, T26) → U6_GGA(T55, T24, T26, pc33_in_ga(T55, T56))
U6_GGA(T55, T24, T26, pc33_out_ga(T55, T56)) → U7_GGA(T55, T24, T26, T56, pc62_in_ga(T24, T57))
U7_GGA(T55, T24, T26, T56, pc62_out_ga(T24, T57)) → U8_GGA(T55, T24, T26, m1_in_gga(s(T56), T57, T26))
U7_GGA(T55, T24, T26, T56, pc62_out_ga(T24, T57)) → M1_IN_GGA(s(T56), T57, T26)
The TRS R consists of the following rules:
pc33_in_ga(0, 0) → pc33_out_ga(0, 0)
pc33_in_ga(s(T33), s(X48)) → U10_ga(T33, X48, pc33_in_ga(T33, X48))
U10_ga(T33, X48, pc33_out_ga(T33, X48)) → pc33_out_ga(s(T33), s(X48))
pc62_in_ga(s(0), 0) → pc62_out_ga(s(0), 0)
pc62_in_ga(s(s(T60)), s(X94)) → U17_ga(T60, X94, pc33_in_ga(T60, X94))
U17_ga(T60, X94, pc33_out_ga(T60, X94)) → pc62_out_ga(s(s(T60)), s(X94))
The argument filtering Pi contains the following mapping:
m1_in_gga(
x1,
x2,
x3) =
m1_in_gga(
x1,
x2)
s(
x1) =
s(
x1)
0 =
0
p33_in_ga(
x1,
x2) =
p33_in_ga(
x1)
pc33_in_ga(
x1,
x2) =
pc33_in_ga(
x1)
pc33_out_ga(
x1,
x2) =
pc33_out_ga(
x1,
x2)
U10_ga(
x1,
x2,
x3) =
U10_ga(
x1,
x3)
pc62_in_ga(
x1,
x2) =
pc62_in_ga(
x1)
pc62_out_ga(
x1,
x2) =
pc62_out_ga(
x1,
x2)
U17_ga(
x1,
x2,
x3) =
U17_ga(
x1,
x3)
M1_IN_GGA(
x1,
x2,
x3) =
M1_IN_GGA(
x1,
x2)
U2_GGA(
x1,
x2,
x3) =
U2_GGA(
x1,
x3)
P33_IN_GA(
x1,
x2) =
P33_IN_GA(
x1)
U1_GA(
x1,
x2,
x3) =
U1_GA(
x1,
x3)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
U4_GGA(
x1,
x2,
x3,
x4) =
U4_GGA(
x1,
x2,
x4)
U5_GGA(
x1,
x2,
x3,
x4) =
U5_GGA(
x1,
x2,
x4)
U6_GGA(
x1,
x2,
x3,
x4) =
U6_GGA(
x1,
x2,
x4)
U7_GGA(
x1,
x2,
x3,
x4,
x5) =
U7_GGA(
x1,
x2,
x4,
x5)
U8_GGA(
x1,
x2,
x3,
x4) =
U8_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 9 less nodes.
(8) Complex Obligation (AND)
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P33_IN_GA(s(T33), s(X48)) → P33_IN_GA(T33, X48)
The TRS R consists of the following rules:
pc33_in_ga(0, 0) → pc33_out_ga(0, 0)
pc33_in_ga(s(T33), s(X48)) → U10_ga(T33, X48, pc33_in_ga(T33, X48))
U10_ga(T33, X48, pc33_out_ga(T33, X48)) → pc33_out_ga(s(T33), s(X48))
pc62_in_ga(s(0), 0) → pc62_out_ga(s(0), 0)
pc62_in_ga(s(s(T60)), s(X94)) → U17_ga(T60, X94, pc33_in_ga(T60, X94))
U17_ga(T60, X94, pc33_out_ga(T60, X94)) → pc62_out_ga(s(s(T60)), s(X94))
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
0 =
0
pc33_in_ga(
x1,
x2) =
pc33_in_ga(
x1)
pc33_out_ga(
x1,
x2) =
pc33_out_ga(
x1,
x2)
U10_ga(
x1,
x2,
x3) =
U10_ga(
x1,
x3)
pc62_in_ga(
x1,
x2) =
pc62_in_ga(
x1)
pc62_out_ga(
x1,
x2) =
pc62_out_ga(
x1,
x2)
U17_ga(
x1,
x2,
x3) =
U17_ga(
x1,
x3)
P33_IN_GA(
x1,
x2) =
P33_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(10) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(11) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P33_IN_GA(s(T33), s(X48)) → P33_IN_GA(T33, X48)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
P33_IN_GA(
x1,
x2) =
P33_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(12) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(13) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P33_IN_GA(s(T33)) → P33_IN_GA(T33)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(14) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- P33_IN_GA(s(T33)) → P33_IN_GA(T33)
The graph contains the following edges 1 > 1
(15) YES
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
M1_IN_GGA(s(s(T55)), T24, T26) → U6_GGA(T55, T24, T26, pc33_in_ga(T55, T56))
U6_GGA(T55, T24, T26, pc33_out_ga(T55, T56)) → U7_GGA(T55, T24, T26, T56, pc62_in_ga(T24, T57))
U7_GGA(T55, T24, T26, T56, pc62_out_ga(T24, T57)) → M1_IN_GGA(s(T56), T57, T26)
The TRS R consists of the following rules:
pc33_in_ga(0, 0) → pc33_out_ga(0, 0)
pc33_in_ga(s(T33), s(X48)) → U10_ga(T33, X48, pc33_in_ga(T33, X48))
U10_ga(T33, X48, pc33_out_ga(T33, X48)) → pc33_out_ga(s(T33), s(X48))
pc62_in_ga(s(0), 0) → pc62_out_ga(s(0), 0)
pc62_in_ga(s(s(T60)), s(X94)) → U17_ga(T60, X94, pc33_in_ga(T60, X94))
U17_ga(T60, X94, pc33_out_ga(T60, X94)) → pc62_out_ga(s(s(T60)), s(X94))
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
0 =
0
pc33_in_ga(
x1,
x2) =
pc33_in_ga(
x1)
pc33_out_ga(
x1,
x2) =
pc33_out_ga(
x1,
x2)
U10_ga(
x1,
x2,
x3) =
U10_ga(
x1,
x3)
pc62_in_ga(
x1,
x2) =
pc62_in_ga(
x1)
pc62_out_ga(
x1,
x2) =
pc62_out_ga(
x1,
x2)
U17_ga(
x1,
x2,
x3) =
U17_ga(
x1,
x3)
M1_IN_GGA(
x1,
x2,
x3) =
M1_IN_GGA(
x1,
x2)
U6_GGA(
x1,
x2,
x3,
x4) =
U6_GGA(
x1,
x2,
x4)
U7_GGA(
x1,
x2,
x3,
x4,
x5) =
U7_GGA(
x1,
x2,
x4,
x5)
We have to consider all (P,R,Pi)-chains
(17) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
M1_IN_GGA(s(s(T55)), T24) → U6_GGA(T55, T24, pc33_in_ga(T55))
U6_GGA(T55, T24, pc33_out_ga(T55, T56)) → U7_GGA(T55, T24, T56, pc62_in_ga(T24))
U7_GGA(T55, T24, T56, pc62_out_ga(T24, T57)) → M1_IN_GGA(s(T56), T57)
The TRS R consists of the following rules:
pc33_in_ga(0) → pc33_out_ga(0, 0)
pc33_in_ga(s(T33)) → U10_ga(T33, pc33_in_ga(T33))
U10_ga(T33, pc33_out_ga(T33, X48)) → pc33_out_ga(s(T33), s(X48))
pc62_in_ga(s(0)) → pc62_out_ga(s(0), 0)
pc62_in_ga(s(s(T60))) → U17_ga(T60, pc33_in_ga(T60))
U17_ga(T60, pc33_out_ga(T60, X94)) → pc62_out_ga(s(s(T60)), s(X94))
The set Q consists of the following terms:
pc33_in_ga(x0)
U10_ga(x0, x1)
pc62_in_ga(x0)
U17_ga(x0, x1)
We have to consider all (P,Q,R)-chains.
(19) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
M1_IN_GGA(s(s(T55)), T24) → U6_GGA(T55, T24, pc33_in_ga(T55))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(M1_IN_GGA(x1, x2)) = x1
POL(U10_ga(x1, x2)) = 1 + x2
POL(U17_ga(x1, x2)) = 0
POL(U6_GGA(x1, x2, x3)) = 1 + x3
POL(U7_GGA(x1, x2, x3, x4)) = 1 + x3
POL(pc33_in_ga(x1)) = x1
POL(pc33_out_ga(x1, x2)) = x2
POL(pc62_in_ga(x1)) = 0
POL(pc62_out_ga(x1, x2)) = 0
POL(s(x1)) = 1 + x1
The following usable rules [FROCOS05] were oriented:
pc33_in_ga(0) → pc33_out_ga(0, 0)
pc33_in_ga(s(T33)) → U10_ga(T33, pc33_in_ga(T33))
U10_ga(T33, pc33_out_ga(T33, X48)) → pc33_out_ga(s(T33), s(X48))
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U6_GGA(T55, T24, pc33_out_ga(T55, T56)) → U7_GGA(T55, T24, T56, pc62_in_ga(T24))
U7_GGA(T55, T24, T56, pc62_out_ga(T24, T57)) → M1_IN_GGA(s(T56), T57)
The TRS R consists of the following rules:
pc33_in_ga(0) → pc33_out_ga(0, 0)
pc33_in_ga(s(T33)) → U10_ga(T33, pc33_in_ga(T33))
U10_ga(T33, pc33_out_ga(T33, X48)) → pc33_out_ga(s(T33), s(X48))
pc62_in_ga(s(0)) → pc62_out_ga(s(0), 0)
pc62_in_ga(s(s(T60))) → U17_ga(T60, pc33_in_ga(T60))
U17_ga(T60, pc33_out_ga(T60, X94)) → pc62_out_ga(s(s(T60)), s(X94))
The set Q consists of the following terms:
pc33_in_ga(x0)
U10_ga(x0, x1)
pc62_in_ga(x0)
U17_ga(x0, x1)
We have to consider all (P,Q,R)-chains.
(21) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.
(22) TRUE