(0) Obligation:

Clauses:

m(X, 0, Z) :- ','(!, =(Z, X)).
m(0, Y, Z) :- ','(!, =(Z, 0)).
m(X, Y, Z) :- ','(p(X, A), ','(p(Y, B), m(A, B, Z))).
p(0, 0).
p(s(0), 0).
p(s(s(X)), s(Y)) :- p(s(X), Y).
=(X, X).

Queries:

m(g,g,a).

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph.

(2) Obligation:

Clauses:

p30(0, 0).
p30(s(T18), s(X30)) :- p30(T18, X30).
m1(T7, 0, T7).
m1(0, T8, 0).
m1(T12, T13, T15) :- p18(T12, X19).
m1(T12, T13, T15) :- ','(p18(T12, T16), p40(T13, X20)).
m1(T12, T13, T15) :- ','(p18(T12, T16), ','(p40(T13, T19), m1(T16, T19, T15))).
p27(0, 0).
p27(s(T18), s(X30)) :- p30(T18, X30).
p18(s(0), 0).
p18(s(s(0)), s(0)).
p18(s(s(s(T18))), s(s(X30))) :- p30(T18, X30).
p40(s(0), 0).
p40(s(s(T20)), s(X35)) :- p27(T20, X35).

Queries:

m1(g,g,a).

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
m1_in: (b,b,f)
p18_in: (b,f)
p30_in: (b,f)
p40_in: (b,f)
p27_in: (b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

m1_in_gga(T7, 0, T7) → m1_out_gga(T7, 0, T7)
m1_in_gga(0, T8, 0) → m1_out_gga(0, T8, 0)
m1_in_gga(T12, T13, T15) → U2_gga(T12, T13, T15, p18_in_ga(T12, X19))
p18_in_ga(s(0), 0) → p18_out_ga(s(0), 0)
p18_in_ga(s(s(0)), s(0)) → p18_out_ga(s(s(0)), s(0))
p18_in_ga(s(s(s(T18))), s(s(X30))) → U8_ga(T18, X30, p30_in_ga(T18, X30))
p30_in_ga(0, 0) → p30_out_ga(0, 0)
p30_in_ga(s(T18), s(X30)) → U1_ga(T18, X30, p30_in_ga(T18, X30))
U1_ga(T18, X30, p30_out_ga(T18, X30)) → p30_out_ga(s(T18), s(X30))
U8_ga(T18, X30, p30_out_ga(T18, X30)) → p18_out_ga(s(s(s(T18))), s(s(X30)))
U2_gga(T12, T13, T15, p18_out_ga(T12, X19)) → m1_out_gga(T12, T13, T15)
m1_in_gga(T12, T13, T15) → U3_gga(T12, T13, T15, p18_in_ga(T12, T16))
U3_gga(T12, T13, T15, p18_out_ga(T12, T16)) → U4_gga(T12, T13, T15, p40_in_ga(T13, X20))
p40_in_ga(s(0), 0) → p40_out_ga(s(0), 0)
p40_in_ga(s(s(T20)), s(X35)) → U9_ga(T20, X35, p27_in_ga(T20, X35))
p27_in_ga(0, 0) → p27_out_ga(0, 0)
p27_in_ga(s(T18), s(X30)) → U7_ga(T18, X30, p30_in_ga(T18, X30))
U7_ga(T18, X30, p30_out_ga(T18, X30)) → p27_out_ga(s(T18), s(X30))
U9_ga(T20, X35, p27_out_ga(T20, X35)) → p40_out_ga(s(s(T20)), s(X35))
U4_gga(T12, T13, T15, p40_out_ga(T13, X20)) → m1_out_gga(T12, T13, T15)
U3_gga(T12, T13, T15, p18_out_ga(T12, T16)) → U5_gga(T12, T13, T15, T16, p40_in_ga(T13, T19))
U5_gga(T12, T13, T15, T16, p40_out_ga(T13, T19)) → U6_gga(T12, T13, T15, m1_in_gga(T16, T19, T15))
U6_gga(T12, T13, T15, m1_out_gga(T16, T19, T15)) → m1_out_gga(T12, T13, T15)

The argument filtering Pi contains the following mapping:
m1_in_gga(x1, x2, x3)  =  m1_in_gga(x1, x2)
0  =  0
m1_out_gga(x1, x2, x3)  =  m1_out_gga
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
p18_in_ga(x1, x2)  =  p18_in_ga(x1)
s(x1)  =  s(x1)
p18_out_ga(x1, x2)  =  p18_out_ga(x2)
U8_ga(x1, x2, x3)  =  U8_ga(x3)
p30_in_ga(x1, x2)  =  p30_in_ga(x1)
p30_out_ga(x1, x2)  =  p30_out_ga(x2)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x2, x4)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x4)
p40_in_ga(x1, x2)  =  p40_in_ga(x1)
p40_out_ga(x1, x2)  =  p40_out_ga(x2)
U9_ga(x1, x2, x3)  =  U9_ga(x3)
p27_in_ga(x1, x2)  =  p27_in_ga(x1)
p27_out_ga(x1, x2)  =  p27_out_ga(x2)
U7_ga(x1, x2, x3)  =  U7_ga(x3)
U5_gga(x1, x2, x3, x4, x5)  =  U5_gga(x4, x5)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

m1_in_gga(T7, 0, T7) → m1_out_gga(T7, 0, T7)
m1_in_gga(0, T8, 0) → m1_out_gga(0, T8, 0)
m1_in_gga(T12, T13, T15) → U2_gga(T12, T13, T15, p18_in_ga(T12, X19))
p18_in_ga(s(0), 0) → p18_out_ga(s(0), 0)
p18_in_ga(s(s(0)), s(0)) → p18_out_ga(s(s(0)), s(0))
p18_in_ga(s(s(s(T18))), s(s(X30))) → U8_ga(T18, X30, p30_in_ga(T18, X30))
p30_in_ga(0, 0) → p30_out_ga(0, 0)
p30_in_ga(s(T18), s(X30)) → U1_ga(T18, X30, p30_in_ga(T18, X30))
U1_ga(T18, X30, p30_out_ga(T18, X30)) → p30_out_ga(s(T18), s(X30))
U8_ga(T18, X30, p30_out_ga(T18, X30)) → p18_out_ga(s(s(s(T18))), s(s(X30)))
U2_gga(T12, T13, T15, p18_out_ga(T12, X19)) → m1_out_gga(T12, T13, T15)
m1_in_gga(T12, T13, T15) → U3_gga(T12, T13, T15, p18_in_ga(T12, T16))
U3_gga(T12, T13, T15, p18_out_ga(T12, T16)) → U4_gga(T12, T13, T15, p40_in_ga(T13, X20))
p40_in_ga(s(0), 0) → p40_out_ga(s(0), 0)
p40_in_ga(s(s(T20)), s(X35)) → U9_ga(T20, X35, p27_in_ga(T20, X35))
p27_in_ga(0, 0) → p27_out_ga(0, 0)
p27_in_ga(s(T18), s(X30)) → U7_ga(T18, X30, p30_in_ga(T18, X30))
U7_ga(T18, X30, p30_out_ga(T18, X30)) → p27_out_ga(s(T18), s(X30))
U9_ga(T20, X35, p27_out_ga(T20, X35)) → p40_out_ga(s(s(T20)), s(X35))
U4_gga(T12, T13, T15, p40_out_ga(T13, X20)) → m1_out_gga(T12, T13, T15)
U3_gga(T12, T13, T15, p18_out_ga(T12, T16)) → U5_gga(T12, T13, T15, T16, p40_in_ga(T13, T19))
U5_gga(T12, T13, T15, T16, p40_out_ga(T13, T19)) → U6_gga(T12, T13, T15, m1_in_gga(T16, T19, T15))
U6_gga(T12, T13, T15, m1_out_gga(T16, T19, T15)) → m1_out_gga(T12, T13, T15)

The argument filtering Pi contains the following mapping:
m1_in_gga(x1, x2, x3)  =  m1_in_gga(x1, x2)
0  =  0
m1_out_gga(x1, x2, x3)  =  m1_out_gga
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
p18_in_ga(x1, x2)  =  p18_in_ga(x1)
s(x1)  =  s(x1)
p18_out_ga(x1, x2)  =  p18_out_ga(x2)
U8_ga(x1, x2, x3)  =  U8_ga(x3)
p30_in_ga(x1, x2)  =  p30_in_ga(x1)
p30_out_ga(x1, x2)  =  p30_out_ga(x2)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x2, x4)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x4)
p40_in_ga(x1, x2)  =  p40_in_ga(x1)
p40_out_ga(x1, x2)  =  p40_out_ga(x2)
U9_ga(x1, x2, x3)  =  U9_ga(x3)
p27_in_ga(x1, x2)  =  p27_in_ga(x1)
p27_out_ga(x1, x2)  =  p27_out_ga(x2)
U7_ga(x1, x2, x3)  =  U7_ga(x3)
U5_gga(x1, x2, x3, x4, x5)  =  U5_gga(x4, x5)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x4)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

M1_IN_GGA(T12, T13, T15) → U2_GGA(T12, T13, T15, p18_in_ga(T12, X19))
M1_IN_GGA(T12, T13, T15) → P18_IN_GA(T12, X19)
P18_IN_GA(s(s(s(T18))), s(s(X30))) → U8_GA(T18, X30, p30_in_ga(T18, X30))
P18_IN_GA(s(s(s(T18))), s(s(X30))) → P30_IN_GA(T18, X30)
P30_IN_GA(s(T18), s(X30)) → U1_GA(T18, X30, p30_in_ga(T18, X30))
P30_IN_GA(s(T18), s(X30)) → P30_IN_GA(T18, X30)
M1_IN_GGA(T12, T13, T15) → U3_GGA(T12, T13, T15, p18_in_ga(T12, T16))
U3_GGA(T12, T13, T15, p18_out_ga(T12, T16)) → U4_GGA(T12, T13, T15, p40_in_ga(T13, X20))
U3_GGA(T12, T13, T15, p18_out_ga(T12, T16)) → P40_IN_GA(T13, X20)
P40_IN_GA(s(s(T20)), s(X35)) → U9_GA(T20, X35, p27_in_ga(T20, X35))
P40_IN_GA(s(s(T20)), s(X35)) → P27_IN_GA(T20, X35)
P27_IN_GA(s(T18), s(X30)) → U7_GA(T18, X30, p30_in_ga(T18, X30))
P27_IN_GA(s(T18), s(X30)) → P30_IN_GA(T18, X30)
U3_GGA(T12, T13, T15, p18_out_ga(T12, T16)) → U5_GGA(T12, T13, T15, T16, p40_in_ga(T13, T19))
U5_GGA(T12, T13, T15, T16, p40_out_ga(T13, T19)) → U6_GGA(T12, T13, T15, m1_in_gga(T16, T19, T15))
U5_GGA(T12, T13, T15, T16, p40_out_ga(T13, T19)) → M1_IN_GGA(T16, T19, T15)

The TRS R consists of the following rules:

m1_in_gga(T7, 0, T7) → m1_out_gga(T7, 0, T7)
m1_in_gga(0, T8, 0) → m1_out_gga(0, T8, 0)
m1_in_gga(T12, T13, T15) → U2_gga(T12, T13, T15, p18_in_ga(T12, X19))
p18_in_ga(s(0), 0) → p18_out_ga(s(0), 0)
p18_in_ga(s(s(0)), s(0)) → p18_out_ga(s(s(0)), s(0))
p18_in_ga(s(s(s(T18))), s(s(X30))) → U8_ga(T18, X30, p30_in_ga(T18, X30))
p30_in_ga(0, 0) → p30_out_ga(0, 0)
p30_in_ga(s(T18), s(X30)) → U1_ga(T18, X30, p30_in_ga(T18, X30))
U1_ga(T18, X30, p30_out_ga(T18, X30)) → p30_out_ga(s(T18), s(X30))
U8_ga(T18, X30, p30_out_ga(T18, X30)) → p18_out_ga(s(s(s(T18))), s(s(X30)))
U2_gga(T12, T13, T15, p18_out_ga(T12, X19)) → m1_out_gga(T12, T13, T15)
m1_in_gga(T12, T13, T15) → U3_gga(T12, T13, T15, p18_in_ga(T12, T16))
U3_gga(T12, T13, T15, p18_out_ga(T12, T16)) → U4_gga(T12, T13, T15, p40_in_ga(T13, X20))
p40_in_ga(s(0), 0) → p40_out_ga(s(0), 0)
p40_in_ga(s(s(T20)), s(X35)) → U9_ga(T20, X35, p27_in_ga(T20, X35))
p27_in_ga(0, 0) → p27_out_ga(0, 0)
p27_in_ga(s(T18), s(X30)) → U7_ga(T18, X30, p30_in_ga(T18, X30))
U7_ga(T18, X30, p30_out_ga(T18, X30)) → p27_out_ga(s(T18), s(X30))
U9_ga(T20, X35, p27_out_ga(T20, X35)) → p40_out_ga(s(s(T20)), s(X35))
U4_gga(T12, T13, T15, p40_out_ga(T13, X20)) → m1_out_gga(T12, T13, T15)
U3_gga(T12, T13, T15, p18_out_ga(T12, T16)) → U5_gga(T12, T13, T15, T16, p40_in_ga(T13, T19))
U5_gga(T12, T13, T15, T16, p40_out_ga(T13, T19)) → U6_gga(T12, T13, T15, m1_in_gga(T16, T19, T15))
U6_gga(T12, T13, T15, m1_out_gga(T16, T19, T15)) → m1_out_gga(T12, T13, T15)

The argument filtering Pi contains the following mapping:
m1_in_gga(x1, x2, x3)  =  m1_in_gga(x1, x2)
0  =  0
m1_out_gga(x1, x2, x3)  =  m1_out_gga
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
p18_in_ga(x1, x2)  =  p18_in_ga(x1)
s(x1)  =  s(x1)
p18_out_ga(x1, x2)  =  p18_out_ga(x2)
U8_ga(x1, x2, x3)  =  U8_ga(x3)
p30_in_ga(x1, x2)  =  p30_in_ga(x1)
p30_out_ga(x1, x2)  =  p30_out_ga(x2)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x2, x4)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x4)
p40_in_ga(x1, x2)  =  p40_in_ga(x1)
p40_out_ga(x1, x2)  =  p40_out_ga(x2)
U9_ga(x1, x2, x3)  =  U9_ga(x3)
p27_in_ga(x1, x2)  =  p27_in_ga(x1)
p27_out_ga(x1, x2)  =  p27_out_ga(x2)
U7_ga(x1, x2, x3)  =  U7_ga(x3)
U5_gga(x1, x2, x3, x4, x5)  =  U5_gga(x4, x5)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x4)
M1_IN_GGA(x1, x2, x3)  =  M1_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x4)
P18_IN_GA(x1, x2)  =  P18_IN_GA(x1)
U8_GA(x1, x2, x3)  =  U8_GA(x3)
P30_IN_GA(x1, x2)  =  P30_IN_GA(x1)
U1_GA(x1, x2, x3)  =  U1_GA(x3)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x2, x4)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x4)
P40_IN_GA(x1, x2)  =  P40_IN_GA(x1)
U9_GA(x1, x2, x3)  =  U9_GA(x3)
P27_IN_GA(x1, x2)  =  P27_IN_GA(x1)
U7_GA(x1, x2, x3)  =  U7_GA(x3)
U5_GGA(x1, x2, x3, x4, x5)  =  U5_GGA(x4, x5)
U6_GGA(x1, x2, x3, x4)  =  U6_GGA(x4)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

M1_IN_GGA(T12, T13, T15) → U2_GGA(T12, T13, T15, p18_in_ga(T12, X19))
M1_IN_GGA(T12, T13, T15) → P18_IN_GA(T12, X19)
P18_IN_GA(s(s(s(T18))), s(s(X30))) → U8_GA(T18, X30, p30_in_ga(T18, X30))
P18_IN_GA(s(s(s(T18))), s(s(X30))) → P30_IN_GA(T18, X30)
P30_IN_GA(s(T18), s(X30)) → U1_GA(T18, X30, p30_in_ga(T18, X30))
P30_IN_GA(s(T18), s(X30)) → P30_IN_GA(T18, X30)
M1_IN_GGA(T12, T13, T15) → U3_GGA(T12, T13, T15, p18_in_ga(T12, T16))
U3_GGA(T12, T13, T15, p18_out_ga(T12, T16)) → U4_GGA(T12, T13, T15, p40_in_ga(T13, X20))
U3_GGA(T12, T13, T15, p18_out_ga(T12, T16)) → P40_IN_GA(T13, X20)
P40_IN_GA(s(s(T20)), s(X35)) → U9_GA(T20, X35, p27_in_ga(T20, X35))
P40_IN_GA(s(s(T20)), s(X35)) → P27_IN_GA(T20, X35)
P27_IN_GA(s(T18), s(X30)) → U7_GA(T18, X30, p30_in_ga(T18, X30))
P27_IN_GA(s(T18), s(X30)) → P30_IN_GA(T18, X30)
U3_GGA(T12, T13, T15, p18_out_ga(T12, T16)) → U5_GGA(T12, T13, T15, T16, p40_in_ga(T13, T19))
U5_GGA(T12, T13, T15, T16, p40_out_ga(T13, T19)) → U6_GGA(T12, T13, T15, m1_in_gga(T16, T19, T15))
U5_GGA(T12, T13, T15, T16, p40_out_ga(T13, T19)) → M1_IN_GGA(T16, T19, T15)

The TRS R consists of the following rules:

m1_in_gga(T7, 0, T7) → m1_out_gga(T7, 0, T7)
m1_in_gga(0, T8, 0) → m1_out_gga(0, T8, 0)
m1_in_gga(T12, T13, T15) → U2_gga(T12, T13, T15, p18_in_ga(T12, X19))
p18_in_ga(s(0), 0) → p18_out_ga(s(0), 0)
p18_in_ga(s(s(0)), s(0)) → p18_out_ga(s(s(0)), s(0))
p18_in_ga(s(s(s(T18))), s(s(X30))) → U8_ga(T18, X30, p30_in_ga(T18, X30))
p30_in_ga(0, 0) → p30_out_ga(0, 0)
p30_in_ga(s(T18), s(X30)) → U1_ga(T18, X30, p30_in_ga(T18, X30))
U1_ga(T18, X30, p30_out_ga(T18, X30)) → p30_out_ga(s(T18), s(X30))
U8_ga(T18, X30, p30_out_ga(T18, X30)) → p18_out_ga(s(s(s(T18))), s(s(X30)))
U2_gga(T12, T13, T15, p18_out_ga(T12, X19)) → m1_out_gga(T12, T13, T15)
m1_in_gga(T12, T13, T15) → U3_gga(T12, T13, T15, p18_in_ga(T12, T16))
U3_gga(T12, T13, T15, p18_out_ga(T12, T16)) → U4_gga(T12, T13, T15, p40_in_ga(T13, X20))
p40_in_ga(s(0), 0) → p40_out_ga(s(0), 0)
p40_in_ga(s(s(T20)), s(X35)) → U9_ga(T20, X35, p27_in_ga(T20, X35))
p27_in_ga(0, 0) → p27_out_ga(0, 0)
p27_in_ga(s(T18), s(X30)) → U7_ga(T18, X30, p30_in_ga(T18, X30))
U7_ga(T18, X30, p30_out_ga(T18, X30)) → p27_out_ga(s(T18), s(X30))
U9_ga(T20, X35, p27_out_ga(T20, X35)) → p40_out_ga(s(s(T20)), s(X35))
U4_gga(T12, T13, T15, p40_out_ga(T13, X20)) → m1_out_gga(T12, T13, T15)
U3_gga(T12, T13, T15, p18_out_ga(T12, T16)) → U5_gga(T12, T13, T15, T16, p40_in_ga(T13, T19))
U5_gga(T12, T13, T15, T16, p40_out_ga(T13, T19)) → U6_gga(T12, T13, T15, m1_in_gga(T16, T19, T15))
U6_gga(T12, T13, T15, m1_out_gga(T16, T19, T15)) → m1_out_gga(T12, T13, T15)

The argument filtering Pi contains the following mapping:
m1_in_gga(x1, x2, x3)  =  m1_in_gga(x1, x2)
0  =  0
m1_out_gga(x1, x2, x3)  =  m1_out_gga
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
p18_in_ga(x1, x2)  =  p18_in_ga(x1)
s(x1)  =  s(x1)
p18_out_ga(x1, x2)  =  p18_out_ga(x2)
U8_ga(x1, x2, x3)  =  U8_ga(x3)
p30_in_ga(x1, x2)  =  p30_in_ga(x1)
p30_out_ga(x1, x2)  =  p30_out_ga(x2)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x2, x4)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x4)
p40_in_ga(x1, x2)  =  p40_in_ga(x1)
p40_out_ga(x1, x2)  =  p40_out_ga(x2)
U9_ga(x1, x2, x3)  =  U9_ga(x3)
p27_in_ga(x1, x2)  =  p27_in_ga(x1)
p27_out_ga(x1, x2)  =  p27_out_ga(x2)
U7_ga(x1, x2, x3)  =  U7_ga(x3)
U5_gga(x1, x2, x3, x4, x5)  =  U5_gga(x4, x5)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x4)
M1_IN_GGA(x1, x2, x3)  =  M1_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x4)
P18_IN_GA(x1, x2)  =  P18_IN_GA(x1)
U8_GA(x1, x2, x3)  =  U8_GA(x3)
P30_IN_GA(x1, x2)  =  P30_IN_GA(x1)
U1_GA(x1, x2, x3)  =  U1_GA(x3)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x2, x4)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x4)
P40_IN_GA(x1, x2)  =  P40_IN_GA(x1)
U9_GA(x1, x2, x3)  =  U9_GA(x3)
P27_IN_GA(x1, x2)  =  P27_IN_GA(x1)
U7_GA(x1, x2, x3)  =  U7_GA(x3)
U5_GGA(x1, x2, x3, x4, x5)  =  U5_GGA(x4, x5)
U6_GGA(x1, x2, x3, x4)  =  U6_GGA(x4)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 12 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

P30_IN_GA(s(T18), s(X30)) → P30_IN_GA(T18, X30)

The TRS R consists of the following rules:

m1_in_gga(T7, 0, T7) → m1_out_gga(T7, 0, T7)
m1_in_gga(0, T8, 0) → m1_out_gga(0, T8, 0)
m1_in_gga(T12, T13, T15) → U2_gga(T12, T13, T15, p18_in_ga(T12, X19))
p18_in_ga(s(0), 0) → p18_out_ga(s(0), 0)
p18_in_ga(s(s(0)), s(0)) → p18_out_ga(s(s(0)), s(0))
p18_in_ga(s(s(s(T18))), s(s(X30))) → U8_ga(T18, X30, p30_in_ga(T18, X30))
p30_in_ga(0, 0) → p30_out_ga(0, 0)
p30_in_ga(s(T18), s(X30)) → U1_ga(T18, X30, p30_in_ga(T18, X30))
U1_ga(T18, X30, p30_out_ga(T18, X30)) → p30_out_ga(s(T18), s(X30))
U8_ga(T18, X30, p30_out_ga(T18, X30)) → p18_out_ga(s(s(s(T18))), s(s(X30)))
U2_gga(T12, T13, T15, p18_out_ga(T12, X19)) → m1_out_gga(T12, T13, T15)
m1_in_gga(T12, T13, T15) → U3_gga(T12, T13, T15, p18_in_ga(T12, T16))
U3_gga(T12, T13, T15, p18_out_ga(T12, T16)) → U4_gga(T12, T13, T15, p40_in_ga(T13, X20))
p40_in_ga(s(0), 0) → p40_out_ga(s(0), 0)
p40_in_ga(s(s(T20)), s(X35)) → U9_ga(T20, X35, p27_in_ga(T20, X35))
p27_in_ga(0, 0) → p27_out_ga(0, 0)
p27_in_ga(s(T18), s(X30)) → U7_ga(T18, X30, p30_in_ga(T18, X30))
U7_ga(T18, X30, p30_out_ga(T18, X30)) → p27_out_ga(s(T18), s(X30))
U9_ga(T20, X35, p27_out_ga(T20, X35)) → p40_out_ga(s(s(T20)), s(X35))
U4_gga(T12, T13, T15, p40_out_ga(T13, X20)) → m1_out_gga(T12, T13, T15)
U3_gga(T12, T13, T15, p18_out_ga(T12, T16)) → U5_gga(T12, T13, T15, T16, p40_in_ga(T13, T19))
U5_gga(T12, T13, T15, T16, p40_out_ga(T13, T19)) → U6_gga(T12, T13, T15, m1_in_gga(T16, T19, T15))
U6_gga(T12, T13, T15, m1_out_gga(T16, T19, T15)) → m1_out_gga(T12, T13, T15)

The argument filtering Pi contains the following mapping:
m1_in_gga(x1, x2, x3)  =  m1_in_gga(x1, x2)
0  =  0
m1_out_gga(x1, x2, x3)  =  m1_out_gga
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
p18_in_ga(x1, x2)  =  p18_in_ga(x1)
s(x1)  =  s(x1)
p18_out_ga(x1, x2)  =  p18_out_ga(x2)
U8_ga(x1, x2, x3)  =  U8_ga(x3)
p30_in_ga(x1, x2)  =  p30_in_ga(x1)
p30_out_ga(x1, x2)  =  p30_out_ga(x2)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x2, x4)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x4)
p40_in_ga(x1, x2)  =  p40_in_ga(x1)
p40_out_ga(x1, x2)  =  p40_out_ga(x2)
U9_ga(x1, x2, x3)  =  U9_ga(x3)
p27_in_ga(x1, x2)  =  p27_in_ga(x1)
p27_out_ga(x1, x2)  =  p27_out_ga(x2)
U7_ga(x1, x2, x3)  =  U7_ga(x3)
U5_gga(x1, x2, x3, x4, x5)  =  U5_gga(x4, x5)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x4)
P30_IN_GA(x1, x2)  =  P30_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

P30_IN_GA(s(T18), s(X30)) → P30_IN_GA(T18, X30)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
P30_IN_GA(x1, x2)  =  P30_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P30_IN_GA(s(T18)) → P30_IN_GA(T18)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(14) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • P30_IN_GA(s(T18)) → P30_IN_GA(T18)
    The graph contains the following edges 1 > 1

(15) TRUE

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

M1_IN_GGA(T12, T13, T15) → U3_GGA(T12, T13, T15, p18_in_ga(T12, T16))
U3_GGA(T12, T13, T15, p18_out_ga(T12, T16)) → U5_GGA(T12, T13, T15, T16, p40_in_ga(T13, T19))
U5_GGA(T12, T13, T15, T16, p40_out_ga(T13, T19)) → M1_IN_GGA(T16, T19, T15)

The TRS R consists of the following rules:

m1_in_gga(T7, 0, T7) → m1_out_gga(T7, 0, T7)
m1_in_gga(0, T8, 0) → m1_out_gga(0, T8, 0)
m1_in_gga(T12, T13, T15) → U2_gga(T12, T13, T15, p18_in_ga(T12, X19))
p18_in_ga(s(0), 0) → p18_out_ga(s(0), 0)
p18_in_ga(s(s(0)), s(0)) → p18_out_ga(s(s(0)), s(0))
p18_in_ga(s(s(s(T18))), s(s(X30))) → U8_ga(T18, X30, p30_in_ga(T18, X30))
p30_in_ga(0, 0) → p30_out_ga(0, 0)
p30_in_ga(s(T18), s(X30)) → U1_ga(T18, X30, p30_in_ga(T18, X30))
U1_ga(T18, X30, p30_out_ga(T18, X30)) → p30_out_ga(s(T18), s(X30))
U8_ga(T18, X30, p30_out_ga(T18, X30)) → p18_out_ga(s(s(s(T18))), s(s(X30)))
U2_gga(T12, T13, T15, p18_out_ga(T12, X19)) → m1_out_gga(T12, T13, T15)
m1_in_gga(T12, T13, T15) → U3_gga(T12, T13, T15, p18_in_ga(T12, T16))
U3_gga(T12, T13, T15, p18_out_ga(T12, T16)) → U4_gga(T12, T13, T15, p40_in_ga(T13, X20))
p40_in_ga(s(0), 0) → p40_out_ga(s(0), 0)
p40_in_ga(s(s(T20)), s(X35)) → U9_ga(T20, X35, p27_in_ga(T20, X35))
p27_in_ga(0, 0) → p27_out_ga(0, 0)
p27_in_ga(s(T18), s(X30)) → U7_ga(T18, X30, p30_in_ga(T18, X30))
U7_ga(T18, X30, p30_out_ga(T18, X30)) → p27_out_ga(s(T18), s(X30))
U9_ga(T20, X35, p27_out_ga(T20, X35)) → p40_out_ga(s(s(T20)), s(X35))
U4_gga(T12, T13, T15, p40_out_ga(T13, X20)) → m1_out_gga(T12, T13, T15)
U3_gga(T12, T13, T15, p18_out_ga(T12, T16)) → U5_gga(T12, T13, T15, T16, p40_in_ga(T13, T19))
U5_gga(T12, T13, T15, T16, p40_out_ga(T13, T19)) → U6_gga(T12, T13, T15, m1_in_gga(T16, T19, T15))
U6_gga(T12, T13, T15, m1_out_gga(T16, T19, T15)) → m1_out_gga(T12, T13, T15)

The argument filtering Pi contains the following mapping:
m1_in_gga(x1, x2, x3)  =  m1_in_gga(x1, x2)
0  =  0
m1_out_gga(x1, x2, x3)  =  m1_out_gga
U2_gga(x1, x2, x3, x4)  =  U2_gga(x4)
p18_in_ga(x1, x2)  =  p18_in_ga(x1)
s(x1)  =  s(x1)
p18_out_ga(x1, x2)  =  p18_out_ga(x2)
U8_ga(x1, x2, x3)  =  U8_ga(x3)
p30_in_ga(x1, x2)  =  p30_in_ga(x1)
p30_out_ga(x1, x2)  =  p30_out_ga(x2)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x2, x4)
U4_gga(x1, x2, x3, x4)  =  U4_gga(x4)
p40_in_ga(x1, x2)  =  p40_in_ga(x1)
p40_out_ga(x1, x2)  =  p40_out_ga(x2)
U9_ga(x1, x2, x3)  =  U9_ga(x3)
p27_in_ga(x1, x2)  =  p27_in_ga(x1)
p27_out_ga(x1, x2)  =  p27_out_ga(x2)
U7_ga(x1, x2, x3)  =  U7_ga(x3)
U5_gga(x1, x2, x3, x4, x5)  =  U5_gga(x4, x5)
U6_gga(x1, x2, x3, x4)  =  U6_gga(x4)
M1_IN_GGA(x1, x2, x3)  =  M1_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x2, x4)
U5_GGA(x1, x2, x3, x4, x5)  =  U5_GGA(x4, x5)

We have to consider all (P,R,Pi)-chains

(17) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

M1_IN_GGA(T12, T13, T15) → U3_GGA(T12, T13, T15, p18_in_ga(T12, T16))
U3_GGA(T12, T13, T15, p18_out_ga(T12, T16)) → U5_GGA(T12, T13, T15, T16, p40_in_ga(T13, T19))
U5_GGA(T12, T13, T15, T16, p40_out_ga(T13, T19)) → M1_IN_GGA(T16, T19, T15)

The TRS R consists of the following rules:

p18_in_ga(s(0), 0) → p18_out_ga(s(0), 0)
p18_in_ga(s(s(0)), s(0)) → p18_out_ga(s(s(0)), s(0))
p18_in_ga(s(s(s(T18))), s(s(X30))) → U8_ga(T18, X30, p30_in_ga(T18, X30))
p40_in_ga(s(0), 0) → p40_out_ga(s(0), 0)
p40_in_ga(s(s(T20)), s(X35)) → U9_ga(T20, X35, p27_in_ga(T20, X35))
U8_ga(T18, X30, p30_out_ga(T18, X30)) → p18_out_ga(s(s(s(T18))), s(s(X30)))
U9_ga(T20, X35, p27_out_ga(T20, X35)) → p40_out_ga(s(s(T20)), s(X35))
p30_in_ga(0, 0) → p30_out_ga(0, 0)
p30_in_ga(s(T18), s(X30)) → U1_ga(T18, X30, p30_in_ga(T18, X30))
p27_in_ga(0, 0) → p27_out_ga(0, 0)
p27_in_ga(s(T18), s(X30)) → U7_ga(T18, X30, p30_in_ga(T18, X30))
U1_ga(T18, X30, p30_out_ga(T18, X30)) → p30_out_ga(s(T18), s(X30))
U7_ga(T18, X30, p30_out_ga(T18, X30)) → p27_out_ga(s(T18), s(X30))

The argument filtering Pi contains the following mapping:
0  =  0
p18_in_ga(x1, x2)  =  p18_in_ga(x1)
s(x1)  =  s(x1)
p18_out_ga(x1, x2)  =  p18_out_ga(x2)
U8_ga(x1, x2, x3)  =  U8_ga(x3)
p30_in_ga(x1, x2)  =  p30_in_ga(x1)
p30_out_ga(x1, x2)  =  p30_out_ga(x2)
U1_ga(x1, x2, x3)  =  U1_ga(x3)
p40_in_ga(x1, x2)  =  p40_in_ga(x1)
p40_out_ga(x1, x2)  =  p40_out_ga(x2)
U9_ga(x1, x2, x3)  =  U9_ga(x3)
p27_in_ga(x1, x2)  =  p27_in_ga(x1)
p27_out_ga(x1, x2)  =  p27_out_ga(x2)
U7_ga(x1, x2, x3)  =  U7_ga(x3)
M1_IN_GGA(x1, x2, x3)  =  M1_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x2, x4)
U5_GGA(x1, x2, x3, x4, x5)  =  U5_GGA(x4, x5)

We have to consider all (P,R,Pi)-chains

(19) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

M1_IN_GGA(T12, T13) → U3_GGA(T13, p18_in_ga(T12))
U3_GGA(T13, p18_out_ga(T16)) → U5_GGA(T16, p40_in_ga(T13))
U5_GGA(T16, p40_out_ga(T19)) → M1_IN_GGA(T16, T19)

The TRS R consists of the following rules:

p18_in_ga(s(0)) → p18_out_ga(0)
p18_in_ga(s(s(0))) → p18_out_ga(s(0))
p18_in_ga(s(s(s(T18)))) → U8_ga(p30_in_ga(T18))
p40_in_ga(s(0)) → p40_out_ga(0)
p40_in_ga(s(s(T20))) → U9_ga(p27_in_ga(T20))
U8_ga(p30_out_ga(X30)) → p18_out_ga(s(s(X30)))
U9_ga(p27_out_ga(X35)) → p40_out_ga(s(X35))
p30_in_ga(0) → p30_out_ga(0)
p30_in_ga(s(T18)) → U1_ga(p30_in_ga(T18))
p27_in_ga(0) → p27_out_ga(0)
p27_in_ga(s(T18)) → U7_ga(p30_in_ga(T18))
U1_ga(p30_out_ga(X30)) → p30_out_ga(s(X30))
U7_ga(p30_out_ga(X30)) → p27_out_ga(s(X30))

The set Q consists of the following terms:

p18_in_ga(x0)
p40_in_ga(x0)
U8_ga(x0)
U9_ga(x0)
p30_in_ga(x0)
p27_in_ga(x0)
U1_ga(x0)
U7_ga(x0)

We have to consider all (P,Q,R)-chains.

(21) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

M1_IN_GGA(T12, T13) → U3_GGA(T13, p18_in_ga(T12))
U3_GGA(T13, p18_out_ga(T16)) → U5_GGA(T16, p40_in_ga(T13))
U5_GGA(T16, p40_out_ga(T19)) → M1_IN_GGA(T16, T19)

Strictly oriented rules of the TRS R:

p18_in_ga(s(0)) → p18_out_ga(0)
p18_in_ga(s(s(0))) → p18_out_ga(s(0))
p18_in_ga(s(s(s(T18)))) → U8_ga(p30_in_ga(T18))
p40_in_ga(s(0)) → p40_out_ga(0)
p40_in_ga(s(s(T20))) → U9_ga(p27_in_ga(T20))
U8_ga(p30_out_ga(X30)) → p18_out_ga(s(s(X30)))
U9_ga(p27_out_ga(X35)) → p40_out_ga(s(X35))
p30_in_ga(0) → p30_out_ga(0)
p27_in_ga(0) → p27_out_ga(0)
p27_in_ga(s(T18)) → U7_ga(p30_in_ga(T18))
U7_ga(p30_out_ga(X30)) → p27_out_ga(s(X30))

Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(M1_IN_GGA(x1, x2)) = 1 + x1 + x2   
POL(U1_ga(x1)) = 6 + x1   
POL(U3_GGA(x1, x2)) = x1 + x2   
POL(U5_GGA(x1, x2)) = 1 + x1 + x2   
POL(U7_ga(x1)) = 6 + x1   
POL(U8_ga(x1)) = 14 + x1   
POL(U9_ga(x1)) = 8 + x1   
POL(p18_in_ga(x1)) = x1   
POL(p18_out_ga(x1)) = 2 + x1   
POL(p27_in_ga(x1)) = 3 + x1   
POL(p27_out_ga(x1)) = x1   
POL(p30_in_ga(x1)) = 2 + x1   
POL(p30_out_ga(x1)) = 1 + x1   
POL(p40_in_ga(x1)) = x1   
POL(p40_out_ga(x1)) = 1 + x1   
POL(s(x1)) = 6 + x1   

(22) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

p30_in_ga(s(T18)) → U1_ga(p30_in_ga(T18))
U1_ga(p30_out_ga(X30)) → p30_out_ga(s(X30))

The set Q consists of the following terms:

p18_in_ga(x0)
p40_in_ga(x0)
U8_ga(x0)
U9_ga(x0)
p30_in_ga(x0)
p27_in_ga(x0)
U1_ga(x0)
U7_ga(x0)

We have to consider all (P,Q,R)-chains.

(23) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(24) TRUE