(0) Obligation:

Clauses:

m(X, 0, Z) :- ','(!, =(Z, X)).
m(0, Y, Z) :- ','(!, =(Z, 0)).
m(X, Y, Z) :- ','(p(X, A), ','(p(Y, B), m(A, B, Z))).
p(0, 0).
p(s(0), 0).
p(s(s(X)), s(Y)) :- p(s(X), Y).
=(X, X).

Queries:

m(g,g,a).

(1) CutEliminatorProof (SOUND transformation)

Eliminated all cuts by simply ignoring them[PROLOG].

(2) Obligation:

Clauses:

m(X, 0, Z) :- =(Z, X).
m(0, Y, Z) :- =(Z, 0).
m(X, Y, Z) :- ','(p(X, A), ','(p(Y, B), m(A, B, Z))).
p(0, 0).
p(s(0), 0).
p(s(s(X)), s(Y)) :- p(s(X), Y).
=(X, X).

Queries:

m(g,g,a).

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
m_in: (b,b,f)
p_in: (b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

m_in_gga(X, 0, Z) → U1_gga(X, Z, =_in_ag(Z, X))
=_in_ag(X, X) → =_out_ag(X, X)
U1_gga(X, Z, =_out_ag(Z, X)) → m_out_gga(X, 0, Z)
m_in_gga(0, Y, Z) → U2_gga(Y, Z, =_in_ag(Z, 0))
U2_gga(Y, Z, =_out_ag(Z, 0)) → m_out_gga(0, Y, Z)
m_in_gga(X, Y, Z) → U3_gga(X, Y, Z, p_in_ga(X, A))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(0), 0) → p_out_ga(s(0), 0)
p_in_ga(s(s(X)), s(Y)) → U6_ga(X, Y, p_in_ga(s(X), Y))
U6_ga(X, Y, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))
U3_gga(X, Y, Z, p_out_ga(X, A)) → U4_gga(X, Y, Z, A, p_in_ga(Y, B))
U4_gga(X, Y, Z, A, p_out_ga(Y, B)) → U5_gga(X, Y, Z, m_in_gga(A, B, Z))
U5_gga(X, Y, Z, m_out_gga(A, B, Z)) → m_out_gga(X, Y, Z)

The argument filtering Pi contains the following mapping:
m_in_gga(x1, x2, x3)  =  m_in_gga(x1, x2)
0  =  0
U1_gga(x1, x2, x3)  =  U1_gga(x1, x3)
=_in_ag(x1, x2)  =  =_in_ag(x2)
=_out_ag(x1, x2)  =  =_out_ag(x1, x2)
m_out_gga(x1, x2, x3)  =  m_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3)  =  U2_gga(x1, x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
p_in_ga(x1, x2)  =  p_in_ga(x1)
p_out_ga(x1, x2)  =  p_out_ga(x1, x2)
s(x1)  =  s(x1)
U6_ga(x1, x2, x3)  =  U6_ga(x1, x3)
U4_gga(x1, x2, x3, x4, x5)  =  U4_gga(x1, x2, x4, x5)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x1, x2, x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

m_in_gga(X, 0, Z) → U1_gga(X, Z, =_in_ag(Z, X))
=_in_ag(X, X) → =_out_ag(X, X)
U1_gga(X, Z, =_out_ag(Z, X)) → m_out_gga(X, 0, Z)
m_in_gga(0, Y, Z) → U2_gga(Y, Z, =_in_ag(Z, 0))
U2_gga(Y, Z, =_out_ag(Z, 0)) → m_out_gga(0, Y, Z)
m_in_gga(X, Y, Z) → U3_gga(X, Y, Z, p_in_ga(X, A))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(0), 0) → p_out_ga(s(0), 0)
p_in_ga(s(s(X)), s(Y)) → U6_ga(X, Y, p_in_ga(s(X), Y))
U6_ga(X, Y, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))
U3_gga(X, Y, Z, p_out_ga(X, A)) → U4_gga(X, Y, Z, A, p_in_ga(Y, B))
U4_gga(X, Y, Z, A, p_out_ga(Y, B)) → U5_gga(X, Y, Z, m_in_gga(A, B, Z))
U5_gga(X, Y, Z, m_out_gga(A, B, Z)) → m_out_gga(X, Y, Z)

The argument filtering Pi contains the following mapping:
m_in_gga(x1, x2, x3)  =  m_in_gga(x1, x2)
0  =  0
U1_gga(x1, x2, x3)  =  U1_gga(x1, x3)
=_in_ag(x1, x2)  =  =_in_ag(x2)
=_out_ag(x1, x2)  =  =_out_ag(x1, x2)
m_out_gga(x1, x2, x3)  =  m_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3)  =  U2_gga(x1, x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
p_in_ga(x1, x2)  =  p_in_ga(x1)
p_out_ga(x1, x2)  =  p_out_ga(x1, x2)
s(x1)  =  s(x1)
U6_ga(x1, x2, x3)  =  U6_ga(x1, x3)
U4_gga(x1, x2, x3, x4, x5)  =  U4_gga(x1, x2, x4, x5)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x1, x2, x4)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

M_IN_GGA(X, 0, Z) → U1_GGA(X, Z, =_in_ag(Z, X))
M_IN_GGA(X, 0, Z) → =_IN_AG(Z, X)
M_IN_GGA(0, Y, Z) → U2_GGA(Y, Z, =_in_ag(Z, 0))
M_IN_GGA(0, Y, Z) → =_IN_AG(Z, 0)
M_IN_GGA(X, Y, Z) → U3_GGA(X, Y, Z, p_in_ga(X, A))
M_IN_GGA(X, Y, Z) → P_IN_GA(X, A)
P_IN_GA(s(s(X)), s(Y)) → U6_GA(X, Y, p_in_ga(s(X), Y))
P_IN_GA(s(s(X)), s(Y)) → P_IN_GA(s(X), Y)
U3_GGA(X, Y, Z, p_out_ga(X, A)) → U4_GGA(X, Y, Z, A, p_in_ga(Y, B))
U3_GGA(X, Y, Z, p_out_ga(X, A)) → P_IN_GA(Y, B)
U4_GGA(X, Y, Z, A, p_out_ga(Y, B)) → U5_GGA(X, Y, Z, m_in_gga(A, B, Z))
U4_GGA(X, Y, Z, A, p_out_ga(Y, B)) → M_IN_GGA(A, B, Z)

The TRS R consists of the following rules:

m_in_gga(X, 0, Z) → U1_gga(X, Z, =_in_ag(Z, X))
=_in_ag(X, X) → =_out_ag(X, X)
U1_gga(X, Z, =_out_ag(Z, X)) → m_out_gga(X, 0, Z)
m_in_gga(0, Y, Z) → U2_gga(Y, Z, =_in_ag(Z, 0))
U2_gga(Y, Z, =_out_ag(Z, 0)) → m_out_gga(0, Y, Z)
m_in_gga(X, Y, Z) → U3_gga(X, Y, Z, p_in_ga(X, A))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(0), 0) → p_out_ga(s(0), 0)
p_in_ga(s(s(X)), s(Y)) → U6_ga(X, Y, p_in_ga(s(X), Y))
U6_ga(X, Y, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))
U3_gga(X, Y, Z, p_out_ga(X, A)) → U4_gga(X, Y, Z, A, p_in_ga(Y, B))
U4_gga(X, Y, Z, A, p_out_ga(Y, B)) → U5_gga(X, Y, Z, m_in_gga(A, B, Z))
U5_gga(X, Y, Z, m_out_gga(A, B, Z)) → m_out_gga(X, Y, Z)

The argument filtering Pi contains the following mapping:
m_in_gga(x1, x2, x3)  =  m_in_gga(x1, x2)
0  =  0
U1_gga(x1, x2, x3)  =  U1_gga(x1, x3)
=_in_ag(x1, x2)  =  =_in_ag(x2)
=_out_ag(x1, x2)  =  =_out_ag(x1, x2)
m_out_gga(x1, x2, x3)  =  m_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3)  =  U2_gga(x1, x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
p_in_ga(x1, x2)  =  p_in_ga(x1)
p_out_ga(x1, x2)  =  p_out_ga(x1, x2)
s(x1)  =  s(x1)
U6_ga(x1, x2, x3)  =  U6_ga(x1, x3)
U4_gga(x1, x2, x3, x4, x5)  =  U4_gga(x1, x2, x4, x5)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x1, x2, x4)
M_IN_GGA(x1, x2, x3)  =  M_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3)  =  U1_GGA(x1, x3)
=_IN_AG(x1, x2)  =  =_IN_AG(x2)
U2_GGA(x1, x2, x3)  =  U2_GGA(x1, x3)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x1, x2, x4)
P_IN_GA(x1, x2)  =  P_IN_GA(x1)
U6_GA(x1, x2, x3)  =  U6_GA(x1, x3)
U4_GGA(x1, x2, x3, x4, x5)  =  U4_GGA(x1, x2, x4, x5)
U5_GGA(x1, x2, x3, x4)  =  U5_GGA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

M_IN_GGA(X, 0, Z) → U1_GGA(X, Z, =_in_ag(Z, X))
M_IN_GGA(X, 0, Z) → =_IN_AG(Z, X)
M_IN_GGA(0, Y, Z) → U2_GGA(Y, Z, =_in_ag(Z, 0))
M_IN_GGA(0, Y, Z) → =_IN_AG(Z, 0)
M_IN_GGA(X, Y, Z) → U3_GGA(X, Y, Z, p_in_ga(X, A))
M_IN_GGA(X, Y, Z) → P_IN_GA(X, A)
P_IN_GA(s(s(X)), s(Y)) → U6_GA(X, Y, p_in_ga(s(X), Y))
P_IN_GA(s(s(X)), s(Y)) → P_IN_GA(s(X), Y)
U3_GGA(X, Y, Z, p_out_ga(X, A)) → U4_GGA(X, Y, Z, A, p_in_ga(Y, B))
U3_GGA(X, Y, Z, p_out_ga(X, A)) → P_IN_GA(Y, B)
U4_GGA(X, Y, Z, A, p_out_ga(Y, B)) → U5_GGA(X, Y, Z, m_in_gga(A, B, Z))
U4_GGA(X, Y, Z, A, p_out_ga(Y, B)) → M_IN_GGA(A, B, Z)

The TRS R consists of the following rules:

m_in_gga(X, 0, Z) → U1_gga(X, Z, =_in_ag(Z, X))
=_in_ag(X, X) → =_out_ag(X, X)
U1_gga(X, Z, =_out_ag(Z, X)) → m_out_gga(X, 0, Z)
m_in_gga(0, Y, Z) → U2_gga(Y, Z, =_in_ag(Z, 0))
U2_gga(Y, Z, =_out_ag(Z, 0)) → m_out_gga(0, Y, Z)
m_in_gga(X, Y, Z) → U3_gga(X, Y, Z, p_in_ga(X, A))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(0), 0) → p_out_ga(s(0), 0)
p_in_ga(s(s(X)), s(Y)) → U6_ga(X, Y, p_in_ga(s(X), Y))
U6_ga(X, Y, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))
U3_gga(X, Y, Z, p_out_ga(X, A)) → U4_gga(X, Y, Z, A, p_in_ga(Y, B))
U4_gga(X, Y, Z, A, p_out_ga(Y, B)) → U5_gga(X, Y, Z, m_in_gga(A, B, Z))
U5_gga(X, Y, Z, m_out_gga(A, B, Z)) → m_out_gga(X, Y, Z)

The argument filtering Pi contains the following mapping:
m_in_gga(x1, x2, x3)  =  m_in_gga(x1, x2)
0  =  0
U1_gga(x1, x2, x3)  =  U1_gga(x1, x3)
=_in_ag(x1, x2)  =  =_in_ag(x2)
=_out_ag(x1, x2)  =  =_out_ag(x1, x2)
m_out_gga(x1, x2, x3)  =  m_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3)  =  U2_gga(x1, x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
p_in_ga(x1, x2)  =  p_in_ga(x1)
p_out_ga(x1, x2)  =  p_out_ga(x1, x2)
s(x1)  =  s(x1)
U6_ga(x1, x2, x3)  =  U6_ga(x1, x3)
U4_gga(x1, x2, x3, x4, x5)  =  U4_gga(x1, x2, x4, x5)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x1, x2, x4)
M_IN_GGA(x1, x2, x3)  =  M_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3)  =  U1_GGA(x1, x3)
=_IN_AG(x1, x2)  =  =_IN_AG(x2)
U2_GGA(x1, x2, x3)  =  U2_GGA(x1, x3)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x1, x2, x4)
P_IN_GA(x1, x2)  =  P_IN_GA(x1)
U6_GA(x1, x2, x3)  =  U6_GA(x1, x3)
U4_GGA(x1, x2, x3, x4, x5)  =  U4_GGA(x1, x2, x4, x5)
U5_GGA(x1, x2, x3, x4)  =  U5_GGA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 8 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

P_IN_GA(s(s(X)), s(Y)) → P_IN_GA(s(X), Y)

The TRS R consists of the following rules:

m_in_gga(X, 0, Z) → U1_gga(X, Z, =_in_ag(Z, X))
=_in_ag(X, X) → =_out_ag(X, X)
U1_gga(X, Z, =_out_ag(Z, X)) → m_out_gga(X, 0, Z)
m_in_gga(0, Y, Z) → U2_gga(Y, Z, =_in_ag(Z, 0))
U2_gga(Y, Z, =_out_ag(Z, 0)) → m_out_gga(0, Y, Z)
m_in_gga(X, Y, Z) → U3_gga(X, Y, Z, p_in_ga(X, A))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(0), 0) → p_out_ga(s(0), 0)
p_in_ga(s(s(X)), s(Y)) → U6_ga(X, Y, p_in_ga(s(X), Y))
U6_ga(X, Y, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))
U3_gga(X, Y, Z, p_out_ga(X, A)) → U4_gga(X, Y, Z, A, p_in_ga(Y, B))
U4_gga(X, Y, Z, A, p_out_ga(Y, B)) → U5_gga(X, Y, Z, m_in_gga(A, B, Z))
U5_gga(X, Y, Z, m_out_gga(A, B, Z)) → m_out_gga(X, Y, Z)

The argument filtering Pi contains the following mapping:
m_in_gga(x1, x2, x3)  =  m_in_gga(x1, x2)
0  =  0
U1_gga(x1, x2, x3)  =  U1_gga(x1, x3)
=_in_ag(x1, x2)  =  =_in_ag(x2)
=_out_ag(x1, x2)  =  =_out_ag(x1, x2)
m_out_gga(x1, x2, x3)  =  m_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3)  =  U2_gga(x1, x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
p_in_ga(x1, x2)  =  p_in_ga(x1)
p_out_ga(x1, x2)  =  p_out_ga(x1, x2)
s(x1)  =  s(x1)
U6_ga(x1, x2, x3)  =  U6_ga(x1, x3)
U4_gga(x1, x2, x3, x4, x5)  =  U4_gga(x1, x2, x4, x5)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x1, x2, x4)
P_IN_GA(x1, x2)  =  P_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

P_IN_GA(s(s(X)), s(Y)) → P_IN_GA(s(X), Y)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
P_IN_GA(x1, x2)  =  P_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P_IN_GA(s(s(X))) → P_IN_GA(s(X))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(14) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • P_IN_GA(s(s(X))) → P_IN_GA(s(X))
    The graph contains the following edges 1 > 1

(15) TRUE

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

M_IN_GGA(X, Y, Z) → U3_GGA(X, Y, Z, p_in_ga(X, A))
U3_GGA(X, Y, Z, p_out_ga(X, A)) → U4_GGA(X, Y, Z, A, p_in_ga(Y, B))
U4_GGA(X, Y, Z, A, p_out_ga(Y, B)) → M_IN_GGA(A, B, Z)

The TRS R consists of the following rules:

m_in_gga(X, 0, Z) → U1_gga(X, Z, =_in_ag(Z, X))
=_in_ag(X, X) → =_out_ag(X, X)
U1_gga(X, Z, =_out_ag(Z, X)) → m_out_gga(X, 0, Z)
m_in_gga(0, Y, Z) → U2_gga(Y, Z, =_in_ag(Z, 0))
U2_gga(Y, Z, =_out_ag(Z, 0)) → m_out_gga(0, Y, Z)
m_in_gga(X, Y, Z) → U3_gga(X, Y, Z, p_in_ga(X, A))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(0), 0) → p_out_ga(s(0), 0)
p_in_ga(s(s(X)), s(Y)) → U6_ga(X, Y, p_in_ga(s(X), Y))
U6_ga(X, Y, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))
U3_gga(X, Y, Z, p_out_ga(X, A)) → U4_gga(X, Y, Z, A, p_in_ga(Y, B))
U4_gga(X, Y, Z, A, p_out_ga(Y, B)) → U5_gga(X, Y, Z, m_in_gga(A, B, Z))
U5_gga(X, Y, Z, m_out_gga(A, B, Z)) → m_out_gga(X, Y, Z)

The argument filtering Pi contains the following mapping:
m_in_gga(x1, x2, x3)  =  m_in_gga(x1, x2)
0  =  0
U1_gga(x1, x2, x3)  =  U1_gga(x1, x3)
=_in_ag(x1, x2)  =  =_in_ag(x2)
=_out_ag(x1, x2)  =  =_out_ag(x1, x2)
m_out_gga(x1, x2, x3)  =  m_out_gga(x1, x2, x3)
U2_gga(x1, x2, x3)  =  U2_gga(x1, x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x1, x2, x4)
p_in_ga(x1, x2)  =  p_in_ga(x1)
p_out_ga(x1, x2)  =  p_out_ga(x1, x2)
s(x1)  =  s(x1)
U6_ga(x1, x2, x3)  =  U6_ga(x1, x3)
U4_gga(x1, x2, x3, x4, x5)  =  U4_gga(x1, x2, x4, x5)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x1, x2, x4)
M_IN_GGA(x1, x2, x3)  =  M_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x1, x2, x4)
U4_GGA(x1, x2, x3, x4, x5)  =  U4_GGA(x1, x2, x4, x5)

We have to consider all (P,R,Pi)-chains

(17) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

M_IN_GGA(X, Y, Z) → U3_GGA(X, Y, Z, p_in_ga(X, A))
U3_GGA(X, Y, Z, p_out_ga(X, A)) → U4_GGA(X, Y, Z, A, p_in_ga(Y, B))
U4_GGA(X, Y, Z, A, p_out_ga(Y, B)) → M_IN_GGA(A, B, Z)

The TRS R consists of the following rules:

p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(0), 0) → p_out_ga(s(0), 0)
p_in_ga(s(s(X)), s(Y)) → U6_ga(X, Y, p_in_ga(s(X), Y))
U6_ga(X, Y, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))

The argument filtering Pi contains the following mapping:
0  =  0
p_in_ga(x1, x2)  =  p_in_ga(x1)
p_out_ga(x1, x2)  =  p_out_ga(x1, x2)
s(x1)  =  s(x1)
U6_ga(x1, x2, x3)  =  U6_ga(x1, x3)
M_IN_GGA(x1, x2, x3)  =  M_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x1, x2, x4)
U4_GGA(x1, x2, x3, x4, x5)  =  U4_GGA(x1, x2, x4, x5)

We have to consider all (P,R,Pi)-chains

(19) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

M_IN_GGA(X, Y) → U3_GGA(X, Y, p_in_ga(X))
U3_GGA(X, Y, p_out_ga(X, A)) → U4_GGA(X, Y, A, p_in_ga(Y))
U4_GGA(X, Y, A, p_out_ga(Y, B)) → M_IN_GGA(A, B)

The TRS R consists of the following rules:

p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(0)) → p_out_ga(s(0), 0)
p_in_ga(s(s(X))) → U6_ga(X, p_in_ga(s(X)))
U6_ga(X, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0, x1)

We have to consider all (P,Q,R)-chains.

(21) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule M_IN_GGA(X, Y) → U3_GGA(X, Y, p_in_ga(X)) at position [2] we obtained the following new rules [LPAR04]:

M_IN_GGA(0, y1) → U3_GGA(0, y1, p_out_ga(0, 0))
M_IN_GGA(s(0), y1) → U3_GGA(s(0), y1, p_out_ga(s(0), 0))
M_IN_GGA(s(s(x0)), y1) → U3_GGA(s(s(x0)), y1, U6_ga(x0, p_in_ga(s(x0))))

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U3_GGA(X, Y, p_out_ga(X, A)) → U4_GGA(X, Y, A, p_in_ga(Y))
U4_GGA(X, Y, A, p_out_ga(Y, B)) → M_IN_GGA(A, B)
M_IN_GGA(0, y1) → U3_GGA(0, y1, p_out_ga(0, 0))
M_IN_GGA(s(0), y1) → U3_GGA(s(0), y1, p_out_ga(s(0), 0))
M_IN_GGA(s(s(x0)), y1) → U3_GGA(s(s(x0)), y1, U6_ga(x0, p_in_ga(s(x0))))

The TRS R consists of the following rules:

p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(0)) → p_out_ga(s(0), 0)
p_in_ga(s(s(X))) → U6_ga(X, p_in_ga(s(X)))
U6_ga(X, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0, x1)

We have to consider all (P,Q,R)-chains.

(23) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule U3_GGA(X, Y, p_out_ga(X, A)) → U4_GGA(X, Y, A, p_in_ga(Y)) at position [3] we obtained the following new rules [LPAR04]:

U3_GGA(y0, 0, p_out_ga(y0, y2)) → U4_GGA(y0, 0, y2, p_out_ga(0, 0))
U3_GGA(y0, s(0), p_out_ga(y0, y2)) → U4_GGA(y0, s(0), y2, p_out_ga(s(0), 0))
U3_GGA(y0, s(s(x0)), p_out_ga(y0, y2)) → U4_GGA(y0, s(s(x0)), y2, U6_ga(x0, p_in_ga(s(x0))))

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U4_GGA(X, Y, A, p_out_ga(Y, B)) → M_IN_GGA(A, B)
M_IN_GGA(0, y1) → U3_GGA(0, y1, p_out_ga(0, 0))
M_IN_GGA(s(0), y1) → U3_GGA(s(0), y1, p_out_ga(s(0), 0))
M_IN_GGA(s(s(x0)), y1) → U3_GGA(s(s(x0)), y1, U6_ga(x0, p_in_ga(s(x0))))
U3_GGA(y0, 0, p_out_ga(y0, y2)) → U4_GGA(y0, 0, y2, p_out_ga(0, 0))
U3_GGA(y0, s(0), p_out_ga(y0, y2)) → U4_GGA(y0, s(0), y2, p_out_ga(s(0), 0))
U3_GGA(y0, s(s(x0)), p_out_ga(y0, y2)) → U4_GGA(y0, s(s(x0)), y2, U6_ga(x0, p_in_ga(s(x0))))

The TRS R consists of the following rules:

p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(0)) → p_out_ga(s(0), 0)
p_in_ga(s(s(X))) → U6_ga(X, p_in_ga(s(X)))
U6_ga(X, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0, x1)

We have to consider all (P,Q,R)-chains.

(25) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U4_GGA(X, Y, A, p_out_ga(Y, B)) → M_IN_GGA(A, B)
M_IN_GGA(0, y1) → U3_GGA(0, y1, p_out_ga(0, 0))
M_IN_GGA(s(0), y1) → U3_GGA(s(0), y1, p_out_ga(s(0), 0))
M_IN_GGA(s(s(x0)), y1) → U3_GGA(s(s(x0)), y1, U6_ga(x0, p_in_ga(s(x0))))
U3_GGA(y0, 0, p_out_ga(y0, y2)) → U4_GGA(y0, 0, y2, p_out_ga(0, 0))
U3_GGA(y0, s(0), p_out_ga(y0, y2)) → U4_GGA(y0, s(0), y2, p_out_ga(s(0), 0))
U3_GGA(y0, s(s(x0)), p_out_ga(y0, y2)) → U4_GGA(y0, s(s(x0)), y2, U6_ga(x0, p_in_ga(s(x0))))

The TRS R consists of the following rules:

p_in_ga(s(0)) → p_out_ga(s(0), 0)
p_in_ga(s(s(X))) → U6_ga(X, p_in_ga(s(X)))
U6_ga(X, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0, x1)

We have to consider all (P,Q,R)-chains.

(27) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U4_GGA(X, Y, A, p_out_ga(Y, B)) → M_IN_GGA(A, B) we obtained the following new rules [LPAR04]:

U4_GGA(z0, 0, z1, p_out_ga(0, 0)) → M_IN_GGA(z1, 0)
U4_GGA(z0, s(0), z1, p_out_ga(s(0), 0)) → M_IN_GGA(z1, 0)
U4_GGA(z0, s(s(z1)), z2, p_out_ga(s(s(z1)), x3)) → M_IN_GGA(z2, x3)

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

M_IN_GGA(0, y1) → U3_GGA(0, y1, p_out_ga(0, 0))
M_IN_GGA(s(0), y1) → U3_GGA(s(0), y1, p_out_ga(s(0), 0))
M_IN_GGA(s(s(x0)), y1) → U3_GGA(s(s(x0)), y1, U6_ga(x0, p_in_ga(s(x0))))
U3_GGA(y0, 0, p_out_ga(y0, y2)) → U4_GGA(y0, 0, y2, p_out_ga(0, 0))
U3_GGA(y0, s(0), p_out_ga(y0, y2)) → U4_GGA(y0, s(0), y2, p_out_ga(s(0), 0))
U3_GGA(y0, s(s(x0)), p_out_ga(y0, y2)) → U4_GGA(y0, s(s(x0)), y2, U6_ga(x0, p_in_ga(s(x0))))
U4_GGA(z0, 0, z1, p_out_ga(0, 0)) → M_IN_GGA(z1, 0)
U4_GGA(z0, s(0), z1, p_out_ga(s(0), 0)) → M_IN_GGA(z1, 0)
U4_GGA(z0, s(s(z1)), z2, p_out_ga(s(s(z1)), x3)) → M_IN_GGA(z2, x3)

The TRS R consists of the following rules:

p_in_ga(s(0)) → p_out_ga(s(0), 0)
p_in_ga(s(s(X))) → U6_ga(X, p_in_ga(s(X)))
U6_ga(X, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0, x1)

We have to consider all (P,Q,R)-chains.

(29) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U3_GGA(y0, 0, p_out_ga(y0, y2)) → U4_GGA(y0, 0, y2, p_out_ga(0, 0)) we obtained the following new rules [LPAR04]:

U3_GGA(0, 0, p_out_ga(0, 0)) → U4_GGA(0, 0, 0, p_out_ga(0, 0))
U3_GGA(s(0), 0, p_out_ga(s(0), 0)) → U4_GGA(s(0), 0, 0, p_out_ga(0, 0))
U3_GGA(s(s(z0)), 0, p_out_ga(s(s(z0)), x1)) → U4_GGA(s(s(z0)), 0, x1, p_out_ga(0, 0))

(30) Obligation:

Q DP problem:
The TRS P consists of the following rules:

M_IN_GGA(0, y1) → U3_GGA(0, y1, p_out_ga(0, 0))
M_IN_GGA(s(0), y1) → U3_GGA(s(0), y1, p_out_ga(s(0), 0))
M_IN_GGA(s(s(x0)), y1) → U3_GGA(s(s(x0)), y1, U6_ga(x0, p_in_ga(s(x0))))
U3_GGA(y0, s(0), p_out_ga(y0, y2)) → U4_GGA(y0, s(0), y2, p_out_ga(s(0), 0))
U3_GGA(y0, s(s(x0)), p_out_ga(y0, y2)) → U4_GGA(y0, s(s(x0)), y2, U6_ga(x0, p_in_ga(s(x0))))
U4_GGA(z0, 0, z1, p_out_ga(0, 0)) → M_IN_GGA(z1, 0)
U4_GGA(z0, s(0), z1, p_out_ga(s(0), 0)) → M_IN_GGA(z1, 0)
U4_GGA(z0, s(s(z1)), z2, p_out_ga(s(s(z1)), x3)) → M_IN_GGA(z2, x3)
U3_GGA(0, 0, p_out_ga(0, 0)) → U4_GGA(0, 0, 0, p_out_ga(0, 0))
U3_GGA(s(0), 0, p_out_ga(s(0), 0)) → U4_GGA(s(0), 0, 0, p_out_ga(0, 0))
U3_GGA(s(s(z0)), 0, p_out_ga(s(s(z0)), x1)) → U4_GGA(s(s(z0)), 0, x1, p_out_ga(0, 0))

The TRS R consists of the following rules:

p_in_ga(s(0)) → p_out_ga(s(0), 0)
p_in_ga(s(s(X))) → U6_ga(X, p_in_ga(s(X)))
U6_ga(X, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0, x1)

We have to consider all (P,Q,R)-chains.

(31) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U3_GGA(y0, s(0), p_out_ga(y0, y2)) → U4_GGA(y0, s(0), y2, p_out_ga(s(0), 0)) we obtained the following new rules [LPAR04]:

U3_GGA(0, s(0), p_out_ga(0, 0)) → U4_GGA(0, s(0), 0, p_out_ga(s(0), 0))
U3_GGA(s(0), s(0), p_out_ga(s(0), 0)) → U4_GGA(s(0), s(0), 0, p_out_ga(s(0), 0))
U3_GGA(s(s(z0)), s(0), p_out_ga(s(s(z0)), x1)) → U4_GGA(s(s(z0)), s(0), x1, p_out_ga(s(0), 0))

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

M_IN_GGA(0, y1) → U3_GGA(0, y1, p_out_ga(0, 0))
M_IN_GGA(s(0), y1) → U3_GGA(s(0), y1, p_out_ga(s(0), 0))
M_IN_GGA(s(s(x0)), y1) → U3_GGA(s(s(x0)), y1, U6_ga(x0, p_in_ga(s(x0))))
U3_GGA(y0, s(s(x0)), p_out_ga(y0, y2)) → U4_GGA(y0, s(s(x0)), y2, U6_ga(x0, p_in_ga(s(x0))))
U4_GGA(z0, 0, z1, p_out_ga(0, 0)) → M_IN_GGA(z1, 0)
U4_GGA(z0, s(0), z1, p_out_ga(s(0), 0)) → M_IN_GGA(z1, 0)
U4_GGA(z0, s(s(z1)), z2, p_out_ga(s(s(z1)), x3)) → M_IN_GGA(z2, x3)
U3_GGA(0, 0, p_out_ga(0, 0)) → U4_GGA(0, 0, 0, p_out_ga(0, 0))
U3_GGA(s(0), 0, p_out_ga(s(0), 0)) → U4_GGA(s(0), 0, 0, p_out_ga(0, 0))
U3_GGA(s(s(z0)), 0, p_out_ga(s(s(z0)), x1)) → U4_GGA(s(s(z0)), 0, x1, p_out_ga(0, 0))
U3_GGA(0, s(0), p_out_ga(0, 0)) → U4_GGA(0, s(0), 0, p_out_ga(s(0), 0))
U3_GGA(s(0), s(0), p_out_ga(s(0), 0)) → U4_GGA(s(0), s(0), 0, p_out_ga(s(0), 0))
U3_GGA(s(s(z0)), s(0), p_out_ga(s(s(z0)), x1)) → U4_GGA(s(s(z0)), s(0), x1, p_out_ga(s(0), 0))

The TRS R consists of the following rules:

p_in_ga(s(0)) → p_out_ga(s(0), 0)
p_in_ga(s(s(X))) → U6_ga(X, p_in_ga(s(X)))
U6_ga(X, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0, x1)

We have to consider all (P,Q,R)-chains.

(33) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U3_GGA(y0, s(s(x0)), p_out_ga(y0, y2)) → U4_GGA(y0, s(s(x0)), y2, U6_ga(x0, p_in_ga(s(x0)))) we obtained the following new rules [LPAR04]:

U3_GGA(0, s(s(x1)), p_out_ga(0, 0)) → U4_GGA(0, s(s(x1)), 0, U6_ga(x1, p_in_ga(s(x1))))
U3_GGA(s(0), s(s(x1)), p_out_ga(s(0), 0)) → U4_GGA(s(0), s(s(x1)), 0, U6_ga(x1, p_in_ga(s(x1))))
U3_GGA(s(s(z0)), s(s(x1)), p_out_ga(s(s(z0)), x2)) → U4_GGA(s(s(z0)), s(s(x1)), x2, U6_ga(x1, p_in_ga(s(x1))))

(34) Obligation:

Q DP problem:
The TRS P consists of the following rules:

M_IN_GGA(0, y1) → U3_GGA(0, y1, p_out_ga(0, 0))
M_IN_GGA(s(0), y1) → U3_GGA(s(0), y1, p_out_ga(s(0), 0))
M_IN_GGA(s(s(x0)), y1) → U3_GGA(s(s(x0)), y1, U6_ga(x0, p_in_ga(s(x0))))
U4_GGA(z0, 0, z1, p_out_ga(0, 0)) → M_IN_GGA(z1, 0)
U4_GGA(z0, s(0), z1, p_out_ga(s(0), 0)) → M_IN_GGA(z1, 0)
U4_GGA(z0, s(s(z1)), z2, p_out_ga(s(s(z1)), x3)) → M_IN_GGA(z2, x3)
U3_GGA(0, 0, p_out_ga(0, 0)) → U4_GGA(0, 0, 0, p_out_ga(0, 0))
U3_GGA(s(0), 0, p_out_ga(s(0), 0)) → U4_GGA(s(0), 0, 0, p_out_ga(0, 0))
U3_GGA(s(s(z0)), 0, p_out_ga(s(s(z0)), x1)) → U4_GGA(s(s(z0)), 0, x1, p_out_ga(0, 0))
U3_GGA(0, s(0), p_out_ga(0, 0)) → U4_GGA(0, s(0), 0, p_out_ga(s(0), 0))
U3_GGA(s(0), s(0), p_out_ga(s(0), 0)) → U4_GGA(s(0), s(0), 0, p_out_ga(s(0), 0))
U3_GGA(s(s(z0)), s(0), p_out_ga(s(s(z0)), x1)) → U4_GGA(s(s(z0)), s(0), x1, p_out_ga(s(0), 0))
U3_GGA(0, s(s(x1)), p_out_ga(0, 0)) → U4_GGA(0, s(s(x1)), 0, U6_ga(x1, p_in_ga(s(x1))))
U3_GGA(s(0), s(s(x1)), p_out_ga(s(0), 0)) → U4_GGA(s(0), s(s(x1)), 0, U6_ga(x1, p_in_ga(s(x1))))
U3_GGA(s(s(z0)), s(s(x1)), p_out_ga(s(s(z0)), x2)) → U4_GGA(s(s(z0)), s(s(x1)), x2, U6_ga(x1, p_in_ga(s(x1))))

The TRS R consists of the following rules:

p_in_ga(s(0)) → p_out_ga(s(0), 0)
p_in_ga(s(s(X))) → U6_ga(X, p_in_ga(s(X)))
U6_ga(X, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0, x1)

We have to consider all (P,Q,R)-chains.

(35) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U4_GGA(z0, 0, z1, p_out_ga(0, 0)) → M_IN_GGA(z1, 0) we obtained the following new rules [LPAR04]:

U4_GGA(0, 0, 0, p_out_ga(0, 0)) → M_IN_GGA(0, 0)
U4_GGA(s(0), 0, 0, p_out_ga(0, 0)) → M_IN_GGA(0, 0)
U4_GGA(s(s(z0)), 0, z1, p_out_ga(0, 0)) → M_IN_GGA(z1, 0)

(36) Obligation:

Q DP problem:
The TRS P consists of the following rules:

M_IN_GGA(0, y1) → U3_GGA(0, y1, p_out_ga(0, 0))
M_IN_GGA(s(0), y1) → U3_GGA(s(0), y1, p_out_ga(s(0), 0))
M_IN_GGA(s(s(x0)), y1) → U3_GGA(s(s(x0)), y1, U6_ga(x0, p_in_ga(s(x0))))
U4_GGA(z0, s(0), z1, p_out_ga(s(0), 0)) → M_IN_GGA(z1, 0)
U4_GGA(z0, s(s(z1)), z2, p_out_ga(s(s(z1)), x3)) → M_IN_GGA(z2, x3)
U3_GGA(0, 0, p_out_ga(0, 0)) → U4_GGA(0, 0, 0, p_out_ga(0, 0))
U3_GGA(s(0), 0, p_out_ga(s(0), 0)) → U4_GGA(s(0), 0, 0, p_out_ga(0, 0))
U3_GGA(s(s(z0)), 0, p_out_ga(s(s(z0)), x1)) → U4_GGA(s(s(z0)), 0, x1, p_out_ga(0, 0))
U3_GGA(0, s(0), p_out_ga(0, 0)) → U4_GGA(0, s(0), 0, p_out_ga(s(0), 0))
U3_GGA(s(0), s(0), p_out_ga(s(0), 0)) → U4_GGA(s(0), s(0), 0, p_out_ga(s(0), 0))
U3_GGA(s(s(z0)), s(0), p_out_ga(s(s(z0)), x1)) → U4_GGA(s(s(z0)), s(0), x1, p_out_ga(s(0), 0))
U3_GGA(0, s(s(x1)), p_out_ga(0, 0)) → U4_GGA(0, s(s(x1)), 0, U6_ga(x1, p_in_ga(s(x1))))
U3_GGA(s(0), s(s(x1)), p_out_ga(s(0), 0)) → U4_GGA(s(0), s(s(x1)), 0, U6_ga(x1, p_in_ga(s(x1))))
U3_GGA(s(s(z0)), s(s(x1)), p_out_ga(s(s(z0)), x2)) → U4_GGA(s(s(z0)), s(s(x1)), x2, U6_ga(x1, p_in_ga(s(x1))))
U4_GGA(0, 0, 0, p_out_ga(0, 0)) → M_IN_GGA(0, 0)
U4_GGA(s(0), 0, 0, p_out_ga(0, 0)) → M_IN_GGA(0, 0)
U4_GGA(s(s(z0)), 0, z1, p_out_ga(0, 0)) → M_IN_GGA(z1, 0)

The TRS R consists of the following rules:

p_in_ga(s(0)) → p_out_ga(s(0), 0)
p_in_ga(s(s(X))) → U6_ga(X, p_in_ga(s(X)))
U6_ga(X, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0, x1)

We have to consider all (P,Q,R)-chains.

(37) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U4_GGA(z0, s(0), z1, p_out_ga(s(0), 0)) → M_IN_GGA(z1, 0) we obtained the following new rules [LPAR04]:

U4_GGA(0, s(0), 0, p_out_ga(s(0), 0)) → M_IN_GGA(0, 0)
U4_GGA(s(0), s(0), 0, p_out_ga(s(0), 0)) → M_IN_GGA(0, 0)
U4_GGA(s(s(z0)), s(0), z1, p_out_ga(s(0), 0)) → M_IN_GGA(z1, 0)

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

M_IN_GGA(0, y1) → U3_GGA(0, y1, p_out_ga(0, 0))
M_IN_GGA(s(0), y1) → U3_GGA(s(0), y1, p_out_ga(s(0), 0))
M_IN_GGA(s(s(x0)), y1) → U3_GGA(s(s(x0)), y1, U6_ga(x0, p_in_ga(s(x0))))
U4_GGA(z0, s(s(z1)), z2, p_out_ga(s(s(z1)), x3)) → M_IN_GGA(z2, x3)
U3_GGA(0, 0, p_out_ga(0, 0)) → U4_GGA(0, 0, 0, p_out_ga(0, 0))
U3_GGA(s(0), 0, p_out_ga(s(0), 0)) → U4_GGA(s(0), 0, 0, p_out_ga(0, 0))
U3_GGA(s(s(z0)), 0, p_out_ga(s(s(z0)), x1)) → U4_GGA(s(s(z0)), 0, x1, p_out_ga(0, 0))
U3_GGA(0, s(0), p_out_ga(0, 0)) → U4_GGA(0, s(0), 0, p_out_ga(s(0), 0))
U3_GGA(s(0), s(0), p_out_ga(s(0), 0)) → U4_GGA(s(0), s(0), 0, p_out_ga(s(0), 0))
U3_GGA(s(s(z0)), s(0), p_out_ga(s(s(z0)), x1)) → U4_GGA(s(s(z0)), s(0), x1, p_out_ga(s(0), 0))
U3_GGA(0, s(s(x1)), p_out_ga(0, 0)) → U4_GGA(0, s(s(x1)), 0, U6_ga(x1, p_in_ga(s(x1))))
U3_GGA(s(0), s(s(x1)), p_out_ga(s(0), 0)) → U4_GGA(s(0), s(s(x1)), 0, U6_ga(x1, p_in_ga(s(x1))))
U3_GGA(s(s(z0)), s(s(x1)), p_out_ga(s(s(z0)), x2)) → U4_GGA(s(s(z0)), s(s(x1)), x2, U6_ga(x1, p_in_ga(s(x1))))
U4_GGA(0, 0, 0, p_out_ga(0, 0)) → M_IN_GGA(0, 0)
U4_GGA(s(0), 0, 0, p_out_ga(0, 0)) → M_IN_GGA(0, 0)
U4_GGA(s(s(z0)), 0, z1, p_out_ga(0, 0)) → M_IN_GGA(z1, 0)
U4_GGA(0, s(0), 0, p_out_ga(s(0), 0)) → M_IN_GGA(0, 0)
U4_GGA(s(0), s(0), 0, p_out_ga(s(0), 0)) → M_IN_GGA(0, 0)
U4_GGA(s(s(z0)), s(0), z1, p_out_ga(s(0), 0)) → M_IN_GGA(z1, 0)

The TRS R consists of the following rules:

p_in_ga(s(0)) → p_out_ga(s(0), 0)
p_in_ga(s(s(X))) → U6_ga(X, p_in_ga(s(X)))
U6_ga(X, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0, x1)

We have to consider all (P,Q,R)-chains.

(39) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U4_GGA(z0, s(s(z1)), z2, p_out_ga(s(s(z1)), x3)) → M_IN_GGA(z2, x3) we obtained the following new rules [LPAR04]:

U4_GGA(0, s(s(z0)), 0, p_out_ga(s(s(z0)), x3)) → M_IN_GGA(0, x3)
U4_GGA(s(0), s(s(z0)), 0, p_out_ga(s(s(z0)), x3)) → M_IN_GGA(0, x3)
U4_GGA(s(s(z0)), s(s(z1)), z2, p_out_ga(s(s(z1)), x3)) → M_IN_GGA(z2, x3)

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

M_IN_GGA(0, y1) → U3_GGA(0, y1, p_out_ga(0, 0))
M_IN_GGA(s(0), y1) → U3_GGA(s(0), y1, p_out_ga(s(0), 0))
M_IN_GGA(s(s(x0)), y1) → U3_GGA(s(s(x0)), y1, U6_ga(x0, p_in_ga(s(x0))))
U3_GGA(0, 0, p_out_ga(0, 0)) → U4_GGA(0, 0, 0, p_out_ga(0, 0))
U3_GGA(s(0), 0, p_out_ga(s(0), 0)) → U4_GGA(s(0), 0, 0, p_out_ga(0, 0))
U3_GGA(s(s(z0)), 0, p_out_ga(s(s(z0)), x1)) → U4_GGA(s(s(z0)), 0, x1, p_out_ga(0, 0))
U3_GGA(0, s(0), p_out_ga(0, 0)) → U4_GGA(0, s(0), 0, p_out_ga(s(0), 0))
U3_GGA(s(0), s(0), p_out_ga(s(0), 0)) → U4_GGA(s(0), s(0), 0, p_out_ga(s(0), 0))
U3_GGA(s(s(z0)), s(0), p_out_ga(s(s(z0)), x1)) → U4_GGA(s(s(z0)), s(0), x1, p_out_ga(s(0), 0))
U3_GGA(0, s(s(x1)), p_out_ga(0, 0)) → U4_GGA(0, s(s(x1)), 0, U6_ga(x1, p_in_ga(s(x1))))
U3_GGA(s(0), s(s(x1)), p_out_ga(s(0), 0)) → U4_GGA(s(0), s(s(x1)), 0, U6_ga(x1, p_in_ga(s(x1))))
U3_GGA(s(s(z0)), s(s(x1)), p_out_ga(s(s(z0)), x2)) → U4_GGA(s(s(z0)), s(s(x1)), x2, U6_ga(x1, p_in_ga(s(x1))))
U4_GGA(0, 0, 0, p_out_ga(0, 0)) → M_IN_GGA(0, 0)
U4_GGA(s(0), 0, 0, p_out_ga(0, 0)) → M_IN_GGA(0, 0)
U4_GGA(s(s(z0)), 0, z1, p_out_ga(0, 0)) → M_IN_GGA(z1, 0)
U4_GGA(0, s(0), 0, p_out_ga(s(0), 0)) → M_IN_GGA(0, 0)
U4_GGA(s(0), s(0), 0, p_out_ga(s(0), 0)) → M_IN_GGA(0, 0)
U4_GGA(s(s(z0)), s(0), z1, p_out_ga(s(0), 0)) → M_IN_GGA(z1, 0)
U4_GGA(0, s(s(z0)), 0, p_out_ga(s(s(z0)), x3)) → M_IN_GGA(0, x3)
U4_GGA(s(0), s(s(z0)), 0, p_out_ga(s(s(z0)), x3)) → M_IN_GGA(0, x3)
U4_GGA(s(s(z0)), s(s(z1)), z2, p_out_ga(s(s(z1)), x3)) → M_IN_GGA(z2, x3)

The TRS R consists of the following rules:

p_in_ga(s(0)) → p_out_ga(s(0), 0)
p_in_ga(s(s(X))) → U6_ga(X, p_in_ga(s(X)))
U6_ga(X, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0, x1)

We have to consider all (P,Q,R)-chains.

(41) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 7 less nodes.

(42) Complex Obligation (AND)

(43) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U3_GGA(0, 0, p_out_ga(0, 0)) → U4_GGA(0, 0, 0, p_out_ga(0, 0))
U4_GGA(0, 0, 0, p_out_ga(0, 0)) → M_IN_GGA(0, 0)
M_IN_GGA(0, y1) → U3_GGA(0, y1, p_out_ga(0, 0))
U3_GGA(0, s(0), p_out_ga(0, 0)) → U4_GGA(0, s(0), 0, p_out_ga(s(0), 0))
U4_GGA(0, s(0), 0, p_out_ga(s(0), 0)) → M_IN_GGA(0, 0)
U3_GGA(0, s(s(x1)), p_out_ga(0, 0)) → U4_GGA(0, s(s(x1)), 0, U6_ga(x1, p_in_ga(s(x1))))
U4_GGA(0, s(s(z0)), 0, p_out_ga(s(s(z0)), x3)) → M_IN_GGA(0, x3)

The TRS R consists of the following rules:

p_in_ga(s(0)) → p_out_ga(s(0), 0)
p_in_ga(s(s(X))) → U6_ga(X, p_in_ga(s(X)))
U6_ga(X, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0, x1)

We have to consider all (P,Q,R)-chains.

(44) ForwardInstantiation (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule M_IN_GGA(0, y1) → U3_GGA(0, y1, p_out_ga(0, 0)) we obtained the following new rules [LPAR04]:

M_IN_GGA(0, 0) → U3_GGA(0, 0, p_out_ga(0, 0))
M_IN_GGA(0, s(0)) → U3_GGA(0, s(0), p_out_ga(0, 0))
M_IN_GGA(0, s(s(y_0))) → U3_GGA(0, s(s(y_0)), p_out_ga(0, 0))

(45) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U3_GGA(0, 0, p_out_ga(0, 0)) → U4_GGA(0, 0, 0, p_out_ga(0, 0))
U4_GGA(0, 0, 0, p_out_ga(0, 0)) → M_IN_GGA(0, 0)
U3_GGA(0, s(0), p_out_ga(0, 0)) → U4_GGA(0, s(0), 0, p_out_ga(s(0), 0))
U4_GGA(0, s(0), 0, p_out_ga(s(0), 0)) → M_IN_GGA(0, 0)
U3_GGA(0, s(s(x1)), p_out_ga(0, 0)) → U4_GGA(0, s(s(x1)), 0, U6_ga(x1, p_in_ga(s(x1))))
U4_GGA(0, s(s(z0)), 0, p_out_ga(s(s(z0)), x3)) → M_IN_GGA(0, x3)
M_IN_GGA(0, 0) → U3_GGA(0, 0, p_out_ga(0, 0))
M_IN_GGA(0, s(0)) → U3_GGA(0, s(0), p_out_ga(0, 0))
M_IN_GGA(0, s(s(y_0))) → U3_GGA(0, s(s(y_0)), p_out_ga(0, 0))

The TRS R consists of the following rules:

p_in_ga(s(0)) → p_out_ga(s(0), 0)
p_in_ga(s(s(X))) → U6_ga(X, p_in_ga(s(X)))
U6_ga(X, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0, x1)

We have to consider all (P,Q,R)-chains.

(46) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 3 less nodes.

(47) Complex Obligation (AND)

(48) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U4_GGA(0, 0, 0, p_out_ga(0, 0)) → M_IN_GGA(0, 0)
M_IN_GGA(0, 0) → U3_GGA(0, 0, p_out_ga(0, 0))
U3_GGA(0, 0, p_out_ga(0, 0)) → U4_GGA(0, 0, 0, p_out_ga(0, 0))

The TRS R consists of the following rules:

p_in_ga(s(0)) → p_out_ga(s(0), 0)
p_in_ga(s(s(X))) → U6_ga(X, p_in_ga(s(X)))
U6_ga(X, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0, x1)

We have to consider all (P,Q,R)-chains.

(49) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(50) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U4_GGA(0, 0, 0, p_out_ga(0, 0)) → M_IN_GGA(0, 0)
M_IN_GGA(0, 0) → U3_GGA(0, 0, p_out_ga(0, 0))
U3_GGA(0, 0, p_out_ga(0, 0)) → U4_GGA(0, 0, 0, p_out_ga(0, 0))

R is empty.
The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0, x1)

We have to consider all (P,Q,R)-chains.

(51) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

p_in_ga(x0)
U6_ga(x0, x1)

(52) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U4_GGA(0, 0, 0, p_out_ga(0, 0)) → M_IN_GGA(0, 0)
M_IN_GGA(0, 0) → U3_GGA(0, 0, p_out_ga(0, 0))
U3_GGA(0, 0, p_out_ga(0, 0)) → U4_GGA(0, 0, 0, p_out_ga(0, 0))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(53) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

s = M_IN_GGA(0, 0) evaluates to t =M_IN_GGA(0, 0)

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [ ]
  • Semiunifier: [ ]




Rewriting sequence

M_IN_GGA(0, 0)U3_GGA(0, 0, p_out_ga(0, 0))
with rule M_IN_GGA(0, 0) → U3_GGA(0, 0, p_out_ga(0, 0)) at position [] and matcher [ ]

U3_GGA(0, 0, p_out_ga(0, 0))U4_GGA(0, 0, 0, p_out_ga(0, 0))
with rule U3_GGA(0, 0, p_out_ga(0, 0)) → U4_GGA(0, 0, 0, p_out_ga(0, 0)) at position [] and matcher [ ]

U4_GGA(0, 0, 0, p_out_ga(0, 0))M_IN_GGA(0, 0)
with rule U4_GGA(0, 0, 0, p_out_ga(0, 0)) → M_IN_GGA(0, 0)

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.



(54) FALSE

(55) Obligation:

Q DP problem:
The TRS P consists of the following rules:

M_IN_GGA(0, s(s(y_0))) → U3_GGA(0, s(s(y_0)), p_out_ga(0, 0))
U3_GGA(0, s(s(x1)), p_out_ga(0, 0)) → U4_GGA(0, s(s(x1)), 0, U6_ga(x1, p_in_ga(s(x1))))
U4_GGA(0, s(s(z0)), 0, p_out_ga(s(s(z0)), x3)) → M_IN_GGA(0, x3)

The TRS R consists of the following rules:

p_in_ga(s(0)) → p_out_ga(s(0), 0)
p_in_ga(s(s(X))) → U6_ga(X, p_in_ga(s(X)))
U6_ga(X, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0, x1)

We have to consider all (P,Q,R)-chains.

(56) ForwardInstantiation (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule U4_GGA(0, s(s(z0)), 0, p_out_ga(s(s(z0)), x3)) → M_IN_GGA(0, x3) we obtained the following new rules [LPAR04]:

U4_GGA(0, s(s(x0)), 0, p_out_ga(s(s(x0)), s(s(y_0)))) → M_IN_GGA(0, s(s(y_0)))

(57) Obligation:

Q DP problem:
The TRS P consists of the following rules:

M_IN_GGA(0, s(s(y_0))) → U3_GGA(0, s(s(y_0)), p_out_ga(0, 0))
U3_GGA(0, s(s(x1)), p_out_ga(0, 0)) → U4_GGA(0, s(s(x1)), 0, U6_ga(x1, p_in_ga(s(x1))))
U4_GGA(0, s(s(x0)), 0, p_out_ga(s(s(x0)), s(s(y_0)))) → M_IN_GGA(0, s(s(y_0)))

The TRS R consists of the following rules:

p_in_ga(s(0)) → p_out_ga(s(0), 0)
p_in_ga(s(s(X))) → U6_ga(X, p_in_ga(s(X)))
U6_ga(X, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0, x1)

We have to consider all (P,Q,R)-chains.

(58) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U3_GGA(0, s(s(x1)), p_out_ga(0, 0)) → U4_GGA(0, s(s(x1)), 0, U6_ga(x1, p_in_ga(s(x1))))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO]:

POL(M_IN_GGA(x1, x2)) = 0 +
[0,0]
·x1 +
[0,1]
·x2

POL(0) =
/0\
\0/

POL(s(x1)) =
/1\
\0/
+
/00\
\11/
·x1

POL(U3_GGA(x1, x2, x3)) = 0 +
[0,0]
·x1 +
[0,1]
·x2 +
[0,0]
·x3

POL(p_out_ga(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/01\
\11/
·x2

POL(U4_GGA(x1, x2, x3, x4)) = 0 +
[0,0]
·x1 +
[0,0]
·x2 +
[0,0]
·x3 +
[1,0]
·x4

POL(U6_ga(x1, x2)) =
/0\
\1/
+
/00\
\00/
·x1 +
/01\
\01/
·x2

POL(p_in_ga(x1)) =
/0\
\0/
+
/01\
\01/
·x1

The following usable rules [FROCOS05] were oriented:

p_in_ga(s(0)) → p_out_ga(s(0), 0)
p_in_ga(s(s(X))) → U6_ga(X, p_in_ga(s(X)))
U6_ga(X, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))

(59) Obligation:

Q DP problem:
The TRS P consists of the following rules:

M_IN_GGA(0, s(s(y_0))) → U3_GGA(0, s(s(y_0)), p_out_ga(0, 0))
U4_GGA(0, s(s(x0)), 0, p_out_ga(s(s(x0)), s(s(y_0)))) → M_IN_GGA(0, s(s(y_0)))

The TRS R consists of the following rules:

p_in_ga(s(0)) → p_out_ga(s(0), 0)
p_in_ga(s(s(X))) → U6_ga(X, p_in_ga(s(X)))
U6_ga(X, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0, x1)

We have to consider all (P,Q,R)-chains.

(60) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(61) TRUE

(62) Obligation:

Q DP problem:
The TRS P consists of the following rules:

M_IN_GGA(s(s(x0)), y1) → U3_GGA(s(s(x0)), y1, U6_ga(x0, p_in_ga(s(x0))))
U3_GGA(s(s(z0)), 0, p_out_ga(s(s(z0)), x1)) → U4_GGA(s(s(z0)), 0, x1, p_out_ga(0, 0))
U4_GGA(s(s(z0)), 0, z1, p_out_ga(0, 0)) → M_IN_GGA(z1, 0)
U3_GGA(s(s(z0)), s(0), p_out_ga(s(s(z0)), x1)) → U4_GGA(s(s(z0)), s(0), x1, p_out_ga(s(0), 0))
U4_GGA(s(s(z0)), s(0), z1, p_out_ga(s(0), 0)) → M_IN_GGA(z1, 0)
U3_GGA(s(s(z0)), s(s(x1)), p_out_ga(s(s(z0)), x2)) → U4_GGA(s(s(z0)), s(s(x1)), x2, U6_ga(x1, p_in_ga(s(x1))))
U4_GGA(s(s(z0)), s(s(z1)), z2, p_out_ga(s(s(z1)), x3)) → M_IN_GGA(z2, x3)

The TRS R consists of the following rules:

p_in_ga(s(0)) → p_out_ga(s(0), 0)
p_in_ga(s(s(X))) → U6_ga(X, p_in_ga(s(X)))
U6_ga(X, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0, x1)

We have to consider all (P,Q,R)-chains.

(63) ForwardInstantiation (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule M_IN_GGA(s(s(x0)), y1) → U3_GGA(s(s(x0)), y1, U6_ga(x0, p_in_ga(s(x0)))) we obtained the following new rules [LPAR04]:

M_IN_GGA(s(s(x0)), 0) → U3_GGA(s(s(x0)), 0, U6_ga(x0, p_in_ga(s(x0))))
M_IN_GGA(s(s(x0)), s(0)) → U3_GGA(s(s(x0)), s(0), U6_ga(x0, p_in_ga(s(x0))))
M_IN_GGA(s(s(x0)), s(s(y_1))) → U3_GGA(s(s(x0)), s(s(y_1)), U6_ga(x0, p_in_ga(s(x0))))

(64) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U3_GGA(s(s(z0)), 0, p_out_ga(s(s(z0)), x1)) → U4_GGA(s(s(z0)), 0, x1, p_out_ga(0, 0))
U4_GGA(s(s(z0)), 0, z1, p_out_ga(0, 0)) → M_IN_GGA(z1, 0)
U3_GGA(s(s(z0)), s(0), p_out_ga(s(s(z0)), x1)) → U4_GGA(s(s(z0)), s(0), x1, p_out_ga(s(0), 0))
U4_GGA(s(s(z0)), s(0), z1, p_out_ga(s(0), 0)) → M_IN_GGA(z1, 0)
U3_GGA(s(s(z0)), s(s(x1)), p_out_ga(s(s(z0)), x2)) → U4_GGA(s(s(z0)), s(s(x1)), x2, U6_ga(x1, p_in_ga(s(x1))))
U4_GGA(s(s(z0)), s(s(z1)), z2, p_out_ga(s(s(z1)), x3)) → M_IN_GGA(z2, x3)
M_IN_GGA(s(s(x0)), 0) → U3_GGA(s(s(x0)), 0, U6_ga(x0, p_in_ga(s(x0))))
M_IN_GGA(s(s(x0)), s(0)) → U3_GGA(s(s(x0)), s(0), U6_ga(x0, p_in_ga(s(x0))))
M_IN_GGA(s(s(x0)), s(s(y_1))) → U3_GGA(s(s(x0)), s(s(y_1)), U6_ga(x0, p_in_ga(s(x0))))

The TRS R consists of the following rules:

p_in_ga(s(0)) → p_out_ga(s(0), 0)
p_in_ga(s(s(X))) → U6_ga(X, p_in_ga(s(X)))
U6_ga(X, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0, x1)

We have to consider all (P,Q,R)-chains.

(65) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 3 less nodes.

(66) Complex Obligation (AND)

(67) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U4_GGA(s(s(z0)), 0, z1, p_out_ga(0, 0)) → M_IN_GGA(z1, 0)
M_IN_GGA(s(s(x0)), 0) → U3_GGA(s(s(x0)), 0, U6_ga(x0, p_in_ga(s(x0))))
U3_GGA(s(s(z0)), 0, p_out_ga(s(s(z0)), x1)) → U4_GGA(s(s(z0)), 0, x1, p_out_ga(0, 0))

The TRS R consists of the following rules:

p_in_ga(s(0)) → p_out_ga(s(0), 0)
p_in_ga(s(s(X))) → U6_ga(X, p_in_ga(s(X)))
U6_ga(X, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0, x1)

We have to consider all (P,Q,R)-chains.

(68) ForwardInstantiation (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule U4_GGA(s(s(z0)), 0, z1, p_out_ga(0, 0)) → M_IN_GGA(z1, 0) we obtained the following new rules [LPAR04]:

U4_GGA(s(s(x0)), 0, s(s(y_0)), p_out_ga(0, 0)) → M_IN_GGA(s(s(y_0)), 0)

(69) Obligation:

Q DP problem:
The TRS P consists of the following rules:

M_IN_GGA(s(s(x0)), 0) → U3_GGA(s(s(x0)), 0, U6_ga(x0, p_in_ga(s(x0))))
U3_GGA(s(s(z0)), 0, p_out_ga(s(s(z0)), x1)) → U4_GGA(s(s(z0)), 0, x1, p_out_ga(0, 0))
U4_GGA(s(s(x0)), 0, s(s(y_0)), p_out_ga(0, 0)) → M_IN_GGA(s(s(y_0)), 0)

The TRS R consists of the following rules:

p_in_ga(s(0)) → p_out_ga(s(0), 0)
p_in_ga(s(s(X))) → U6_ga(X, p_in_ga(s(X)))
U6_ga(X, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0, x1)

We have to consider all (P,Q,R)-chains.

(70) ForwardInstantiation (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule U3_GGA(s(s(z0)), 0, p_out_ga(s(s(z0)), x1)) → U4_GGA(s(s(z0)), 0, x1, p_out_ga(0, 0)) we obtained the following new rules [LPAR04]:

U3_GGA(s(s(x0)), 0, p_out_ga(s(s(x0)), s(s(y_1)))) → U4_GGA(s(s(x0)), 0, s(s(y_1)), p_out_ga(0, 0))

(71) Obligation:

Q DP problem:
The TRS P consists of the following rules:

M_IN_GGA(s(s(x0)), 0) → U3_GGA(s(s(x0)), 0, U6_ga(x0, p_in_ga(s(x0))))
U4_GGA(s(s(x0)), 0, s(s(y_0)), p_out_ga(0, 0)) → M_IN_GGA(s(s(y_0)), 0)
U3_GGA(s(s(x0)), 0, p_out_ga(s(s(x0)), s(s(y_1)))) → U4_GGA(s(s(x0)), 0, s(s(y_1)), p_out_ga(0, 0))

The TRS R consists of the following rules:

p_in_ga(s(0)) → p_out_ga(s(0), 0)
p_in_ga(s(s(X))) → U6_ga(X, p_in_ga(s(X)))
U6_ga(X, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0, x1)

We have to consider all (P,Q,R)-chains.

(72) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U4_GGA(s(s(x0)), 0, s(s(y_0)), p_out_ga(0, 0)) → M_IN_GGA(s(s(y_0)), 0)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(M_IN_GGA(x1, x2)) = x1   
POL(U3_GGA(x1, x2, x3)) = x3   
POL(U4_GGA(x1, x2, x3, x4)) = x3 + x4   
POL(U6_ga(x1, x2)) = 1 + x2   
POL(p_in_ga(x1)) = x1   
POL(p_out_ga(x1, x2)) = 1 + x2   
POL(s(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented:

p_in_ga(s(0)) → p_out_ga(s(0), 0)
p_in_ga(s(s(X))) → U6_ga(X, p_in_ga(s(X)))
U6_ga(X, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))

(73) Obligation:

Q DP problem:
The TRS P consists of the following rules:

M_IN_GGA(s(s(x0)), 0) → U3_GGA(s(s(x0)), 0, U6_ga(x0, p_in_ga(s(x0))))
U3_GGA(s(s(x0)), 0, p_out_ga(s(s(x0)), s(s(y_1)))) → U4_GGA(s(s(x0)), 0, s(s(y_1)), p_out_ga(0, 0))

The TRS R consists of the following rules:

p_in_ga(s(0)) → p_out_ga(s(0), 0)
p_in_ga(s(s(X))) → U6_ga(X, p_in_ga(s(X)))
U6_ga(X, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0, x1)

We have to consider all (P,Q,R)-chains.

(74) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(75) TRUE

(76) Obligation:

Q DP problem:
The TRS P consists of the following rules:

M_IN_GGA(s(s(x0)), s(s(y_1))) → U3_GGA(s(s(x0)), s(s(y_1)), U6_ga(x0, p_in_ga(s(x0))))
U3_GGA(s(s(z0)), s(s(x1)), p_out_ga(s(s(z0)), x2)) → U4_GGA(s(s(z0)), s(s(x1)), x2, U6_ga(x1, p_in_ga(s(x1))))
U4_GGA(s(s(z0)), s(s(z1)), z2, p_out_ga(s(s(z1)), x3)) → M_IN_GGA(z2, x3)

The TRS R consists of the following rules:

p_in_ga(s(0)) → p_out_ga(s(0), 0)
p_in_ga(s(s(X))) → U6_ga(X, p_in_ga(s(X)))
U6_ga(X, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0, x1)

We have to consider all (P,Q,R)-chains.

(77) ForwardInstantiation (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule U4_GGA(s(s(z0)), s(s(z1)), z2, p_out_ga(s(s(z1)), x3)) → M_IN_GGA(z2, x3) we obtained the following new rules [LPAR04]:

U4_GGA(s(s(x0)), s(s(x1)), s(s(y_0)), p_out_ga(s(s(x1)), s(s(y_1)))) → M_IN_GGA(s(s(y_0)), s(s(y_1)))

(78) Obligation:

Q DP problem:
The TRS P consists of the following rules:

M_IN_GGA(s(s(x0)), s(s(y_1))) → U3_GGA(s(s(x0)), s(s(y_1)), U6_ga(x0, p_in_ga(s(x0))))
U3_GGA(s(s(z0)), s(s(x1)), p_out_ga(s(s(z0)), x2)) → U4_GGA(s(s(z0)), s(s(x1)), x2, U6_ga(x1, p_in_ga(s(x1))))
U4_GGA(s(s(x0)), s(s(x1)), s(s(y_0)), p_out_ga(s(s(x1)), s(s(y_1)))) → M_IN_GGA(s(s(y_0)), s(s(y_1)))

The TRS R consists of the following rules:

p_in_ga(s(0)) → p_out_ga(s(0), 0)
p_in_ga(s(s(X))) → U6_ga(X, p_in_ga(s(X)))
U6_ga(X, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0, x1)

We have to consider all (P,Q,R)-chains.

(79) ForwardInstantiation (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule U3_GGA(s(s(z0)), s(s(x1)), p_out_ga(s(s(z0)), x2)) → U4_GGA(s(s(z0)), s(s(x1)), x2, U6_ga(x1, p_in_ga(s(x1)))) we obtained the following new rules [LPAR04]:

U3_GGA(s(s(x0)), s(s(x1)), p_out_ga(s(s(x0)), s(s(y_2)))) → U4_GGA(s(s(x0)), s(s(x1)), s(s(y_2)), U6_ga(x1, p_in_ga(s(x1))))

(80) Obligation:

Q DP problem:
The TRS P consists of the following rules:

M_IN_GGA(s(s(x0)), s(s(y_1))) → U3_GGA(s(s(x0)), s(s(y_1)), U6_ga(x0, p_in_ga(s(x0))))
U4_GGA(s(s(x0)), s(s(x1)), s(s(y_0)), p_out_ga(s(s(x1)), s(s(y_1)))) → M_IN_GGA(s(s(y_0)), s(s(y_1)))
U3_GGA(s(s(x0)), s(s(x1)), p_out_ga(s(s(x0)), s(s(y_2)))) → U4_GGA(s(s(x0)), s(s(x1)), s(s(y_2)), U6_ga(x1, p_in_ga(s(x1))))

The TRS R consists of the following rules:

p_in_ga(s(0)) → p_out_ga(s(0), 0)
p_in_ga(s(s(X))) → U6_ga(X, p_in_ga(s(X)))
U6_ga(X, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0, x1)

We have to consider all (P,Q,R)-chains.

(81) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U4_GGA(s(s(x0)), s(s(x1)), s(s(y_0)), p_out_ga(s(s(x1)), s(s(y_1)))) → M_IN_GGA(s(s(y_0)), s(s(y_1)))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO]:

POL(M_IN_GGA(x1, x2)) = 0 +
[0,0]
·x1 +
[0,1]
·x2

POL(s(x1)) =
/1\
\0/
+
/10\
\10/
·x1

POL(U3_GGA(x1, x2, x3)) = 0 +
[0,0]
·x1 +
[0,1]
·x2 +
[0,0]
·x3

POL(U6_ga(x1, x2)) =
/1\
\0/
+
/00\
\00/
·x1 +
/10\
\10/
·x2

POL(p_in_ga(x1)) =
/0\
\1/
+
/01\
\11/
·x1

POL(U4_GGA(x1, x2, x3, x4)) = 1 +
[0,0]
·x1 +
[0,0]
·x2 +
[0,0]
·x3 +
[0,1]
·x4

POL(p_out_ga(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/10\
\01/
·x2

POL(0) =
/0\
\0/

The following usable rules [FROCOS05] were oriented:

p_in_ga(s(0)) → p_out_ga(s(0), 0)
p_in_ga(s(s(X))) → U6_ga(X, p_in_ga(s(X)))
U6_ga(X, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))

(82) Obligation:

Q DP problem:
The TRS P consists of the following rules:

M_IN_GGA(s(s(x0)), s(s(y_1))) → U3_GGA(s(s(x0)), s(s(y_1)), U6_ga(x0, p_in_ga(s(x0))))
U3_GGA(s(s(x0)), s(s(x1)), p_out_ga(s(s(x0)), s(s(y_2)))) → U4_GGA(s(s(x0)), s(s(x1)), s(s(y_2)), U6_ga(x1, p_in_ga(s(x1))))

The TRS R consists of the following rules:

p_in_ga(s(0)) → p_out_ga(s(0), 0)
p_in_ga(s(s(X))) → U6_ga(X, p_in_ga(s(X)))
U6_ga(X, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0, x1)

We have to consider all (P,Q,R)-chains.

(83) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(84) TRUE

(85) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
m_in: (b,b,f)
p_in: (b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

m_in_gga(X, 0, Z) → U1_gga(X, Z, =_in_ag(Z, X))
=_in_ag(X, X) → =_out_ag(X, X)
U1_gga(X, Z, =_out_ag(Z, X)) → m_out_gga(X, 0, Z)
m_in_gga(0, Y, Z) → U2_gga(Y, Z, =_in_ag(Z, 0))
U2_gga(Y, Z, =_out_ag(Z, 0)) → m_out_gga(0, Y, Z)
m_in_gga(X, Y, Z) → U3_gga(X, Y, Z, p_in_ga(X, A))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(0), 0) → p_out_ga(s(0), 0)
p_in_ga(s(s(X)), s(Y)) → U6_ga(X, Y, p_in_ga(s(X), Y))
U6_ga(X, Y, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))
U3_gga(X, Y, Z, p_out_ga(X, A)) → U4_gga(X, Y, Z, A, p_in_ga(Y, B))
U4_gga(X, Y, Z, A, p_out_ga(Y, B)) → U5_gga(X, Y, Z, m_in_gga(A, B, Z))
U5_gga(X, Y, Z, m_out_gga(A, B, Z)) → m_out_gga(X, Y, Z)

The argument filtering Pi contains the following mapping:
m_in_gga(x1, x2, x3)  =  m_in_gga(x1, x2)
0  =  0
U1_gga(x1, x2, x3)  =  U1_gga(x3)
=_in_ag(x1, x2)  =  =_in_ag(x2)
=_out_ag(x1, x2)  =  =_out_ag(x1)
m_out_gga(x1, x2, x3)  =  m_out_gga(x3)
U2_gga(x1, x2, x3)  =  U2_gga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x2, x4)
p_in_ga(x1, x2)  =  p_in_ga(x1)
p_out_ga(x1, x2)  =  p_out_ga(x2)
s(x1)  =  s(x1)
U6_ga(x1, x2, x3)  =  U6_ga(x3)
U4_gga(x1, x2, x3, x4, x5)  =  U4_gga(x4, x5)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(86) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

m_in_gga(X, 0, Z) → U1_gga(X, Z, =_in_ag(Z, X))
=_in_ag(X, X) → =_out_ag(X, X)
U1_gga(X, Z, =_out_ag(Z, X)) → m_out_gga(X, 0, Z)
m_in_gga(0, Y, Z) → U2_gga(Y, Z, =_in_ag(Z, 0))
U2_gga(Y, Z, =_out_ag(Z, 0)) → m_out_gga(0, Y, Z)
m_in_gga(X, Y, Z) → U3_gga(X, Y, Z, p_in_ga(X, A))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(0), 0) → p_out_ga(s(0), 0)
p_in_ga(s(s(X)), s(Y)) → U6_ga(X, Y, p_in_ga(s(X), Y))
U6_ga(X, Y, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))
U3_gga(X, Y, Z, p_out_ga(X, A)) → U4_gga(X, Y, Z, A, p_in_ga(Y, B))
U4_gga(X, Y, Z, A, p_out_ga(Y, B)) → U5_gga(X, Y, Z, m_in_gga(A, B, Z))
U5_gga(X, Y, Z, m_out_gga(A, B, Z)) → m_out_gga(X, Y, Z)

The argument filtering Pi contains the following mapping:
m_in_gga(x1, x2, x3)  =  m_in_gga(x1, x2)
0  =  0
U1_gga(x1, x2, x3)  =  U1_gga(x3)
=_in_ag(x1, x2)  =  =_in_ag(x2)
=_out_ag(x1, x2)  =  =_out_ag(x1)
m_out_gga(x1, x2, x3)  =  m_out_gga(x3)
U2_gga(x1, x2, x3)  =  U2_gga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x2, x4)
p_in_ga(x1, x2)  =  p_in_ga(x1)
p_out_ga(x1, x2)  =  p_out_ga(x2)
s(x1)  =  s(x1)
U6_ga(x1, x2, x3)  =  U6_ga(x3)
U4_gga(x1, x2, x3, x4, x5)  =  U4_gga(x4, x5)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x4)

(87) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

M_IN_GGA(X, 0, Z) → U1_GGA(X, Z, =_in_ag(Z, X))
M_IN_GGA(X, 0, Z) → =_IN_AG(Z, X)
M_IN_GGA(0, Y, Z) → U2_GGA(Y, Z, =_in_ag(Z, 0))
M_IN_GGA(0, Y, Z) → =_IN_AG(Z, 0)
M_IN_GGA(X, Y, Z) → U3_GGA(X, Y, Z, p_in_ga(X, A))
M_IN_GGA(X, Y, Z) → P_IN_GA(X, A)
P_IN_GA(s(s(X)), s(Y)) → U6_GA(X, Y, p_in_ga(s(X), Y))
P_IN_GA(s(s(X)), s(Y)) → P_IN_GA(s(X), Y)
U3_GGA(X, Y, Z, p_out_ga(X, A)) → U4_GGA(X, Y, Z, A, p_in_ga(Y, B))
U3_GGA(X, Y, Z, p_out_ga(X, A)) → P_IN_GA(Y, B)
U4_GGA(X, Y, Z, A, p_out_ga(Y, B)) → U5_GGA(X, Y, Z, m_in_gga(A, B, Z))
U4_GGA(X, Y, Z, A, p_out_ga(Y, B)) → M_IN_GGA(A, B, Z)

The TRS R consists of the following rules:

m_in_gga(X, 0, Z) → U1_gga(X, Z, =_in_ag(Z, X))
=_in_ag(X, X) → =_out_ag(X, X)
U1_gga(X, Z, =_out_ag(Z, X)) → m_out_gga(X, 0, Z)
m_in_gga(0, Y, Z) → U2_gga(Y, Z, =_in_ag(Z, 0))
U2_gga(Y, Z, =_out_ag(Z, 0)) → m_out_gga(0, Y, Z)
m_in_gga(X, Y, Z) → U3_gga(X, Y, Z, p_in_ga(X, A))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(0), 0) → p_out_ga(s(0), 0)
p_in_ga(s(s(X)), s(Y)) → U6_ga(X, Y, p_in_ga(s(X), Y))
U6_ga(X, Y, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))
U3_gga(X, Y, Z, p_out_ga(X, A)) → U4_gga(X, Y, Z, A, p_in_ga(Y, B))
U4_gga(X, Y, Z, A, p_out_ga(Y, B)) → U5_gga(X, Y, Z, m_in_gga(A, B, Z))
U5_gga(X, Y, Z, m_out_gga(A, B, Z)) → m_out_gga(X, Y, Z)

The argument filtering Pi contains the following mapping:
m_in_gga(x1, x2, x3)  =  m_in_gga(x1, x2)
0  =  0
U1_gga(x1, x2, x3)  =  U1_gga(x3)
=_in_ag(x1, x2)  =  =_in_ag(x2)
=_out_ag(x1, x2)  =  =_out_ag(x1)
m_out_gga(x1, x2, x3)  =  m_out_gga(x3)
U2_gga(x1, x2, x3)  =  U2_gga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x2, x4)
p_in_ga(x1, x2)  =  p_in_ga(x1)
p_out_ga(x1, x2)  =  p_out_ga(x2)
s(x1)  =  s(x1)
U6_ga(x1, x2, x3)  =  U6_ga(x3)
U4_gga(x1, x2, x3, x4, x5)  =  U4_gga(x4, x5)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x4)
M_IN_GGA(x1, x2, x3)  =  M_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3)  =  U1_GGA(x3)
=_IN_AG(x1, x2)  =  =_IN_AG(x2)
U2_GGA(x1, x2, x3)  =  U2_GGA(x3)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x2, x4)
P_IN_GA(x1, x2)  =  P_IN_GA(x1)
U6_GA(x1, x2, x3)  =  U6_GA(x3)
U4_GGA(x1, x2, x3, x4, x5)  =  U4_GGA(x4, x5)
U5_GGA(x1, x2, x3, x4)  =  U5_GGA(x4)

We have to consider all (P,R,Pi)-chains

(88) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

M_IN_GGA(X, 0, Z) → U1_GGA(X, Z, =_in_ag(Z, X))
M_IN_GGA(X, 0, Z) → =_IN_AG(Z, X)
M_IN_GGA(0, Y, Z) → U2_GGA(Y, Z, =_in_ag(Z, 0))
M_IN_GGA(0, Y, Z) → =_IN_AG(Z, 0)
M_IN_GGA(X, Y, Z) → U3_GGA(X, Y, Z, p_in_ga(X, A))
M_IN_GGA(X, Y, Z) → P_IN_GA(X, A)
P_IN_GA(s(s(X)), s(Y)) → U6_GA(X, Y, p_in_ga(s(X), Y))
P_IN_GA(s(s(X)), s(Y)) → P_IN_GA(s(X), Y)
U3_GGA(X, Y, Z, p_out_ga(X, A)) → U4_GGA(X, Y, Z, A, p_in_ga(Y, B))
U3_GGA(X, Y, Z, p_out_ga(X, A)) → P_IN_GA(Y, B)
U4_GGA(X, Y, Z, A, p_out_ga(Y, B)) → U5_GGA(X, Y, Z, m_in_gga(A, B, Z))
U4_GGA(X, Y, Z, A, p_out_ga(Y, B)) → M_IN_GGA(A, B, Z)

The TRS R consists of the following rules:

m_in_gga(X, 0, Z) → U1_gga(X, Z, =_in_ag(Z, X))
=_in_ag(X, X) → =_out_ag(X, X)
U1_gga(X, Z, =_out_ag(Z, X)) → m_out_gga(X, 0, Z)
m_in_gga(0, Y, Z) → U2_gga(Y, Z, =_in_ag(Z, 0))
U2_gga(Y, Z, =_out_ag(Z, 0)) → m_out_gga(0, Y, Z)
m_in_gga(X, Y, Z) → U3_gga(X, Y, Z, p_in_ga(X, A))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(0), 0) → p_out_ga(s(0), 0)
p_in_ga(s(s(X)), s(Y)) → U6_ga(X, Y, p_in_ga(s(X), Y))
U6_ga(X, Y, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))
U3_gga(X, Y, Z, p_out_ga(X, A)) → U4_gga(X, Y, Z, A, p_in_ga(Y, B))
U4_gga(X, Y, Z, A, p_out_ga(Y, B)) → U5_gga(X, Y, Z, m_in_gga(A, B, Z))
U5_gga(X, Y, Z, m_out_gga(A, B, Z)) → m_out_gga(X, Y, Z)

The argument filtering Pi contains the following mapping:
m_in_gga(x1, x2, x3)  =  m_in_gga(x1, x2)
0  =  0
U1_gga(x1, x2, x3)  =  U1_gga(x3)
=_in_ag(x1, x2)  =  =_in_ag(x2)
=_out_ag(x1, x2)  =  =_out_ag(x1)
m_out_gga(x1, x2, x3)  =  m_out_gga(x3)
U2_gga(x1, x2, x3)  =  U2_gga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x2, x4)
p_in_ga(x1, x2)  =  p_in_ga(x1)
p_out_ga(x1, x2)  =  p_out_ga(x2)
s(x1)  =  s(x1)
U6_ga(x1, x2, x3)  =  U6_ga(x3)
U4_gga(x1, x2, x3, x4, x5)  =  U4_gga(x4, x5)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x4)
M_IN_GGA(x1, x2, x3)  =  M_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3)  =  U1_GGA(x3)
=_IN_AG(x1, x2)  =  =_IN_AG(x2)
U2_GGA(x1, x2, x3)  =  U2_GGA(x3)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x2, x4)
P_IN_GA(x1, x2)  =  P_IN_GA(x1)
U6_GA(x1, x2, x3)  =  U6_GA(x3)
U4_GGA(x1, x2, x3, x4, x5)  =  U4_GGA(x4, x5)
U5_GGA(x1, x2, x3, x4)  =  U5_GGA(x4)

We have to consider all (P,R,Pi)-chains

(89) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 8 less nodes.

(90) Complex Obligation (AND)

(91) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

P_IN_GA(s(s(X)), s(Y)) → P_IN_GA(s(X), Y)

The TRS R consists of the following rules:

m_in_gga(X, 0, Z) → U1_gga(X, Z, =_in_ag(Z, X))
=_in_ag(X, X) → =_out_ag(X, X)
U1_gga(X, Z, =_out_ag(Z, X)) → m_out_gga(X, 0, Z)
m_in_gga(0, Y, Z) → U2_gga(Y, Z, =_in_ag(Z, 0))
U2_gga(Y, Z, =_out_ag(Z, 0)) → m_out_gga(0, Y, Z)
m_in_gga(X, Y, Z) → U3_gga(X, Y, Z, p_in_ga(X, A))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(0), 0) → p_out_ga(s(0), 0)
p_in_ga(s(s(X)), s(Y)) → U6_ga(X, Y, p_in_ga(s(X), Y))
U6_ga(X, Y, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))
U3_gga(X, Y, Z, p_out_ga(X, A)) → U4_gga(X, Y, Z, A, p_in_ga(Y, B))
U4_gga(X, Y, Z, A, p_out_ga(Y, B)) → U5_gga(X, Y, Z, m_in_gga(A, B, Z))
U5_gga(X, Y, Z, m_out_gga(A, B, Z)) → m_out_gga(X, Y, Z)

The argument filtering Pi contains the following mapping:
m_in_gga(x1, x2, x3)  =  m_in_gga(x1, x2)
0  =  0
U1_gga(x1, x2, x3)  =  U1_gga(x3)
=_in_ag(x1, x2)  =  =_in_ag(x2)
=_out_ag(x1, x2)  =  =_out_ag(x1)
m_out_gga(x1, x2, x3)  =  m_out_gga(x3)
U2_gga(x1, x2, x3)  =  U2_gga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x2, x4)
p_in_ga(x1, x2)  =  p_in_ga(x1)
p_out_ga(x1, x2)  =  p_out_ga(x2)
s(x1)  =  s(x1)
U6_ga(x1, x2, x3)  =  U6_ga(x3)
U4_gga(x1, x2, x3, x4, x5)  =  U4_gga(x4, x5)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x4)
P_IN_GA(x1, x2)  =  P_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(92) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(93) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

P_IN_GA(s(s(X)), s(Y)) → P_IN_GA(s(X), Y)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
P_IN_GA(x1, x2)  =  P_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(94) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(95) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P_IN_GA(s(s(X))) → P_IN_GA(s(X))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(96) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • P_IN_GA(s(s(X))) → P_IN_GA(s(X))
    The graph contains the following edges 1 > 1

(97) TRUE

(98) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

M_IN_GGA(X, Y, Z) → U3_GGA(X, Y, Z, p_in_ga(X, A))
U3_GGA(X, Y, Z, p_out_ga(X, A)) → U4_GGA(X, Y, Z, A, p_in_ga(Y, B))
U4_GGA(X, Y, Z, A, p_out_ga(Y, B)) → M_IN_GGA(A, B, Z)

The TRS R consists of the following rules:

m_in_gga(X, 0, Z) → U1_gga(X, Z, =_in_ag(Z, X))
=_in_ag(X, X) → =_out_ag(X, X)
U1_gga(X, Z, =_out_ag(Z, X)) → m_out_gga(X, 0, Z)
m_in_gga(0, Y, Z) → U2_gga(Y, Z, =_in_ag(Z, 0))
U2_gga(Y, Z, =_out_ag(Z, 0)) → m_out_gga(0, Y, Z)
m_in_gga(X, Y, Z) → U3_gga(X, Y, Z, p_in_ga(X, A))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(0), 0) → p_out_ga(s(0), 0)
p_in_ga(s(s(X)), s(Y)) → U6_ga(X, Y, p_in_ga(s(X), Y))
U6_ga(X, Y, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))
U3_gga(X, Y, Z, p_out_ga(X, A)) → U4_gga(X, Y, Z, A, p_in_ga(Y, B))
U4_gga(X, Y, Z, A, p_out_ga(Y, B)) → U5_gga(X, Y, Z, m_in_gga(A, B, Z))
U5_gga(X, Y, Z, m_out_gga(A, B, Z)) → m_out_gga(X, Y, Z)

The argument filtering Pi contains the following mapping:
m_in_gga(x1, x2, x3)  =  m_in_gga(x1, x2)
0  =  0
U1_gga(x1, x2, x3)  =  U1_gga(x3)
=_in_ag(x1, x2)  =  =_in_ag(x2)
=_out_ag(x1, x2)  =  =_out_ag(x1)
m_out_gga(x1, x2, x3)  =  m_out_gga(x3)
U2_gga(x1, x2, x3)  =  U2_gga(x3)
U3_gga(x1, x2, x3, x4)  =  U3_gga(x2, x4)
p_in_ga(x1, x2)  =  p_in_ga(x1)
p_out_ga(x1, x2)  =  p_out_ga(x2)
s(x1)  =  s(x1)
U6_ga(x1, x2, x3)  =  U6_ga(x3)
U4_gga(x1, x2, x3, x4, x5)  =  U4_gga(x4, x5)
U5_gga(x1, x2, x3, x4)  =  U5_gga(x4)
M_IN_GGA(x1, x2, x3)  =  M_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x2, x4)
U4_GGA(x1, x2, x3, x4, x5)  =  U4_GGA(x4, x5)

We have to consider all (P,R,Pi)-chains

(99) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(100) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

M_IN_GGA(X, Y, Z) → U3_GGA(X, Y, Z, p_in_ga(X, A))
U3_GGA(X, Y, Z, p_out_ga(X, A)) → U4_GGA(X, Y, Z, A, p_in_ga(Y, B))
U4_GGA(X, Y, Z, A, p_out_ga(Y, B)) → M_IN_GGA(A, B, Z)

The TRS R consists of the following rules:

p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(0), 0) → p_out_ga(s(0), 0)
p_in_ga(s(s(X)), s(Y)) → U6_ga(X, Y, p_in_ga(s(X), Y))
U6_ga(X, Y, p_out_ga(s(X), Y)) → p_out_ga(s(s(X)), s(Y))

The argument filtering Pi contains the following mapping:
0  =  0
p_in_ga(x1, x2)  =  p_in_ga(x1)
p_out_ga(x1, x2)  =  p_out_ga(x2)
s(x1)  =  s(x1)
U6_ga(x1, x2, x3)  =  U6_ga(x3)
M_IN_GGA(x1, x2, x3)  =  M_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x2, x4)
U4_GGA(x1, x2, x3, x4, x5)  =  U4_GGA(x4, x5)

We have to consider all (P,R,Pi)-chains

(101) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(102) Obligation:

Q DP problem:
The TRS P consists of the following rules:

M_IN_GGA(X, Y) → U3_GGA(Y, p_in_ga(X))
U3_GGA(Y, p_out_ga(A)) → U4_GGA(A, p_in_ga(Y))
U4_GGA(A, p_out_ga(B)) → M_IN_GGA(A, B)

The TRS R consists of the following rules:

p_in_ga(0) → p_out_ga(0)
p_in_ga(s(0)) → p_out_ga(0)
p_in_ga(s(s(X))) → U6_ga(p_in_ga(s(X)))
U6_ga(p_out_ga(Y)) → p_out_ga(s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0)

We have to consider all (P,Q,R)-chains.

(103) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

p_in_ga(s(0)) → p_out_ga(0)

Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(M_IN_GGA(x1, x2)) = x1 + x2   
POL(U3_GGA(x1, x2)) = x1 + x2   
POL(U4_GGA(x1, x2)) = x1 + x2   
POL(U6_ga(x1)) = 1 + x1   
POL(p_in_ga(x1)) = x1   
POL(p_out_ga(x1)) = x1   
POL(s(x1)) = 1 + x1   

(104) Obligation:

Q DP problem:
The TRS P consists of the following rules:

M_IN_GGA(X, Y) → U3_GGA(Y, p_in_ga(X))
U3_GGA(Y, p_out_ga(A)) → U4_GGA(A, p_in_ga(Y))
U4_GGA(A, p_out_ga(B)) → M_IN_GGA(A, B)

The TRS R consists of the following rules:

p_in_ga(0) → p_out_ga(0)
p_in_ga(s(s(X))) → U6_ga(p_in_ga(s(X)))
U6_ga(p_out_ga(Y)) → p_out_ga(s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0)

We have to consider all (P,Q,R)-chains.

(105) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule M_IN_GGA(X, Y) → U3_GGA(Y, p_in_ga(X)) at position [1] we obtained the following new rules [LPAR04]:

M_IN_GGA(0, y1) → U3_GGA(y1, p_out_ga(0))
M_IN_GGA(s(s(x0)), y1) → U3_GGA(y1, U6_ga(p_in_ga(s(x0))))

(106) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U3_GGA(Y, p_out_ga(A)) → U4_GGA(A, p_in_ga(Y))
U4_GGA(A, p_out_ga(B)) → M_IN_GGA(A, B)
M_IN_GGA(0, y1) → U3_GGA(y1, p_out_ga(0))
M_IN_GGA(s(s(x0)), y1) → U3_GGA(y1, U6_ga(p_in_ga(s(x0))))

The TRS R consists of the following rules:

p_in_ga(0) → p_out_ga(0)
p_in_ga(s(s(X))) → U6_ga(p_in_ga(s(X)))
U6_ga(p_out_ga(Y)) → p_out_ga(s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0)

We have to consider all (P,Q,R)-chains.

(107) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule U3_GGA(Y, p_out_ga(A)) → U4_GGA(A, p_in_ga(Y)) at position [1] we obtained the following new rules [LPAR04]:

U3_GGA(0, p_out_ga(y1)) → U4_GGA(y1, p_out_ga(0))
U3_GGA(s(s(x0)), p_out_ga(y1)) → U4_GGA(y1, U6_ga(p_in_ga(s(x0))))

(108) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U4_GGA(A, p_out_ga(B)) → M_IN_GGA(A, B)
M_IN_GGA(0, y1) → U3_GGA(y1, p_out_ga(0))
M_IN_GGA(s(s(x0)), y1) → U3_GGA(y1, U6_ga(p_in_ga(s(x0))))
U3_GGA(0, p_out_ga(y1)) → U4_GGA(y1, p_out_ga(0))
U3_GGA(s(s(x0)), p_out_ga(y1)) → U4_GGA(y1, U6_ga(p_in_ga(s(x0))))

The TRS R consists of the following rules:

p_in_ga(0) → p_out_ga(0)
p_in_ga(s(s(X))) → U6_ga(p_in_ga(s(X)))
U6_ga(p_out_ga(Y)) → p_out_ga(s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0)

We have to consider all (P,Q,R)-chains.

(109) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(110) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U4_GGA(A, p_out_ga(B)) → M_IN_GGA(A, B)
M_IN_GGA(0, y1) → U3_GGA(y1, p_out_ga(0))
M_IN_GGA(s(s(x0)), y1) → U3_GGA(y1, U6_ga(p_in_ga(s(x0))))
U3_GGA(0, p_out_ga(y1)) → U4_GGA(y1, p_out_ga(0))
U3_GGA(s(s(x0)), p_out_ga(y1)) → U4_GGA(y1, U6_ga(p_in_ga(s(x0))))

The TRS R consists of the following rules:

p_in_ga(s(s(X))) → U6_ga(p_in_ga(s(X)))
U6_ga(p_out_ga(Y)) → p_out_ga(s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0)

We have to consider all (P,Q,R)-chains.

(111) ForwardInstantiation (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule U4_GGA(A, p_out_ga(B)) → M_IN_GGA(A, B) we obtained the following new rules [LPAR04]:

U4_GGA(0, p_out_ga(x1)) → M_IN_GGA(0, x1)
U4_GGA(s(s(y_0)), p_out_ga(x1)) → M_IN_GGA(s(s(y_0)), x1)

(112) Obligation:

Q DP problem:
The TRS P consists of the following rules:

M_IN_GGA(0, y1) → U3_GGA(y1, p_out_ga(0))
M_IN_GGA(s(s(x0)), y1) → U3_GGA(y1, U6_ga(p_in_ga(s(x0))))
U3_GGA(0, p_out_ga(y1)) → U4_GGA(y1, p_out_ga(0))
U3_GGA(s(s(x0)), p_out_ga(y1)) → U4_GGA(y1, U6_ga(p_in_ga(s(x0))))
U4_GGA(0, p_out_ga(x1)) → M_IN_GGA(0, x1)
U4_GGA(s(s(y_0)), p_out_ga(x1)) → M_IN_GGA(s(s(y_0)), x1)

The TRS R consists of the following rules:

p_in_ga(s(s(X))) → U6_ga(p_in_ga(s(X)))
U6_ga(p_out_ga(Y)) → p_out_ga(s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0)

We have to consider all (P,Q,R)-chains.

(113) ForwardInstantiation (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule M_IN_GGA(0, y1) → U3_GGA(y1, p_out_ga(0)) we obtained the following new rules [LPAR04]:

M_IN_GGA(0, 0) → U3_GGA(0, p_out_ga(0))
M_IN_GGA(0, s(s(y_0))) → U3_GGA(s(s(y_0)), p_out_ga(0))

(114) Obligation:

Q DP problem:
The TRS P consists of the following rules:

M_IN_GGA(s(s(x0)), y1) → U3_GGA(y1, U6_ga(p_in_ga(s(x0))))
U3_GGA(0, p_out_ga(y1)) → U4_GGA(y1, p_out_ga(0))
U3_GGA(s(s(x0)), p_out_ga(y1)) → U4_GGA(y1, U6_ga(p_in_ga(s(x0))))
U4_GGA(0, p_out_ga(x1)) → M_IN_GGA(0, x1)
U4_GGA(s(s(y_0)), p_out_ga(x1)) → M_IN_GGA(s(s(y_0)), x1)
M_IN_GGA(0, 0) → U3_GGA(0, p_out_ga(0))
M_IN_GGA(0, s(s(y_0))) → U3_GGA(s(s(y_0)), p_out_ga(0))

The TRS R consists of the following rules:

p_in_ga(s(s(X))) → U6_ga(p_in_ga(s(X)))
U6_ga(p_out_ga(Y)) → p_out_ga(s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0)

We have to consider all (P,Q,R)-chains.

(115) ForwardInstantiation (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule M_IN_GGA(s(s(x0)), y1) → U3_GGA(y1, U6_ga(p_in_ga(s(x0)))) we obtained the following new rules [LPAR04]:

M_IN_GGA(s(s(x0)), 0) → U3_GGA(0, U6_ga(p_in_ga(s(x0))))
M_IN_GGA(s(s(x0)), s(s(y_0))) → U3_GGA(s(s(y_0)), U6_ga(p_in_ga(s(x0))))

(116) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U3_GGA(0, p_out_ga(y1)) → U4_GGA(y1, p_out_ga(0))
U3_GGA(s(s(x0)), p_out_ga(y1)) → U4_GGA(y1, U6_ga(p_in_ga(s(x0))))
U4_GGA(0, p_out_ga(x1)) → M_IN_GGA(0, x1)
U4_GGA(s(s(y_0)), p_out_ga(x1)) → M_IN_GGA(s(s(y_0)), x1)
M_IN_GGA(0, 0) → U3_GGA(0, p_out_ga(0))
M_IN_GGA(0, s(s(y_0))) → U3_GGA(s(s(y_0)), p_out_ga(0))
M_IN_GGA(s(s(x0)), 0) → U3_GGA(0, U6_ga(p_in_ga(s(x0))))
M_IN_GGA(s(s(x0)), s(s(y_0))) → U3_GGA(s(s(y_0)), U6_ga(p_in_ga(s(x0))))

The TRS R consists of the following rules:

p_in_ga(s(s(X))) → U6_ga(p_in_ga(s(X)))
U6_ga(p_out_ga(Y)) → p_out_ga(s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0)

We have to consider all (P,Q,R)-chains.

(117) ForwardInstantiation (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule U3_GGA(0, p_out_ga(y1)) → U4_GGA(y1, p_out_ga(0)) we obtained the following new rules [LPAR04]:

U3_GGA(0, p_out_ga(0)) → U4_GGA(0, p_out_ga(0))
U3_GGA(0, p_out_ga(s(s(y_0)))) → U4_GGA(s(s(y_0)), p_out_ga(0))

(118) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U3_GGA(s(s(x0)), p_out_ga(y1)) → U4_GGA(y1, U6_ga(p_in_ga(s(x0))))
U4_GGA(0, p_out_ga(x1)) → M_IN_GGA(0, x1)
U4_GGA(s(s(y_0)), p_out_ga(x1)) → M_IN_GGA(s(s(y_0)), x1)
M_IN_GGA(0, 0) → U3_GGA(0, p_out_ga(0))
M_IN_GGA(0, s(s(y_0))) → U3_GGA(s(s(y_0)), p_out_ga(0))
M_IN_GGA(s(s(x0)), 0) → U3_GGA(0, U6_ga(p_in_ga(s(x0))))
M_IN_GGA(s(s(x0)), s(s(y_0))) → U3_GGA(s(s(y_0)), U6_ga(p_in_ga(s(x0))))
U3_GGA(0, p_out_ga(0)) → U4_GGA(0, p_out_ga(0))
U3_GGA(0, p_out_ga(s(s(y_0)))) → U4_GGA(s(s(y_0)), p_out_ga(0))

The TRS R consists of the following rules:

p_in_ga(s(s(X))) → U6_ga(p_in_ga(s(X)))
U6_ga(p_out_ga(Y)) → p_out_ga(s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0)

We have to consider all (P,Q,R)-chains.

(119) ForwardInstantiation (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule U3_GGA(s(s(x0)), p_out_ga(y1)) → U4_GGA(y1, U6_ga(p_in_ga(s(x0)))) we obtained the following new rules [LPAR04]:

U3_GGA(s(s(x0)), p_out_ga(0)) → U4_GGA(0, U6_ga(p_in_ga(s(x0))))
U3_GGA(s(s(x0)), p_out_ga(s(s(y_0)))) → U4_GGA(s(s(y_0)), U6_ga(p_in_ga(s(x0))))

(120) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U4_GGA(0, p_out_ga(x1)) → M_IN_GGA(0, x1)
U4_GGA(s(s(y_0)), p_out_ga(x1)) → M_IN_GGA(s(s(y_0)), x1)
M_IN_GGA(0, 0) → U3_GGA(0, p_out_ga(0))
M_IN_GGA(0, s(s(y_0))) → U3_GGA(s(s(y_0)), p_out_ga(0))
M_IN_GGA(s(s(x0)), 0) → U3_GGA(0, U6_ga(p_in_ga(s(x0))))
M_IN_GGA(s(s(x0)), s(s(y_0))) → U3_GGA(s(s(y_0)), U6_ga(p_in_ga(s(x0))))
U3_GGA(0, p_out_ga(0)) → U4_GGA(0, p_out_ga(0))
U3_GGA(0, p_out_ga(s(s(y_0)))) → U4_GGA(s(s(y_0)), p_out_ga(0))
U3_GGA(s(s(x0)), p_out_ga(0)) → U4_GGA(0, U6_ga(p_in_ga(s(x0))))
U3_GGA(s(s(x0)), p_out_ga(s(s(y_0)))) → U4_GGA(s(s(y_0)), U6_ga(p_in_ga(s(x0))))

The TRS R consists of the following rules:

p_in_ga(s(s(X))) → U6_ga(p_in_ga(s(X)))
U6_ga(p_out_ga(Y)) → p_out_ga(s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0)

We have to consider all (P,Q,R)-chains.

(121) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.

(122) Complex Obligation (AND)

(123) Obligation:

Q DP problem:
The TRS P consists of the following rules:

M_IN_GGA(s(s(x0)), 0) → U3_GGA(0, U6_ga(p_in_ga(s(x0))))
U3_GGA(0, p_out_ga(s(s(y_0)))) → U4_GGA(s(s(y_0)), p_out_ga(0))
U4_GGA(s(s(y_0)), p_out_ga(x1)) → M_IN_GGA(s(s(y_0)), x1)
M_IN_GGA(s(s(x0)), s(s(y_0))) → U3_GGA(s(s(y_0)), U6_ga(p_in_ga(s(x0))))
U3_GGA(s(s(x0)), p_out_ga(s(s(y_0)))) → U4_GGA(s(s(y_0)), U6_ga(p_in_ga(s(x0))))

The TRS R consists of the following rules:

p_in_ga(s(s(X))) → U6_ga(p_in_ga(s(X)))
U6_ga(p_out_ga(Y)) → p_out_ga(s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0)

We have to consider all (P,Q,R)-chains.

(124) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

U3_GGA(0, p_out_ga(s(s(y_0)))) → U4_GGA(s(s(y_0)), p_out_ga(0))
U4_GGA(s(s(y_0)), p_out_ga(x1)) → M_IN_GGA(s(s(y_0)), x1)
U3_GGA(s(s(x0)), p_out_ga(s(s(y_0)))) → U4_GGA(s(s(y_0)), U6_ga(p_in_ga(s(x0))))


Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(M_IN_GGA(x1, x2)) = 1 + x1 + x2   
POL(U3_GGA(x1, x2)) = 1 + x1 + x2   
POL(U4_GGA(x1, x2)) = x1 + x2   
POL(U6_ga(x1)) = x1   
POL(p_in_ga(x1)) = x1   
POL(p_out_ga(x1)) = 2 + x1   
POL(s(x1)) = x1   

(125) Obligation:

Q DP problem:
The TRS P consists of the following rules:

M_IN_GGA(s(s(x0)), 0) → U3_GGA(0, U6_ga(p_in_ga(s(x0))))
M_IN_GGA(s(s(x0)), s(s(y_0))) → U3_GGA(s(s(y_0)), U6_ga(p_in_ga(s(x0))))

The TRS R consists of the following rules:

p_in_ga(s(s(X))) → U6_ga(p_in_ga(s(X)))
U6_ga(p_out_ga(Y)) → p_out_ga(s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0)

We have to consider all (P,Q,R)-chains.

(126) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(127) TRUE

(128) Obligation:

Q DP problem:
The TRS P consists of the following rules:

M_IN_GGA(0, 0) → U3_GGA(0, p_out_ga(0))
U3_GGA(0, p_out_ga(0)) → U4_GGA(0, p_out_ga(0))
U4_GGA(0, p_out_ga(x1)) → M_IN_GGA(0, x1)
M_IN_GGA(0, s(s(y_0))) → U3_GGA(s(s(y_0)), p_out_ga(0))
U3_GGA(s(s(x0)), p_out_ga(0)) → U4_GGA(0, U6_ga(p_in_ga(s(x0))))

The TRS R consists of the following rules:

p_in_ga(s(s(X))) → U6_ga(p_in_ga(s(X)))
U6_ga(p_out_ga(Y)) → p_out_ga(s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0)

We have to consider all (P,Q,R)-chains.

(129) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

U3_GGA(s(s(x0)), p_out_ga(0)) → U4_GGA(0, U6_ga(p_in_ga(s(x0))))


Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(M_IN_GGA(x1, x2)) = 1 + x1 + x2   
POL(U3_GGA(x1, x2)) = x1 + x2   
POL(U4_GGA(x1, x2)) = x1 + x2   
POL(U6_ga(x1)) = x1   
POL(p_in_ga(x1)) = x1   
POL(p_out_ga(x1)) = 1 + x1   
POL(s(x1)) = x1   

(130) Obligation:

Q DP problem:
The TRS P consists of the following rules:

M_IN_GGA(0, 0) → U3_GGA(0, p_out_ga(0))
U3_GGA(0, p_out_ga(0)) → U4_GGA(0, p_out_ga(0))
U4_GGA(0, p_out_ga(x1)) → M_IN_GGA(0, x1)
M_IN_GGA(0, s(s(y_0))) → U3_GGA(s(s(y_0)), p_out_ga(0))

The TRS R consists of the following rules:

p_in_ga(s(s(X))) → U6_ga(p_in_ga(s(X)))
U6_ga(p_out_ga(Y)) → p_out_ga(s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0)

We have to consider all (P,Q,R)-chains.

(131) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(132) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U3_GGA(0, p_out_ga(0)) → U4_GGA(0, p_out_ga(0))
U4_GGA(0, p_out_ga(x1)) → M_IN_GGA(0, x1)
M_IN_GGA(0, 0) → U3_GGA(0, p_out_ga(0))

The TRS R consists of the following rules:

p_in_ga(s(s(X))) → U6_ga(p_in_ga(s(X)))
U6_ga(p_out_ga(Y)) → p_out_ga(s(Y))

The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0)

We have to consider all (P,Q,R)-chains.

(133) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(134) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U3_GGA(0, p_out_ga(0)) → U4_GGA(0, p_out_ga(0))
U4_GGA(0, p_out_ga(x1)) → M_IN_GGA(0, x1)
M_IN_GGA(0, 0) → U3_GGA(0, p_out_ga(0))

R is empty.
The set Q consists of the following terms:

p_in_ga(x0)
U6_ga(x0)

We have to consider all (P,Q,R)-chains.

(135) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

p_in_ga(x0)
U6_ga(x0)

(136) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U3_GGA(0, p_out_ga(0)) → U4_GGA(0, p_out_ga(0))
U4_GGA(0, p_out_ga(x1)) → M_IN_GGA(0, x1)
M_IN_GGA(0, 0) → U3_GGA(0, p_out_ga(0))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(137) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U4_GGA(0, p_out_ga(x1)) → M_IN_GGA(0, x1) we obtained the following new rules [LPAR04]:

U4_GGA(0, p_out_ga(0)) → M_IN_GGA(0, 0)

(138) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U3_GGA(0, p_out_ga(0)) → U4_GGA(0, p_out_ga(0))
M_IN_GGA(0, 0) → U3_GGA(0, p_out_ga(0))
U4_GGA(0, p_out_ga(0)) → M_IN_GGA(0, 0)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(139) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U4_GGA(0, p_out_ga(x1)) → M_IN_GGA(0, x1) we obtained the following new rules [LPAR04]:

U4_GGA(0, p_out_ga(0)) → M_IN_GGA(0, 0)

(140) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U3_GGA(0, p_out_ga(0)) → U4_GGA(0, p_out_ga(0))
M_IN_GGA(0, 0) → U3_GGA(0, p_out_ga(0))
U4_GGA(0, p_out_ga(0)) → M_IN_GGA(0, 0)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(141) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

s = U4_GGA(0, p_out_ga(0)) evaluates to t =U4_GGA(0, p_out_ga(0))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [ ]
  • Semiunifier: [ ]




Rewriting sequence

U4_GGA(0, p_out_ga(0))M_IN_GGA(0, 0)
with rule U4_GGA(0, p_out_ga(0)) → M_IN_GGA(0, 0) at position [] and matcher [ ]

M_IN_GGA(0, 0)U3_GGA(0, p_out_ga(0))
with rule M_IN_GGA(0, 0) → U3_GGA(0, p_out_ga(0)) at position [] and matcher [ ]

U3_GGA(0, p_out_ga(0))U4_GGA(0, p_out_ga(0))
with rule U3_GGA(0, p_out_ga(0)) → U4_GGA(0, p_out_ga(0))

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.



(142) FALSE