(0) Obligation:
Clauses:
minus(X, Y, Z) :- ','(=(X, 0), ','(!, =(Z, 0))).
minus(X, Y, Z) :- ','(=(Y, 0), ','(!, =(Z, X))).
minus(X, Y, Z) :- ','(=(X, s(A)), ','(=(Y, s(B)), minus(A, B, Z))).
div(X, Y, Z) :- ','(=(Y, 0), ','(!, fail)).
div(X, Y, Z) :- ','(=(X, 0), ','(!, =(Z, 0))).
div(X, Y, Z) :- ','(minus(X, Y, U), ','(div(U, Y, V), =(Z, s(V)))).
=(X, X).
Queries:
div(g,g,a).
(1) PredefinedPredicateTransformerProof (SOUND transformation)
Added definitions of predefined predicates [PROLOG].
(2) Obligation:
Clauses:
minus(X, Y, Z) :- ','(=1(X, 0), ','(!, =1(Z, 0))).
minus(X, Y, Z) :- ','(=1(Y, 0), ','(!, =1(Z, X))).
minus(X, Y, Z) :- ','(=1(X, s(A)), ','(=1(Y, s(B)), minus(A, B, Z))).
div(X, Y, Z) :- ','(=1(Y, 0), ','(!, fail)).
div(X, Y, Z) :- ','(=1(X, 0), ','(!, =1(Z, 0))).
div(X, Y, Z) :- ','(minus(X, Y, U), ','(div(U, Y, V), =1(Z, s(V)))).
=1(X, X).
fail :- fail(b).
fail(a).
Queries:
div(g,g,a).
(3) BuiltinConflictTransformerProof (SOUND transformation)
Renamed defined predicates conflicting with built-in predicates [PROLOG].
(4) Obligation:
Clauses:
minus(X, Y, Z) :- ','(=1(X, 0), ','(!, =1(Z, 0))).
minus(X, Y, Z) :- ','(=1(Y, 0), ','(!, =1(Z, X))).
minus(X, Y, Z) :- ','(=1(X, s(A)), ','(=1(Y, s(B)), minus(A, B, Z))).
div(X, Y, Z) :- ','(=1(Y, 0), ','(!, user_defined_fail)).
div(X, Y, Z) :- ','(=1(X, 0), ','(!, =1(Z, 0))).
div(X, Y, Z) :- ','(minus(X, Y, U), ','(div(U, Y, V), =1(Z, s(V)))).
=1(X, X).
user_defined_fail :- fail(b).
fail(a).
Queries:
div(g,g,a).
(5) PrologToDTProblemTransformerProof (SOUND transformation)
Built DT problem from termination graph.
(6) Obligation:
Triples:
minus40(s(T115), s(T122), X189) :- minus40(T115, T122, X189).
minus24(s(T73), s(T80), X100) :- minus40(T73, T80, X100).
div68(T152, T153, X275) :- minus24(T152, T153, X273).
div68(T152, T153, X275) :- ','(minusc24(T152, T153, T156), div68(T156, T153, X274)).
div1(T39, T40, T42) :- minus24(T39, T40, X43).
div1(T39, T40, T42) :- ','(minusc24(T39, T40, T45), div68(T45, T40, X44)).
Clauses:
minusc40(0, T88, 0).
minusc40(T103, 0, T103).
minusc40(s(T115), s(T122), X189) :- minusc40(T115, T122, X189).
minusc24(s(T73), s(T80), X100) :- minusc40(T73, T80, X100).
divc68(0, T142, 0).
divc68(T152, T153, s(T166)) :- ','(minusc24(T152, T153, T156), divc68(T156, T153, T166)).
Afs:
div1(x1, x2, x3) = div1(x1, x2)
(7) TriplesToPiDPProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
div1_in: (b,b,f)
minus24_in: (b,b,f)
minus40_in: (b,b,f)
minusc24_in: (b,b,f)
minusc40_in: (b,b,f)
div68_in: (b,b,f)
Transforming
TRIPLES into the following
Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:
DIV1_IN_GGA(T39, T40, T42) → U6_GGA(T39, T40, T42, minus24_in_gga(T39, T40, X43))
DIV1_IN_GGA(T39, T40, T42) → MINUS24_IN_GGA(T39, T40, X43)
MINUS24_IN_GGA(s(T73), s(T80), X100) → U2_GGA(T73, T80, X100, minus40_in_gga(T73, T80, X100))
MINUS24_IN_GGA(s(T73), s(T80), X100) → MINUS40_IN_GGA(T73, T80, X100)
MINUS40_IN_GGA(s(T115), s(T122), X189) → U1_GGA(T115, T122, X189, minus40_in_gga(T115, T122, X189))
MINUS40_IN_GGA(s(T115), s(T122), X189) → MINUS40_IN_GGA(T115, T122, X189)
DIV1_IN_GGA(T39, T40, T42) → U7_GGA(T39, T40, T42, minusc24_in_gga(T39, T40, T45))
U7_GGA(T39, T40, T42, minusc24_out_gga(T39, T40, T45)) → U8_GGA(T39, T40, T42, div68_in_gga(T45, T40, X44))
U7_GGA(T39, T40, T42, minusc24_out_gga(T39, T40, T45)) → DIV68_IN_GGA(T45, T40, X44)
DIV68_IN_GGA(T152, T153, X275) → U3_GGA(T152, T153, X275, minus24_in_gga(T152, T153, X273))
DIV68_IN_GGA(T152, T153, X275) → MINUS24_IN_GGA(T152, T153, X273)
DIV68_IN_GGA(T152, T153, X275) → U4_GGA(T152, T153, X275, minusc24_in_gga(T152, T153, T156))
U4_GGA(T152, T153, X275, minusc24_out_gga(T152, T153, T156)) → U5_GGA(T152, T153, X275, div68_in_gga(T156, T153, X274))
U4_GGA(T152, T153, X275, minusc24_out_gga(T152, T153, T156)) → DIV68_IN_GGA(T156, T153, X274)
The TRS R consists of the following rules:
minusc24_in_gga(s(T73), s(T80), X100) → U11_gga(T73, T80, X100, minusc40_in_gga(T73, T80, X100))
minusc40_in_gga(0, T88, 0) → minusc40_out_gga(0, T88, 0)
minusc40_in_gga(T103, 0, T103) → minusc40_out_gga(T103, 0, T103)
minusc40_in_gga(s(T115), s(T122), X189) → U10_gga(T115, T122, X189, minusc40_in_gga(T115, T122, X189))
U10_gga(T115, T122, X189, minusc40_out_gga(T115, T122, X189)) → minusc40_out_gga(s(T115), s(T122), X189)
U11_gga(T73, T80, X100, minusc40_out_gga(T73, T80, X100)) → minusc24_out_gga(s(T73), s(T80), X100)
The argument filtering Pi contains the following mapping:
minus24_in_gga(
x1,
x2,
x3) =
minus24_in_gga(
x1,
x2)
s(
x1) =
s(
x1)
minus40_in_gga(
x1,
x2,
x3) =
minus40_in_gga(
x1,
x2)
minusc24_in_gga(
x1,
x2,
x3) =
minusc24_in_gga(
x1,
x2)
U11_gga(
x1,
x2,
x3,
x4) =
U11_gga(
x1,
x2,
x4)
minusc40_in_gga(
x1,
x2,
x3) =
minusc40_in_gga(
x1,
x2)
0 =
0
minusc40_out_gga(
x1,
x2,
x3) =
minusc40_out_gga(
x1,
x2,
x3)
U10_gga(
x1,
x2,
x3,
x4) =
U10_gga(
x1,
x2,
x4)
minusc24_out_gga(
x1,
x2,
x3) =
minusc24_out_gga(
x1,
x2,
x3)
div68_in_gga(
x1,
x2,
x3) =
div68_in_gga(
x1,
x2)
DIV1_IN_GGA(
x1,
x2,
x3) =
DIV1_IN_GGA(
x1,
x2)
U6_GGA(
x1,
x2,
x3,
x4) =
U6_GGA(
x1,
x2,
x4)
MINUS24_IN_GGA(
x1,
x2,
x3) =
MINUS24_IN_GGA(
x1,
x2)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x2,
x4)
MINUS40_IN_GGA(
x1,
x2,
x3) =
MINUS40_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4) =
U1_GGA(
x1,
x2,
x4)
U7_GGA(
x1,
x2,
x3,
x4) =
U7_GGA(
x1,
x2,
x4)
U8_GGA(
x1,
x2,
x3,
x4) =
U8_GGA(
x1,
x2,
x4)
DIV68_IN_GGA(
x1,
x2,
x3) =
DIV68_IN_GGA(
x1,
x2)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
U4_GGA(
x1,
x2,
x3,
x4) =
U4_GGA(
x1,
x2,
x4)
U5_GGA(
x1,
x2,
x3,
x4) =
U5_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
DIV1_IN_GGA(T39, T40, T42) → U6_GGA(T39, T40, T42, minus24_in_gga(T39, T40, X43))
DIV1_IN_GGA(T39, T40, T42) → MINUS24_IN_GGA(T39, T40, X43)
MINUS24_IN_GGA(s(T73), s(T80), X100) → U2_GGA(T73, T80, X100, minus40_in_gga(T73, T80, X100))
MINUS24_IN_GGA(s(T73), s(T80), X100) → MINUS40_IN_GGA(T73, T80, X100)
MINUS40_IN_GGA(s(T115), s(T122), X189) → U1_GGA(T115, T122, X189, minus40_in_gga(T115, T122, X189))
MINUS40_IN_GGA(s(T115), s(T122), X189) → MINUS40_IN_GGA(T115, T122, X189)
DIV1_IN_GGA(T39, T40, T42) → U7_GGA(T39, T40, T42, minusc24_in_gga(T39, T40, T45))
U7_GGA(T39, T40, T42, minusc24_out_gga(T39, T40, T45)) → U8_GGA(T39, T40, T42, div68_in_gga(T45, T40, X44))
U7_GGA(T39, T40, T42, minusc24_out_gga(T39, T40, T45)) → DIV68_IN_GGA(T45, T40, X44)
DIV68_IN_GGA(T152, T153, X275) → U3_GGA(T152, T153, X275, minus24_in_gga(T152, T153, X273))
DIV68_IN_GGA(T152, T153, X275) → MINUS24_IN_GGA(T152, T153, X273)
DIV68_IN_GGA(T152, T153, X275) → U4_GGA(T152, T153, X275, minusc24_in_gga(T152, T153, T156))
U4_GGA(T152, T153, X275, minusc24_out_gga(T152, T153, T156)) → U5_GGA(T152, T153, X275, div68_in_gga(T156, T153, X274))
U4_GGA(T152, T153, X275, minusc24_out_gga(T152, T153, T156)) → DIV68_IN_GGA(T156, T153, X274)
The TRS R consists of the following rules:
minusc24_in_gga(s(T73), s(T80), X100) → U11_gga(T73, T80, X100, minusc40_in_gga(T73, T80, X100))
minusc40_in_gga(0, T88, 0) → minusc40_out_gga(0, T88, 0)
minusc40_in_gga(T103, 0, T103) → minusc40_out_gga(T103, 0, T103)
minusc40_in_gga(s(T115), s(T122), X189) → U10_gga(T115, T122, X189, minusc40_in_gga(T115, T122, X189))
U10_gga(T115, T122, X189, minusc40_out_gga(T115, T122, X189)) → minusc40_out_gga(s(T115), s(T122), X189)
U11_gga(T73, T80, X100, minusc40_out_gga(T73, T80, X100)) → minusc24_out_gga(s(T73), s(T80), X100)
The argument filtering Pi contains the following mapping:
minus24_in_gga(
x1,
x2,
x3) =
minus24_in_gga(
x1,
x2)
s(
x1) =
s(
x1)
minus40_in_gga(
x1,
x2,
x3) =
minus40_in_gga(
x1,
x2)
minusc24_in_gga(
x1,
x2,
x3) =
minusc24_in_gga(
x1,
x2)
U11_gga(
x1,
x2,
x3,
x4) =
U11_gga(
x1,
x2,
x4)
minusc40_in_gga(
x1,
x2,
x3) =
minusc40_in_gga(
x1,
x2)
0 =
0
minusc40_out_gga(
x1,
x2,
x3) =
minusc40_out_gga(
x1,
x2,
x3)
U10_gga(
x1,
x2,
x3,
x4) =
U10_gga(
x1,
x2,
x4)
minusc24_out_gga(
x1,
x2,
x3) =
minusc24_out_gga(
x1,
x2,
x3)
div68_in_gga(
x1,
x2,
x3) =
div68_in_gga(
x1,
x2)
DIV1_IN_GGA(
x1,
x2,
x3) =
DIV1_IN_GGA(
x1,
x2)
U6_GGA(
x1,
x2,
x3,
x4) =
U6_GGA(
x1,
x2,
x4)
MINUS24_IN_GGA(
x1,
x2,
x3) =
MINUS24_IN_GGA(
x1,
x2)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x2,
x4)
MINUS40_IN_GGA(
x1,
x2,
x3) =
MINUS40_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4) =
U1_GGA(
x1,
x2,
x4)
U7_GGA(
x1,
x2,
x3,
x4) =
U7_GGA(
x1,
x2,
x4)
U8_GGA(
x1,
x2,
x3,
x4) =
U8_GGA(
x1,
x2,
x4)
DIV68_IN_GGA(
x1,
x2,
x3) =
DIV68_IN_GGA(
x1,
x2)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
U4_GGA(
x1,
x2,
x3,
x4) =
U4_GGA(
x1,
x2,
x4)
U5_GGA(
x1,
x2,
x3,
x4) =
U5_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
(9) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 11 less nodes.
(10) Complex Obligation (AND)
(11) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MINUS40_IN_GGA(s(T115), s(T122), X189) → MINUS40_IN_GGA(T115, T122, X189)
The TRS R consists of the following rules:
minusc24_in_gga(s(T73), s(T80), X100) → U11_gga(T73, T80, X100, minusc40_in_gga(T73, T80, X100))
minusc40_in_gga(0, T88, 0) → minusc40_out_gga(0, T88, 0)
minusc40_in_gga(T103, 0, T103) → minusc40_out_gga(T103, 0, T103)
minusc40_in_gga(s(T115), s(T122), X189) → U10_gga(T115, T122, X189, minusc40_in_gga(T115, T122, X189))
U10_gga(T115, T122, X189, minusc40_out_gga(T115, T122, X189)) → minusc40_out_gga(s(T115), s(T122), X189)
U11_gga(T73, T80, X100, minusc40_out_gga(T73, T80, X100)) → minusc24_out_gga(s(T73), s(T80), X100)
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
minusc24_in_gga(
x1,
x2,
x3) =
minusc24_in_gga(
x1,
x2)
U11_gga(
x1,
x2,
x3,
x4) =
U11_gga(
x1,
x2,
x4)
minusc40_in_gga(
x1,
x2,
x3) =
minusc40_in_gga(
x1,
x2)
0 =
0
minusc40_out_gga(
x1,
x2,
x3) =
minusc40_out_gga(
x1,
x2,
x3)
U10_gga(
x1,
x2,
x3,
x4) =
U10_gga(
x1,
x2,
x4)
minusc24_out_gga(
x1,
x2,
x3) =
minusc24_out_gga(
x1,
x2,
x3)
MINUS40_IN_GGA(
x1,
x2,
x3) =
MINUS40_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(12) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(13) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MINUS40_IN_GGA(s(T115), s(T122), X189) → MINUS40_IN_GGA(T115, T122, X189)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
MINUS40_IN_GGA(
x1,
x2,
x3) =
MINUS40_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(14) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(15) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS40_IN_GGA(s(T115), s(T122)) → MINUS40_IN_GGA(T115, T122)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(16) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- MINUS40_IN_GGA(s(T115), s(T122)) → MINUS40_IN_GGA(T115, T122)
The graph contains the following edges 1 > 1, 2 > 2
(17) YES
(18) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
DIV68_IN_GGA(T152, T153, X275) → U4_GGA(T152, T153, X275, minusc24_in_gga(T152, T153, T156))
U4_GGA(T152, T153, X275, minusc24_out_gga(T152, T153, T156)) → DIV68_IN_GGA(T156, T153, X274)
The TRS R consists of the following rules:
minusc24_in_gga(s(T73), s(T80), X100) → U11_gga(T73, T80, X100, minusc40_in_gga(T73, T80, X100))
minusc40_in_gga(0, T88, 0) → minusc40_out_gga(0, T88, 0)
minusc40_in_gga(T103, 0, T103) → minusc40_out_gga(T103, 0, T103)
minusc40_in_gga(s(T115), s(T122), X189) → U10_gga(T115, T122, X189, minusc40_in_gga(T115, T122, X189))
U10_gga(T115, T122, X189, minusc40_out_gga(T115, T122, X189)) → minusc40_out_gga(s(T115), s(T122), X189)
U11_gga(T73, T80, X100, minusc40_out_gga(T73, T80, X100)) → minusc24_out_gga(s(T73), s(T80), X100)
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
minusc24_in_gga(
x1,
x2,
x3) =
minusc24_in_gga(
x1,
x2)
U11_gga(
x1,
x2,
x3,
x4) =
U11_gga(
x1,
x2,
x4)
minusc40_in_gga(
x1,
x2,
x3) =
minusc40_in_gga(
x1,
x2)
0 =
0
minusc40_out_gga(
x1,
x2,
x3) =
minusc40_out_gga(
x1,
x2,
x3)
U10_gga(
x1,
x2,
x3,
x4) =
U10_gga(
x1,
x2,
x4)
minusc24_out_gga(
x1,
x2,
x3) =
minusc24_out_gga(
x1,
x2,
x3)
DIV68_IN_GGA(
x1,
x2,
x3) =
DIV68_IN_GGA(
x1,
x2)
U4_GGA(
x1,
x2,
x3,
x4) =
U4_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
(19) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DIV68_IN_GGA(T152, T153) → U4_GGA(T152, T153, minusc24_in_gga(T152, T153))
U4_GGA(T152, T153, minusc24_out_gga(T152, T153, T156)) → DIV68_IN_GGA(T156, T153)
The TRS R consists of the following rules:
minusc24_in_gga(s(T73), s(T80)) → U11_gga(T73, T80, minusc40_in_gga(T73, T80))
minusc40_in_gga(0, T88) → minusc40_out_gga(0, T88, 0)
minusc40_in_gga(T103, 0) → minusc40_out_gga(T103, 0, T103)
minusc40_in_gga(s(T115), s(T122)) → U10_gga(T115, T122, minusc40_in_gga(T115, T122))
U10_gga(T115, T122, minusc40_out_gga(T115, T122, X189)) → minusc40_out_gga(s(T115), s(T122), X189)
U11_gga(T73, T80, minusc40_out_gga(T73, T80, X100)) → minusc24_out_gga(s(T73), s(T80), X100)
The set Q consists of the following terms:
minusc24_in_gga(x0, x1)
minusc40_in_gga(x0, x1)
U10_gga(x0, x1, x2)
U11_gga(x0, x1, x2)
We have to consider all (P,Q,R)-chains.
(21) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
U4_GGA(T152, T153, minusc24_out_gga(T152, T153, T156)) → DIV68_IN_GGA(T156, T153)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(DIV68_IN_GGA(x1, x2)) = 1 + x1
POL(U10_gga(x1, x2, x3)) = 1 + x3
POL(U11_gga(x1, x2, x3)) = 1 + x3
POL(U4_GGA(x1, x2, x3)) = 1 + x3
POL(minusc24_in_gga(x1, x2)) = x1
POL(minusc24_out_gga(x1, x2, x3)) = 1 + x3
POL(minusc40_in_gga(x1, x2)) = x1
POL(minusc40_out_gga(x1, x2, x3)) = x3
POL(s(x1)) = 1 + x1
The following usable rules [FROCOS05] were oriented:
minusc24_in_gga(s(T73), s(T80)) → U11_gga(T73, T80, minusc40_in_gga(T73, T80))
minusc40_in_gga(0, T88) → minusc40_out_gga(0, T88, 0)
minusc40_in_gga(T103, 0) → minusc40_out_gga(T103, 0, T103)
minusc40_in_gga(s(T115), s(T122)) → U10_gga(T115, T122, minusc40_in_gga(T115, T122))
U11_gga(T73, T80, minusc40_out_gga(T73, T80, X100)) → minusc24_out_gga(s(T73), s(T80), X100)
U10_gga(T115, T122, minusc40_out_gga(T115, T122, X189)) → minusc40_out_gga(s(T115), s(T122), X189)
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DIV68_IN_GGA(T152, T153) → U4_GGA(T152, T153, minusc24_in_gga(T152, T153))
The TRS R consists of the following rules:
minusc24_in_gga(s(T73), s(T80)) → U11_gga(T73, T80, minusc40_in_gga(T73, T80))
minusc40_in_gga(0, T88) → minusc40_out_gga(0, T88, 0)
minusc40_in_gga(T103, 0) → minusc40_out_gga(T103, 0, T103)
minusc40_in_gga(s(T115), s(T122)) → U10_gga(T115, T122, minusc40_in_gga(T115, T122))
U10_gga(T115, T122, minusc40_out_gga(T115, T122, X189)) → minusc40_out_gga(s(T115), s(T122), X189)
U11_gga(T73, T80, minusc40_out_gga(T73, T80, X100)) → minusc24_out_gga(s(T73), s(T80), X100)
The set Q consists of the following terms:
minusc24_in_gga(x0, x1)
minusc40_in_gga(x0, x1)
U10_gga(x0, x1, x2)
U11_gga(x0, x1, x2)
We have to consider all (P,Q,R)-chains.
(23) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(24) TRUE