(0) Obligation:
Clauses:
div(X, 0, Z) :- ','(!, fail).
div(0, Y, Z) :- ','(!, =(Z, 0)).
div(X, Y, s(Z)) :- ','(minus(X, Y, U), div(U, Y, Z)).
minus(0, Y, 0).
minus(X, 0, X).
minus(s(X), s(Y), Z) :- minus(X, Y, Z).
=(X, X).
Queries:
div(g,g,a).
(1) PredefinedPredicateTransformerProof (SOUND transformation)
Added definitions of predefined predicates [PROLOG].
(2) Obligation:
Clauses:
div(X, 0, Z) :- ','(!, fail).
div(0, Y, Z) :- ','(!, =1(Z, 0)).
div(X, Y, s(Z)) :- ','(minus(X, Y, U), div(U, Y, Z)).
minus(0, Y, 0).
minus(X, 0, X).
minus(s(X), s(Y), Z) :- minus(X, Y, Z).
=1(X, X).
fail :- fail(b).
fail(a).
Queries:
div(g,g,a).
(3) BuiltinConflictTransformerProof (SOUND transformation)
Renamed defined predicates conflicting with built-in predicates [PROLOG].
(4) Obligation:
Clauses:
div(X, 0, Z) :- ','(!, user_defined_fail).
div(0, Y, Z) :- ','(!, =1(Z, 0)).
div(X, Y, s(Z)) :- ','(minus(X, Y, U), div(U, Y, Z)).
minus(0, Y, 0).
minus(X, 0, X).
minus(s(X), s(Y), Z) :- minus(X, Y, Z).
=1(X, X).
user_defined_fail :- fail(b).
fail(a).
Queries:
div(g,g,a).
(5) PrologToDTProblemTransformerProof (SOUND transformation)
Built DT problem from termination graph.
(6) Obligation:
Triples:
minus24(s(T50), s(T51), X71) :- minus24(T50, T51, X71).
div1(s(T29), s(T30), s(T22)) :- minus24(T29, T30, X40).
div1(s(T29), s(T30), s(T22)) :- ','(minusc24(T29, T30, T33), div1(T33, s(T30), T22)).
Clauses:
divc1(0, T10, 0).
divc1(s(T29), s(T30), s(T22)) :- ','(minusc24(T29, T30, T33), divc1(T33, s(T30), T22)).
minusc24(0, T40, 0).
minusc24(T45, 0, T45).
minusc24(s(T50), s(T51), X71) :- minusc24(T50, T51, X71).
Afs:
div1(x1, x2, x3) = div1(x1, x2)
(7) TriplesToPiDPProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
div1_in: (b,b,f)
minus24_in: (b,b,f)
minusc24_in: (b,b,f)
Transforming
TRIPLES into the following
Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:
DIV1_IN_GGA(s(T29), s(T30), s(T22)) → U2_GGA(T29, T30, T22, minus24_in_gga(T29, T30, X40))
DIV1_IN_GGA(s(T29), s(T30), s(T22)) → MINUS24_IN_GGA(T29, T30, X40)
MINUS24_IN_GGA(s(T50), s(T51), X71) → U1_GGA(T50, T51, X71, minus24_in_gga(T50, T51, X71))
MINUS24_IN_GGA(s(T50), s(T51), X71) → MINUS24_IN_GGA(T50, T51, X71)
DIV1_IN_GGA(s(T29), s(T30), s(T22)) → U3_GGA(T29, T30, T22, minusc24_in_gga(T29, T30, T33))
U3_GGA(T29, T30, T22, minusc24_out_gga(T29, T30, T33)) → U4_GGA(T29, T30, T22, div1_in_gga(T33, s(T30), T22))
U3_GGA(T29, T30, T22, minusc24_out_gga(T29, T30, T33)) → DIV1_IN_GGA(T33, s(T30), T22)
The TRS R consists of the following rules:
minusc24_in_gga(0, T40, 0) → minusc24_out_gga(0, T40, 0)
minusc24_in_gga(T45, 0, T45) → minusc24_out_gga(T45, 0, T45)
minusc24_in_gga(s(T50), s(T51), X71) → U8_gga(T50, T51, X71, minusc24_in_gga(T50, T51, X71))
U8_gga(T50, T51, X71, minusc24_out_gga(T50, T51, X71)) → minusc24_out_gga(s(T50), s(T51), X71)
The argument filtering Pi contains the following mapping:
div1_in_gga(
x1,
x2,
x3) =
div1_in_gga(
x1,
x2)
s(
x1) =
s(
x1)
minus24_in_gga(
x1,
x2,
x3) =
minus24_in_gga(
x1,
x2)
minusc24_in_gga(
x1,
x2,
x3) =
minusc24_in_gga(
x1,
x2)
0 =
0
minusc24_out_gga(
x1,
x2,
x3) =
minusc24_out_gga(
x1,
x2,
x3)
U8_gga(
x1,
x2,
x3,
x4) =
U8_gga(
x1,
x2,
x4)
DIV1_IN_GGA(
x1,
x2,
x3) =
DIV1_IN_GGA(
x1,
x2)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x2,
x4)
MINUS24_IN_GGA(
x1,
x2,
x3) =
MINUS24_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4) =
U1_GGA(
x1,
x2,
x4)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
U4_GGA(
x1,
x2,
x3,
x4) =
U4_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
DIV1_IN_GGA(s(T29), s(T30), s(T22)) → U2_GGA(T29, T30, T22, minus24_in_gga(T29, T30, X40))
DIV1_IN_GGA(s(T29), s(T30), s(T22)) → MINUS24_IN_GGA(T29, T30, X40)
MINUS24_IN_GGA(s(T50), s(T51), X71) → U1_GGA(T50, T51, X71, minus24_in_gga(T50, T51, X71))
MINUS24_IN_GGA(s(T50), s(T51), X71) → MINUS24_IN_GGA(T50, T51, X71)
DIV1_IN_GGA(s(T29), s(T30), s(T22)) → U3_GGA(T29, T30, T22, minusc24_in_gga(T29, T30, T33))
U3_GGA(T29, T30, T22, minusc24_out_gga(T29, T30, T33)) → U4_GGA(T29, T30, T22, div1_in_gga(T33, s(T30), T22))
U3_GGA(T29, T30, T22, minusc24_out_gga(T29, T30, T33)) → DIV1_IN_GGA(T33, s(T30), T22)
The TRS R consists of the following rules:
minusc24_in_gga(0, T40, 0) → minusc24_out_gga(0, T40, 0)
minusc24_in_gga(T45, 0, T45) → minusc24_out_gga(T45, 0, T45)
minusc24_in_gga(s(T50), s(T51), X71) → U8_gga(T50, T51, X71, minusc24_in_gga(T50, T51, X71))
U8_gga(T50, T51, X71, minusc24_out_gga(T50, T51, X71)) → minusc24_out_gga(s(T50), s(T51), X71)
The argument filtering Pi contains the following mapping:
div1_in_gga(
x1,
x2,
x3) =
div1_in_gga(
x1,
x2)
s(
x1) =
s(
x1)
minus24_in_gga(
x1,
x2,
x3) =
minus24_in_gga(
x1,
x2)
minusc24_in_gga(
x1,
x2,
x3) =
minusc24_in_gga(
x1,
x2)
0 =
0
minusc24_out_gga(
x1,
x2,
x3) =
minusc24_out_gga(
x1,
x2,
x3)
U8_gga(
x1,
x2,
x3,
x4) =
U8_gga(
x1,
x2,
x4)
DIV1_IN_GGA(
x1,
x2,
x3) =
DIV1_IN_GGA(
x1,
x2)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x2,
x4)
MINUS24_IN_GGA(
x1,
x2,
x3) =
MINUS24_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3,
x4) =
U1_GGA(
x1,
x2,
x4)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
U4_GGA(
x1,
x2,
x3,
x4) =
U4_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
(9) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 4 less nodes.
(10) Complex Obligation (AND)
(11) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MINUS24_IN_GGA(s(T50), s(T51), X71) → MINUS24_IN_GGA(T50, T51, X71)
The TRS R consists of the following rules:
minusc24_in_gga(0, T40, 0) → minusc24_out_gga(0, T40, 0)
minusc24_in_gga(T45, 0, T45) → minusc24_out_gga(T45, 0, T45)
minusc24_in_gga(s(T50), s(T51), X71) → U8_gga(T50, T51, X71, minusc24_in_gga(T50, T51, X71))
U8_gga(T50, T51, X71, minusc24_out_gga(T50, T51, X71)) → minusc24_out_gga(s(T50), s(T51), X71)
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
minusc24_in_gga(
x1,
x2,
x3) =
minusc24_in_gga(
x1,
x2)
0 =
0
minusc24_out_gga(
x1,
x2,
x3) =
minusc24_out_gga(
x1,
x2,
x3)
U8_gga(
x1,
x2,
x3,
x4) =
U8_gga(
x1,
x2,
x4)
MINUS24_IN_GGA(
x1,
x2,
x3) =
MINUS24_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(12) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(13) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MINUS24_IN_GGA(s(T50), s(T51), X71) → MINUS24_IN_GGA(T50, T51, X71)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
MINUS24_IN_GGA(
x1,
x2,
x3) =
MINUS24_IN_GGA(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(14) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(15) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MINUS24_IN_GGA(s(T50), s(T51)) → MINUS24_IN_GGA(T50, T51)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(16) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- MINUS24_IN_GGA(s(T50), s(T51)) → MINUS24_IN_GGA(T50, T51)
The graph contains the following edges 1 > 1, 2 > 2
(17) YES
(18) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
DIV1_IN_GGA(s(T29), s(T30), s(T22)) → U3_GGA(T29, T30, T22, minusc24_in_gga(T29, T30, T33))
U3_GGA(T29, T30, T22, minusc24_out_gga(T29, T30, T33)) → DIV1_IN_GGA(T33, s(T30), T22)
The TRS R consists of the following rules:
minusc24_in_gga(0, T40, 0) → minusc24_out_gga(0, T40, 0)
minusc24_in_gga(T45, 0, T45) → minusc24_out_gga(T45, 0, T45)
minusc24_in_gga(s(T50), s(T51), X71) → U8_gga(T50, T51, X71, minusc24_in_gga(T50, T51, X71))
U8_gga(T50, T51, X71, minusc24_out_gga(T50, T51, X71)) → minusc24_out_gga(s(T50), s(T51), X71)
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
minusc24_in_gga(
x1,
x2,
x3) =
minusc24_in_gga(
x1,
x2)
0 =
0
minusc24_out_gga(
x1,
x2,
x3) =
minusc24_out_gga(
x1,
x2,
x3)
U8_gga(
x1,
x2,
x3,
x4) =
U8_gga(
x1,
x2,
x4)
DIV1_IN_GGA(
x1,
x2,
x3) =
DIV1_IN_GGA(
x1,
x2)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
(19) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DIV1_IN_GGA(s(T29), s(T30)) → U3_GGA(T29, T30, minusc24_in_gga(T29, T30))
U3_GGA(T29, T30, minusc24_out_gga(T29, T30, T33)) → DIV1_IN_GGA(T33, s(T30))
The TRS R consists of the following rules:
minusc24_in_gga(0, T40) → minusc24_out_gga(0, T40, 0)
minusc24_in_gga(T45, 0) → minusc24_out_gga(T45, 0, T45)
minusc24_in_gga(s(T50), s(T51)) → U8_gga(T50, T51, minusc24_in_gga(T50, T51))
U8_gga(T50, T51, minusc24_out_gga(T50, T51, X71)) → minusc24_out_gga(s(T50), s(T51), X71)
The set Q consists of the following terms:
minusc24_in_gga(x0, x1)
U8_gga(x0, x1, x2)
We have to consider all (P,Q,R)-chains.
(21) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
DIV1_IN_GGA(s(T29), s(T30)) → U3_GGA(T29, T30, minusc24_in_gga(T29, T30))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(DIV1_IN_GGA(x1, x2)) = x1 + x2
POL(U3_GGA(x1, x2, x3)) = x2 + x3
POL(U8_gga(x1, x2, x3)) = 1 + x3
POL(minusc24_in_gga(x1, x2)) = 1 + x1
POL(minusc24_out_gga(x1, x2, x3)) = 1 + x3
POL(s(x1)) = 1 + x1
The following usable rules [FROCOS05] were oriented:
minusc24_in_gga(0, T40) → minusc24_out_gga(0, T40, 0)
minusc24_in_gga(T45, 0) → minusc24_out_gga(T45, 0, T45)
minusc24_in_gga(s(T50), s(T51)) → U8_gga(T50, T51, minusc24_in_gga(T50, T51))
U8_gga(T50, T51, minusc24_out_gga(T50, T51, X71)) → minusc24_out_gga(s(T50), s(T51), X71)
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_GGA(T29, T30, minusc24_out_gga(T29, T30, T33)) → DIV1_IN_GGA(T33, s(T30))
The TRS R consists of the following rules:
minusc24_in_gga(0, T40) → minusc24_out_gga(0, T40, 0)
minusc24_in_gga(T45, 0) → minusc24_out_gga(T45, 0, T45)
minusc24_in_gga(s(T50), s(T51)) → U8_gga(T50, T51, minusc24_in_gga(T50, T51))
U8_gga(T50, T51, minusc24_out_gga(T50, T51, X71)) → minusc24_out_gga(s(T50), s(T51), X71)
The set Q consists of the following terms:
minusc24_in_gga(x0, x1)
U8_gga(x0, x1, x2)
We have to consider all (P,Q,R)-chains.
(23) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(24) TRUE