0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 QDP
↳5 QDPOrderProof (⇔)
↳6 QDP
↳7 QDPOrderProof (⇔)
↳8 QDP
↳9 PisEmptyProof (⇔)
↳10 TRUE
a(lambda(x), y) → lambda(a(x, 1))
a(lambda(x), y) → lambda(a(x, a(y, t)))
a(a(x, y), z) → a(x, a(y, z))
lambda(x) → x
a(x, y) → x
a(x, y) → y
A(lambda(x), y) → LAMBDA(a(x, 1))
A(lambda(x), y) → A(x, 1)
A(lambda(x), y) → LAMBDA(a(x, a(y, t)))
A(lambda(x), y) → A(x, a(y, t))
A(lambda(x), y) → A(y, t)
A(a(x, y), z) → A(x, a(y, z))
A(a(x, y), z) → A(y, z)
a(lambda(x), y) → lambda(a(x, 1))
a(lambda(x), y) → lambda(a(x, a(y, t)))
a(a(x, y), z) → a(x, a(y, z))
lambda(x) → x
a(x, y) → x
a(x, y) → y
A(lambda(x), y) → A(x, a(y, t))
A(lambda(x), y) → A(x, 1)
A(lambda(x), y) → A(y, t)
A(a(x, y), z) → A(x, a(y, z))
A(a(x, y), z) → A(y, z)
a(lambda(x), y) → lambda(a(x, 1))
a(lambda(x), y) → lambda(a(x, a(y, t)))
a(a(x, y), z) → a(x, a(y, z))
lambda(x) → x
a(x, y) → x
a(x, y) → y
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A(lambda(x), y) → A(x, a(y, t))
A(lambda(x), y) → A(x, 1)
A(lambda(x), y) → A(y, t)
POL(1) = 0
POL(A(x1, x2)) = x1 + x2
POL(a(x1, x2)) = x1 + x2
POL(lambda(x1)) = 1 + x1
POL(t) = 0
a(lambda(x), y) → lambda(a(x, 1))
a(lambda(x), y) → lambda(a(x, a(y, t)))
a(a(x, y), z) → a(x, a(y, z))
a(x, y) → x
a(x, y) → y
lambda(x) → x
A(a(x, y), z) → A(x, a(y, z))
A(a(x, y), z) → A(y, z)
a(lambda(x), y) → lambda(a(x, 1))
a(lambda(x), y) → lambda(a(x, a(y, t)))
a(a(x, y), z) → a(x, a(y, z))
lambda(x) → x
a(x, y) → x
a(x, y) → y
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A(a(x, y), z) → A(x, a(y, z))
A(a(x, y), z) → A(y, z)
POL(1) = 0
POL(A(x1, x2)) = x1
POL(a(x1, x2)) = 1 + x1 + x2
POL(lambda(x1)) = 0
POL(t) = 0
a(lambda(x), y) → lambda(a(x, 1))
a(lambda(x), y) → lambda(a(x, a(y, t)))
a(a(x, y), z) → a(x, a(y, z))
lambda(x) → x
a(x, y) → x
a(x, y) → y