(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(a, f(b, x)) → f(a, f(a, f(a, x)))
f(b, f(a, x)) → f(b, f(b, f(b, x)))
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(a, f(b, x)) → F(a, f(a, f(a, x)))
F(a, f(b, x)) → F(a, f(a, x))
F(a, f(b, x)) → F(a, x)
F(b, f(a, x)) → F(b, f(b, f(b, x)))
F(b, f(a, x)) → F(b, f(b, x))
F(b, f(a, x)) → F(b, x)
The TRS R consists of the following rules:
f(a, f(b, x)) → f(a, f(a, f(a, x)))
f(b, f(a, x)) → f(b, f(b, f(b, x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(b, f(a, x)) → F(b, f(b, x))
F(b, f(a, x)) → F(b, f(b, f(b, x)))
F(b, f(a, x)) → F(b, x)
The TRS R consists of the following rules:
f(a, f(b, x)) → f(a, f(a, f(a, x)))
f(b, f(a, x)) → f(b, f(b, f(b, x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
F(b, f(a, x)) → F(b, f(b, x))
F(b, f(a, x)) → F(b, x)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
F(
x1,
x2) =
F(
x1,
x2)
Tags:
F has tags [0,1]
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:
POL(a) = 1
POL(b) = 0
POL(f(x1, x2)) = 1 + x1 + x2
The following usable rules [FROCOS05] were oriented:
f(b, f(a, x)) → f(b, f(b, f(b, x)))
(7) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(b, f(a, x)) → F(b, f(b, f(b, x)))
The TRS R consists of the following rules:
f(a, f(b, x)) → f(a, f(a, f(a, x)))
f(b, f(a, x)) → f(b, f(b, f(b, x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(8) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
F(b, f(a, x)) → F(b, f(b, f(b, x)))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
F(
x1,
x2) =
F(
x2)
Tags:
F has tags [1,1]
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:
POL(a) = 1
POL(b) = 0
POL(f(x1, x2)) = x1 + x2
The following usable rules [FROCOS05] were oriented:
f(b, f(a, x)) → f(b, f(b, f(b, x)))
(9) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
f(a, f(b, x)) → f(a, f(a, f(a, x)))
f(b, f(a, x)) → f(b, f(b, f(b, x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(10) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(11) TRUE
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(a, f(b, x)) → F(a, f(a, x))
F(a, f(b, x)) → F(a, f(a, f(a, x)))
F(a, f(b, x)) → F(a, x)
The TRS R consists of the following rules:
f(a, f(b, x)) → f(a, f(a, f(a, x)))
f(b, f(a, x)) → f(b, f(b, f(b, x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(13) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
F(a, f(b, x)) → F(a, f(a, x))
F(a, f(b, x)) → F(a, x)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
F(
x1,
x2) =
F(
x1,
x2)
Tags:
F has tags [0,1]
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:
POL(a) = 0
POL(b) = 1
POL(f(x1, x2)) = 1 + x1 + x2
The following usable rules [FROCOS05] were oriented:
f(a, f(b, x)) → f(a, f(a, f(a, x)))
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F(a, f(b, x)) → F(a, f(a, f(a, x)))
The TRS R consists of the following rules:
f(a, f(b, x)) → f(a, f(a, f(a, x)))
f(b, f(a, x)) → f(b, f(b, f(b, x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(15) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
F(a, f(b, x)) → F(a, f(a, f(a, x)))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
F(
x1,
x2) =
F(
x2)
Tags:
F has tags [1,1]
Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:
POL(a) = 0
POL(b) = 1
POL(f(x1, x2)) = x1 + x2
The following usable rules [FROCOS05] were oriented:
f(a, f(b, x)) → f(a, f(a, f(a, x)))
(16) Obligation:
Q DP problem:
P is empty.
The TRS R consists of the following rules:
f(a, f(b, x)) → f(a, f(a, f(a, x)))
f(b, f(a, x)) → f(b, f(b, f(b, x)))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(17) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,Q,R) chain.
(18) TRUE