0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 AND
↳5 QDP
↳6 QDPOrderProof (⇔)
↳7 QDP
↳8 PisEmptyProof (⇔)
↳9 TRUE
↳10 QDP
↳11 QDPOrderProof (⇔)
↳12 QDP
↳13 PisEmptyProof (⇔)
↳14 TRUE
f(a, f(b, x)) → f(a, f(a, f(a, x)))
f(b, f(a, x)) → f(b, f(b, f(b, x)))
F(a, f(b, x)) → F(a, f(a, f(a, x)))
F(a, f(b, x)) → F(a, f(a, x))
F(a, f(b, x)) → F(a, x)
F(b, f(a, x)) → F(b, f(b, f(b, x)))
F(b, f(a, x)) → F(b, f(b, x))
F(b, f(a, x)) → F(b, x)
f(a, f(b, x)) → f(a, f(a, f(a, x)))
f(b, f(a, x)) → f(b, f(b, f(b, x)))
F(b, f(a, x)) → F(b, f(b, x))
F(b, f(a, x)) → F(b, f(b, f(b, x)))
F(b, f(a, x)) → F(b, x)
f(a, f(b, x)) → f(a, f(a, f(a, x)))
f(b, f(a, x)) → f(b, f(b, f(b, x)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F(b, f(a, x)) → F(b, f(b, x))
F(b, f(a, x)) → F(b, f(b, f(b, x)))
F(b, f(a, x)) → F(b, x)
POL(F(x1, x2)) = x2
POL(a) = 1
POL(b) = 0
POL(f(x1, x2)) = x1 + x2
f(b, f(a, x)) → f(b, f(b, f(b, x)))
f(a, f(b, x)) → f(a, f(a, f(a, x)))
f(b, f(a, x)) → f(b, f(b, f(b, x)))
F(a, f(b, x)) → F(a, f(a, x))
F(a, f(b, x)) → F(a, f(a, f(a, x)))
F(a, f(b, x)) → F(a, x)
f(a, f(b, x)) → f(a, f(a, f(a, x)))
f(b, f(a, x)) → f(b, f(b, f(b, x)))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F(a, f(b, x)) → F(a, f(a, x))
F(a, f(b, x)) → F(a, f(a, f(a, x)))
F(a, f(b, x)) → F(a, x)
POL(F(x1, x2)) = x2
POL(a) = 0
POL(b) = 1
POL(f(x1, x2)) = x1 + x2
f(a, f(b, x)) → f(a, f(a, f(a, x)))
f(a, f(b, x)) → f(a, f(a, f(a, x)))
f(b, f(a, x)) → f(b, f(b, f(b, x)))