(0) Obligation:
Q restricted rewrite system:
The TRS R consists of the following rules:
max(L(x)) → x
max(N(L(0), L(y))) → y
max(N(L(s(x)), L(s(y)))) → s(max(N(L(x), L(y))))
max(N(L(x), N(y, z))) → max(N(L(x), L(max(N(y, z)))))
Q is empty.
(1) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.
(2) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MAX(N(L(s(x)), L(s(y)))) → MAX(N(L(x), L(y)))
MAX(N(L(x), N(y, z))) → MAX(N(L(x), L(max(N(y, z)))))
MAX(N(L(x), N(y, z))) → MAX(N(y, z))
The TRS R consists of the following rules:
max(L(x)) → x
max(N(L(0), L(y))) → y
max(N(L(s(x)), L(s(y)))) → s(max(N(L(x), L(y))))
max(N(L(x), N(y, z))) → max(N(L(x), L(max(N(y, z)))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(3) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.
(4) Complex Obligation (AND)
(5) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MAX(N(L(s(x)), L(s(y)))) → MAX(N(L(x), L(y)))
The TRS R consists of the following rules:
max(L(x)) → x
max(N(L(0), L(y))) → y
max(N(L(s(x)), L(s(y)))) → s(max(N(L(x), L(y))))
max(N(L(x), N(y, z))) → max(N(L(x), L(max(N(y, z)))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(6) QDPSizeChangeProof (EQUIVALENT transformation)
We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.
Order:Homeomorphic Embedding Order
AFS:
L(x1) = x1
s(x1) = s(x1)
N(x1, x2) = x2
From the DPs we obtained the following set of size-change graphs:
- MAX(N(L(s(x)), L(s(y)))) → MAX(N(L(x), L(y))) (allowed arguments on rhs = {1})
The graph contains the following edges 1 > 1
We oriented the following set of usable rules [AAECC05,FROCOS05].
none
(7) TRUE
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MAX(N(L(x), N(y, z))) → MAX(N(y, z))
The TRS R consists of the following rules:
max(L(x)) → x
max(N(L(0), L(y))) → y
max(N(L(s(x)), L(s(y)))) → s(max(N(L(x), L(y))))
max(N(L(x), N(y, z))) → max(N(L(x), L(max(N(y, z)))))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
(9) QDPSizeChangeProof (EQUIVALENT transformation)
We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.
Order:Homeomorphic Embedding Order
AFS:
L(x1) = L
N(x1, x2) = N(x2)
From the DPs we obtained the following set of size-change graphs:
- MAX(N(L(x), N(y, z))) → MAX(N(y, z)) (allowed arguments on rhs = {1})
The graph contains the following edges 1 > 1
We oriented the following set of usable rules [AAECC05,FROCOS05].
none
(10) TRUE