0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 AND
↳5 QDP
↳6 QDPSizeChangeProof (⇔)
↳7 TRUE
↳8 QDP
↳9 QDPSizeChangeProof (⇔)
↳10 TRUE
+(p1, p1) → p2
+(p1, +(p2, p2)) → p5
+(p5, p5) → p10
+(+(x, y), z) → +(x, +(y, z))
+(p1, +(p1, x)) → +(p2, x)
+(p1, +(p2, +(p2, x))) → +(p5, x)
+(p2, p1) → +(p1, p2)
+(p2, +(p1, x)) → +(p1, +(p2, x))
+(p2, +(p2, p2)) → +(p1, p5)
+(p2, +(p2, +(p2, x))) → +(p1, +(p5, x))
+(p5, p1) → +(p1, p5)
+(p5, +(p1, x)) → +(p1, +(p5, x))
+(p5, p2) → +(p2, p5)
+(p5, +(p2, x)) → +(p2, +(p5, x))
+(p5, +(p5, x)) → +(p10, x)
+(p10, p1) → +(p1, p10)
+(p10, +(p1, x)) → +(p1, +(p10, x))
+(p10, p2) → +(p2, p10)
+(p10, +(p2, x)) → +(p2, +(p10, x))
+(p10, p5) → +(p5, p10)
+(p10, +(p5, x)) → +(p5, +(p10, x))
+1(+(x, y), z) → +1(x, +(y, z))
+1(+(x, y), z) → +1(y, z)
+1(p1, +(p1, x)) → +1(p2, x)
+1(p1, +(p2, +(p2, x))) → +1(p5, x)
+1(p2, p1) → +1(p1, p2)
+1(p2, +(p1, x)) → +1(p1, +(p2, x))
+1(p2, +(p1, x)) → +1(p2, x)
+1(p2, +(p2, p2)) → +1(p1, p5)
+1(p2, +(p2, +(p2, x))) → +1(p1, +(p5, x))
+1(p2, +(p2, +(p2, x))) → +1(p5, x)
+1(p5, p1) → +1(p1, p5)
+1(p5, +(p1, x)) → +1(p1, +(p5, x))
+1(p5, +(p1, x)) → +1(p5, x)
+1(p5, p2) → +1(p2, p5)
+1(p5, +(p2, x)) → +1(p2, +(p5, x))
+1(p5, +(p2, x)) → +1(p5, x)
+1(p5, +(p5, x)) → +1(p10, x)
+1(p10, p1) → +1(p1, p10)
+1(p10, +(p1, x)) → +1(p1, +(p10, x))
+1(p10, +(p1, x)) → +1(p10, x)
+1(p10, p2) → +1(p2, p10)
+1(p10, +(p2, x)) → +1(p2, +(p10, x))
+1(p10, +(p2, x)) → +1(p10, x)
+1(p10, p5) → +1(p5, p10)
+1(p10, +(p5, x)) → +1(p5, +(p10, x))
+1(p10, +(p5, x)) → +1(p10, x)
+(p1, p1) → p2
+(p1, +(p2, p2)) → p5
+(p5, p5) → p10
+(+(x, y), z) → +(x, +(y, z))
+(p1, +(p1, x)) → +(p2, x)
+(p1, +(p2, +(p2, x))) → +(p5, x)
+(p2, p1) → +(p1, p2)
+(p2, +(p1, x)) → +(p1, +(p2, x))
+(p2, +(p2, p2)) → +(p1, p5)
+(p2, +(p2, +(p2, x))) → +(p1, +(p5, x))
+(p5, p1) → +(p1, p5)
+(p5, +(p1, x)) → +(p1, +(p5, x))
+(p5, p2) → +(p2, p5)
+(p5, +(p2, x)) → +(p2, +(p5, x))
+(p5, +(p5, x)) → +(p10, x)
+(p10, p1) → +(p1, p10)
+(p10, +(p1, x)) → +(p1, +(p10, x))
+(p10, p2) → +(p2, p10)
+(p10, +(p2, x)) → +(p2, +(p10, x))
+(p10, p5) → +(p5, p10)
+(p10, +(p5, x)) → +(p5, +(p10, x))
+1(p2, +(p1, x)) → +1(p1, +(p2, x))
+1(p1, +(p1, x)) → +1(p2, x)
+1(p2, +(p1, x)) → +1(p2, x)
+1(p2, +(p2, +(p2, x))) → +1(p1, +(p5, x))
+1(p1, +(p2, +(p2, x))) → +1(p5, x)
+1(p5, +(p1, x)) → +1(p1, +(p5, x))
+1(p5, +(p1, x)) → +1(p5, x)
+1(p5, +(p2, x)) → +1(p2, +(p5, x))
+1(p2, +(p2, +(p2, x))) → +1(p5, x)
+1(p5, +(p2, x)) → +1(p5, x)
+1(p5, +(p5, x)) → +1(p10, x)
+1(p10, +(p1, x)) → +1(p1, +(p10, x))
+1(p10, +(p1, x)) → +1(p10, x)
+1(p10, +(p2, x)) → +1(p2, +(p10, x))
+1(p10, +(p2, x)) → +1(p10, x)
+1(p10, +(p5, x)) → +1(p5, +(p10, x))
+1(p10, +(p5, x)) → +1(p10, x)
+(p1, p1) → p2
+(p1, +(p2, p2)) → p5
+(p5, p5) → p10
+(+(x, y), z) → +(x, +(y, z))
+(p1, +(p1, x)) → +(p2, x)
+(p1, +(p2, +(p2, x))) → +(p5, x)
+(p2, p1) → +(p1, p2)
+(p2, +(p1, x)) → +(p1, +(p2, x))
+(p2, +(p2, p2)) → +(p1, p5)
+(p2, +(p2, +(p2, x))) → +(p1, +(p5, x))
+(p5, p1) → +(p1, p5)
+(p5, +(p1, x)) → +(p1, +(p5, x))
+(p5, p2) → +(p2, p5)
+(p5, +(p2, x)) → +(p2, +(p5, x))
+(p5, +(p5, x)) → +(p10, x)
+(p10, p1) → +(p1, p10)
+(p10, +(p1, x)) → +(p1, +(p10, x))
+(p10, p2) → +(p2, p10)
+(p10, +(p2, x)) → +(p2, +(p10, x))
+(p10, p5) → +(p5, p10)
+(p10, +(p5, x)) → +(p5, +(p10, x))
Order:Combined order from the following AFS and order.
+(x1, x2) = +(x2)
p2 = p2
p1 = p1
p5 = p5
p10 = p10
Recursive path order with status [RPO].
Quasi-Precedence:
[+1, p2, p1, p5] > p10
+1: [1]
p2: multiset
p1: multiset
p5: multiset
p10: multiset
AFS:
+(x1, x2) = +(x2)
p2 = p2
p1 = p1
p5 = p5
p10 = p10
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
+(p2, p1) → +(p1, p2)
+(p1, +(p1, x)) → +(p2, x)
+(p2, +(p1, x)) → +(p1, +(p2, x))
+(p1, +(p2, +(p2, x))) → +(p5, x)
+(p5, +(p1, x)) → +(p1, +(p5, x))
+(p5, +(p2, x)) → +(p2, +(p5, x))
+(p2, +(p2, +(p2, x))) → +(p1, +(p5, x))
+(p5, +(p5, x)) → +(p10, x)
+(p10, +(p1, x)) → +(p1, +(p10, x))
+(p10, +(p2, x)) → +(p2, +(p10, x))
+(p10, +(p5, x)) → +(p5, +(p10, x))
+(p2, +(p2, p2)) → +(p1, p5)
+(p5, p5) → p10
+(p5, p1) → +(p1, p5)
+(p5, p2) → +(p2, p5)
+(p10, p1) → +(p1, p10)
+(p10, p2) → +(p2, p10)
+(p10, p5) → +(p5, p10)
+(p1, p1) → p2
+(p1, +(p2, p2)) → p5
+1(+(x, y), z) → +1(y, z)
+1(+(x, y), z) → +1(x, +(y, z))
+(p1, p1) → p2
+(p1, +(p2, p2)) → p5
+(p5, p5) → p10
+(+(x, y), z) → +(x, +(y, z))
+(p1, +(p1, x)) → +(p2, x)
+(p1, +(p2, +(p2, x))) → +(p5, x)
+(p2, p1) → +(p1, p2)
+(p2, +(p1, x)) → +(p1, +(p2, x))
+(p2, +(p2, p2)) → +(p1, p5)
+(p2, +(p2, +(p2, x))) → +(p1, +(p5, x))
+(p5, p1) → +(p1, p5)
+(p5, +(p1, x)) → +(p1, +(p5, x))
+(p5, p2) → +(p2, p5)
+(p5, +(p2, x)) → +(p2, +(p5, x))
+(p5, +(p5, x)) → +(p10, x)
+(p10, p1) → +(p1, p10)
+(p10, +(p1, x)) → +(p1, +(p10, x))
+(p10, p2) → +(p2, p10)
+(p10, +(p2, x)) → +(p2, +(p10, x))
+(p10, p5) → +(p5, p10)
+(p10, +(p5, x)) → +(p5, +(p10, x))
Order:Homeomorphic Embedding Order
AFS:
+(x1, x2) = +(x1, x2)
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
none