(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__U11(tt, M, N) → a__U12(tt, M, N)
a__U12(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__plus(N, 0) → mark(N)
a__plus(N, s(M)) → a__U11(tt, M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U11(tt, M, N) → A__U12(tt, M, N)
A__U12(tt, M, N) → A__PLUS(mark(N), mark(M))
A__U12(tt, M, N) → MARK(N)
A__U12(tt, M, N) → MARK(M)
A__PLUS(N, 0) → MARK(N)
A__PLUS(N, s(M)) → A__U11(tt, M, N)
MARK(U11(X1, X2, X3)) → A__U11(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2, X3)) → A__U12(mark(X1), X2, X3)
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__U11(tt, M, N) → a__U12(tt, M, N)
a__U12(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__plus(N, 0) → mark(N)
a__plus(N, s(M)) → a__U11(tt, M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__PLUS(N, 0) → MARK(N)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
A__U11(x0, x1, x2, x3)  =  A__U11(x0, x1, x2, x3)
A__U12(x0, x1, x2, x3)  =  A__U12(x0, x2, x3)
A__PLUS(x0, x1, x2)  =  A__PLUS(x0, x1, x2)
MARK(x0, x1)  =  MARK(x0, x1)

Tags:
A__U11 has argument tags [0,2,14,4] and root tag 0
A__U12 has argument tags [0,14,10,4] and root tag 0
A__PLUS has argument tags [0,4,1] and root tag 0
MARK has argument tags [0,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
A__U11(x1, x2, x3)  =  A__U11
tt  =  tt
A__U12(x1, x2, x3)  =  A__U12
A__PLUS(x1, x2)  =  A__PLUS
mark(x1)  =  x1
MARK(x1)  =  MARK
0  =  0
s(x1)  =  s(x1)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
U12(x1, x2, x3)  =  U12(x1, x2, x3)
plus(x1, x2)  =  plus(x1, x2)
a__U11(x1, x2, x3)  =  a__U11(x1, x2, x3)
a__U12(x1, x2, x3)  =  a__U12(x1, x2, x3)
a__plus(x1, x2)  =  a__plus(x1, x2)

Recursive path order with status [RPO].
Quasi-Precedence:
[AU11, AU12, APLUS, MARK, 0] > [tt, s1]
[U113, U123, plus2, aU113, aU123, aplus2] > [tt, s1]

Status:
AU11: []
tt: multiset
AU12: []
APLUS: []
MARK: []
0: multiset
s1: [1]
U113: multiset
U123: multiset
plus2: multiset
aU113: multiset
aU123: multiset
aplus2: multiset


The following usable rules [FROCOS05] were oriented: none

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U11(tt, M, N) → A__U12(tt, M, N)
A__U12(tt, M, N) → A__PLUS(mark(N), mark(M))
A__U12(tt, M, N) → MARK(N)
A__U12(tt, M, N) → MARK(M)
A__PLUS(N, s(M)) → A__U11(tt, M, N)
MARK(U11(X1, X2, X3)) → A__U11(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2, X3)) → A__U12(mark(X1), X2, X3)
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__U11(tt, M, N) → a__U12(tt, M, N)
a__U12(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__plus(N, 0) → mark(N)
a__plus(N, s(M)) → a__U11(tt, M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U12(tt, M, N) → MARK(N)
A__U12(tt, M, N) → MARK(M)
MARK(U11(X1, X2, X3)) → A__U11(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2, X3)) → A__U12(mark(X1), X2, X3)
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(s(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
A__U11(x0, x1, x2, x3)  =  A__U11(x0, x3)
A__U12(x0, x1, x2, x3)  =  A__U12(x2, x3)
A__PLUS(x0, x1, x2)  =  A__PLUS(x0, x2)
MARK(x0, x1)  =  MARK(x1)

Tags:
A__U11 has argument tags [12,0,0,0] and root tag 1
A__U12 has argument tags [1,0,12,0] and root tag 1
A__PLUS has argument tags [0,6,12] and root tag 1
MARK has argument tags [11,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
A__U11(x1, x2, x3)  =  A__U11(x2)
tt  =  tt
A__U12(x1, x2, x3)  =  x1
A__PLUS(x1, x2)  =  x1
mark(x1)  =  x1
MARK(x1)  =  MARK(x1)
s(x1)  =  s(x1)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
U12(x1, x2, x3)  =  U12(x1, x2, x3)
plus(x1, x2)  =  plus(x1, x2)
a__U11(x1, x2, x3)  =  a__U11(x1, x2, x3)
a__U12(x1, x2, x3)  =  a__U12(x1, x2, x3)
a__plus(x1, x2)  =  a__plus(x1, x2)
0  =  0

Recursive path order with status [RPO].
Quasi-Precedence:
[tt, MARK1, U113, U123, plus2, aU113, aU123, aplus2] > [AU111, s1]

Status:
AU111: multiset
tt: multiset
MARK1: multiset
s1: multiset
U113: [2,3,1]
U123: [2,3,1]
plus2: [2,1]
aU113: [2,3,1]
aU123: [2,3,1]
aplus2: [2,1]
0: multiset


The following usable rules [FROCOS05] were oriented:

mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
a__plus(N, 0) → mark(N)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(tt, M, N) → a__U12(tt, M, N)
a__U12(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__plus(N, s(M)) → a__U11(tt, M, N)
a__plus(X1, X2) → plus(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U11(tt, M, N) → A__U12(tt, M, N)
A__U12(tt, M, N) → A__PLUS(mark(N), mark(M))
A__PLUS(N, s(M)) → A__U11(tt, M, N)

The TRS R consists of the following rules:

a__U11(tt, M, N) → a__U12(tt, M, N)
a__U12(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__plus(N, 0) → mark(N)
a__plus(N, s(M)) → a__U11(tt, M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U11(tt, M, N) → A__U12(tt, M, N)
A__PLUS(N, s(M)) → A__U11(tt, M, N)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
A__U11(x0, x1, x2, x3)  =  A__U11(x0, x1, x2)
A__U12(x0, x1, x2, x3)  =  A__U12(x1, x2)
A__PLUS(x0, x1, x2)  =  A__PLUS(x2)

Tags:
A__U11 has argument tags [1,3,8,0] and root tag 0
A__U12 has argument tags [0,4,1,0] and root tag 1
A__PLUS has argument tags [0,1,1] and root tag 1

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
A__U11(x1, x2, x3)  =  A__U11(x1)
tt  =  tt
A__U12(x1, x2, x3)  =  x3
A__PLUS(x1, x2)  =  A__PLUS(x2)
mark(x1)  =  x1
s(x1)  =  s(x1)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
a__U11(x1, x2, x3)  =  a__U11(x1, x2, x3)
U12(x1, x2, x3)  =  U12(x1, x2, x3)
a__U12(x1, x2, x3)  =  a__U12(x1, x2, x3)
a__plus(x1, x2)  =  a__plus(x1, x2)
0  =  0
plus(x1, x2)  =  plus(x1, x2)

Recursive path order with status [RPO].
Quasi-Precedence:
[U113, aU113, U123, aU123, aplus2, plus2] > [AU111, tt, APLUS1, s1]
0 > [AU111, tt, APLUS1, s1]

Status:
AU111: multiset
tt: multiset
APLUS1: multiset
s1: multiset
U113: multiset
aU113: multiset
U123: multiset
aU123: multiset
aplus2: multiset
0: multiset
plus2: multiset


The following usable rules [FROCOS05] were oriented:

mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
a__plus(N, 0) → mark(N)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(tt, M, N) → a__U12(tt, M, N)
a__U12(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__plus(N, s(M)) → a__U11(tt, M, N)
a__plus(X1, X2) → plus(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U12(tt, M, N) → A__PLUS(mark(N), mark(M))

The TRS R consists of the following rules:

a__U11(tt, M, N) → a__U12(tt, M, N)
a__U12(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__plus(N, 0) → mark(N)
a__plus(N, s(M)) → a__U11(tt, M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(10) TRUE