(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__U11(tt, M, N) → a__U12(tt, M, N)
a__U12(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__plus(N, 0) → mark(N)
a__plus(N, s(M)) → a__U11(tt, M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U11(tt, M, N) → A__U12(tt, M, N)
A__U12(tt, M, N) → A__PLUS(mark(N), mark(M))
A__U12(tt, M, N) → MARK(N)
A__U12(tt, M, N) → MARK(M)
A__PLUS(N, 0) → MARK(N)
A__PLUS(N, s(M)) → A__U11(tt, M, N)
MARK(U11(X1, X2, X3)) → A__U11(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2, X3)) → A__U12(mark(X1), X2, X3)
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__U11(tt, M, N) → a__U12(tt, M, N)
a__U12(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__plus(N, 0) → mark(N)
a__plus(N, s(M)) → a__U11(tt, M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__PLUS(N, 0) → MARK(N)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 1   
POL(A__PLUS(x1, x2)) = x1 + x2   
POL(A__U11(x1, x2, x3)) = x2 + x3   
POL(A__U12(x1, x2, x3)) = x2 + x3   
POL(MARK(x1)) = x1   
POL(U11(x1, x2, x3)) = x1 + x2 + x3   
POL(U12(x1, x2, x3)) = x1 + x2 + x3   
POL(a__U11(x1, x2, x3)) = x1 + x2 + x3   
POL(a__U12(x1, x2, x3)) = x1 + x2 + x3   
POL(a__plus(x1, x2)) = 1 + x1 + x2   
POL(mark(x1)) = x1   
POL(plus(x1, x2)) = 1 + x1 + x2   
POL(s(x1)) = x1   
POL(tt) = 1   

The following usable rules [FROCOS05] were oriented:

mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
a__plus(N, 0) → mark(N)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(tt, M, N) → a__U12(tt, M, N)
a__U12(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__plus(N, s(M)) → a__U11(tt, M, N)
a__plus(X1, X2) → plus(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U11(tt, M, N) → A__U12(tt, M, N)
A__U12(tt, M, N) → A__PLUS(mark(N), mark(M))
A__U12(tt, M, N) → MARK(N)
A__U12(tt, M, N) → MARK(M)
A__PLUS(N, s(M)) → A__U11(tt, M, N)
MARK(U11(X1, X2, X3)) → A__U11(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2, X3)) → A__U12(mark(X1), X2, X3)
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__U11(tt, M, N) → a__U12(tt, M, N)
a__U12(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__plus(N, 0) → mark(N)
a__plus(N, s(M)) → a__U11(tt, M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U12(tt, M, N) → A__PLUS(mark(N), mark(M))
A__U12(tt, M, N) → MARK(N)
A__U12(tt, M, N) → MARK(M)
MARK(s(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(A__PLUS(x1, x2)) = 1 + x1 + x2   
POL(A__U11(x1, x2, x3)) = 1 + x1 + x2 + x3   
POL(A__U12(x1, x2, x3)) = 1 + x1 + x2 + x3   
POL(MARK(x1)) = 1 + x1   
POL(U11(x1, x2, x3)) = x1 + x2 + x3   
POL(U12(x1, x2, x3)) = x1 + x2 + x3   
POL(a__U11(x1, x2, x3)) = x1 + x2 + x3   
POL(a__U12(x1, x2, x3)) = x1 + x2 + x3   
POL(a__plus(x1, x2)) = x1 + x2   
POL(mark(x1)) = x1   
POL(plus(x1, x2)) = x1 + x2   
POL(s(x1)) = 1 + x1   
POL(tt) = 1   

The following usable rules [FROCOS05] were oriented:

mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
a__plus(N, 0) → mark(N)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(tt, M, N) → a__U12(tt, M, N)
a__U12(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__plus(N, s(M)) → a__U11(tt, M, N)
a__plus(X1, X2) → plus(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U11(tt, M, N) → A__U12(tt, M, N)
A__PLUS(N, s(M)) → A__U11(tt, M, N)
MARK(U11(X1, X2, X3)) → A__U11(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2, X3)) → A__U12(mark(X1), X2, X3)
MARK(U12(X1, X2, X3)) → MARK(X1)

The TRS R consists of the following rules:

a__U11(tt, M, N) → a__U12(tt, M, N)
a__U12(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__plus(N, 0) → mark(N)
a__plus(N, s(M)) → a__U11(tt, M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes.

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(U11(X1, X2, X3)) → MARK(X1)

The TRS R consists of the following rules:

a__U11(tt, M, N) → a__U12(tt, M, N)
a__U12(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__plus(N, 0) → mark(N)
a__plus(N, s(M)) → a__U11(tt, M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(U11(X1, X2, X3)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(MARK(x1)) = x1   
POL(U11(x1, x2, x3)) = 1 + x1   
POL(U12(x1, x2, x3)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(10) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__U11(tt, M, N) → a__U12(tt, M, N)
a__U12(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__plus(N, 0) → mark(N)
a__plus(N, s(M)) → a__U11(tt, M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(12) TRUE