(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

U11(tt, M, N) → U12(tt, activate(M), activate(N))
U12(tt, M, N) → s(plus(activate(N), activate(M)))
plus(N, 0) → N
plus(N, s(M)) → U11(tt, M, N)
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(tt, M, N) → U121(tt, activate(M), activate(N))
U111(tt, M, N) → ACTIVATE(M)
U111(tt, M, N) → ACTIVATE(N)
U121(tt, M, N) → PLUS(activate(N), activate(M))
U121(tt, M, N) → ACTIVATE(N)
U121(tt, M, N) → ACTIVATE(M)
PLUS(N, s(M)) → U111(tt, M, N)

The TRS R consists of the following rules:

U11(tt, M, N) → U12(tt, activate(M), activate(N))
U12(tt, M, N) → s(plus(activate(N), activate(M)))
plus(N, 0) → N
plus(N, s(M)) → U11(tt, M, N)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → U111(tt, M, N)
U111(tt, M, N) → U121(tt, activate(M), activate(N))

The TRS R consists of the following rules:

U11(tt, M, N) → U12(tt, activate(M), activate(N))
U12(tt, M, N) → s(plus(activate(N), activate(M)))
plus(N, 0) → N
plus(N, s(M)) → U11(tt, M, N)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → U111(tt, M, N)
U111(tt, M, N) → U121(tt, activate(M), activate(N))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
U121(x0, x1, x2, x3)  =  U121(x0, x1, x2)
PLUS(x0, x1, x2)  =  PLUS(x0, x1, x2)
U111(x0, x1, x2, x3)  =  U111(x1, x2, x3)

Tags:
U121 has argument tags [2,4,0,2] and root tag 1
PLUS has argument tags [1,2,0] and root tag 2
U111 has argument tags [4,4,3,2] and root tag 0

Comparison: MS
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
U121(x1, x2, x3)  =  x3
tt  =  tt
PLUS(x1, x2)  =  PLUS
activate(x1)  =  x1
s(x1)  =  s(x1)
U111(x1, x2, x3)  =  U111(x1, x2)

Recursive path order with status [RPO].
Quasi-Precedence:
s1 > [tt, PLUS]
U11^12 > [tt, PLUS]

Status:
tt: multiset
PLUS: multiset
s1: [1]
U11^12: multiset


The following usable rules [FROCOS05] were oriented:

activate(X) → X

(6) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

U11(tt, M, N) → U12(tt, activate(M), activate(N))
U12(tt, M, N) → s(plus(activate(N), activate(M)))
plus(N, 0) → N
plus(N, s(M)) → U11(tt, M, N)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(8) TRUE