(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__U11(tt, V2) → a__U12(a__isNat(V2))
a__U12(tt) → tt
a__U21(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → a__U42(a__isNat(N), M, N)
a__U42(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNat(V1), V2)
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__plus(N, 0) → a__U31(a__isNat(N), N)
a__plus(N, s(M)) → a__U41(a__isNat(M), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2, X3)) → a__U42(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNat(X) → isNat(X)
a__U21(X) → U21(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2, X3) → U42(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U11(tt, V2) → A__U12(a__isNat(V2))
A__U11(tt, V2) → A__ISNAT(V2)
A__U31(tt, N) → MARK(N)
A__U41(tt, M, N) → A__U42(a__isNat(N), M, N)
A__U41(tt, M, N) → A__ISNAT(N)
A__U42(tt, M, N) → A__PLUS(mark(N), mark(M))
A__U42(tt, M, N) → MARK(N)
A__U42(tt, M, N) → MARK(M)
A__ISNAT(plus(V1, V2)) → A__U11(a__isNat(V1), V2)
A__ISNAT(plus(V1, V2)) → A__ISNAT(V1)
A__ISNAT(s(V1)) → A__U21(a__isNat(V1))
A__ISNAT(s(V1)) → A__ISNAT(V1)
A__PLUS(N, 0) → A__U31(a__isNat(N), N)
A__PLUS(N, 0) → A__ISNAT(N)
A__PLUS(N, s(M)) → A__U41(a__isNat(M), M, N)
A__PLUS(N, s(M)) → A__ISNAT(M)
MARK(U11(X1, X2)) → A__U11(mark(X1), X2)
MARK(U11(X1, X2)) → MARK(X1)
MARK(U12(X)) → A__U12(mark(X))
MARK(U12(X)) → MARK(X)
MARK(isNat(X)) → A__ISNAT(X)
MARK(U21(X)) → A__U21(mark(X))
MARK(U21(X)) → MARK(X)
MARK(U31(X1, X2)) → A__U31(mark(X1), X2)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U41(X1, X2, X3)) → A__U41(mark(X1), X2, X3)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(U42(X1, X2, X3)) → A__U42(mark(X1), X2, X3)
MARK(U42(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__U11(tt, V2) → a__U12(a__isNat(V2))
a__U12(tt) → tt
a__U21(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → a__U42(a__isNat(N), M, N)
a__U42(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNat(V1), V2)
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__plus(N, 0) → a__U31(a__isNat(N), N)
a__plus(N, s(M)) → a__U41(a__isNat(M), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2, X3)) → a__U42(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNat(X) → isNat(X)
a__U21(X) → U21(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2, X3) → U42(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 9 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U11(tt, V2) → A__ISNAT(V2)
A__ISNAT(plus(V1, V2)) → A__U11(a__isNat(V1), V2)
A__ISNAT(plus(V1, V2)) → A__ISNAT(V1)
A__ISNAT(s(V1)) → A__ISNAT(V1)

The TRS R consists of the following rules:

a__U11(tt, V2) → a__U12(a__isNat(V2))
a__U12(tt) → tt
a__U21(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → a__U42(a__isNat(N), M, N)
a__U42(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNat(V1), V2)
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__plus(N, 0) → a__U31(a__isNat(N), N)
a__plus(N, s(M)) → a__U41(a__isNat(M), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2, X3)) → a__U42(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNat(X) → isNat(X)
a__U21(X) → U21(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2, X3) → U42(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__ISNAT(plus(V1, V2)) → A__U11(a__isNat(V1), V2)
A__ISNAT(plus(V1, V2)) → A__ISNAT(V1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
A__U11(x1, x2)  =  x2
tt  =  tt
A__ISNAT(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
a__isNat(x1)  =  a__isNat
s(x1)  =  x1
0  =  0
a__U11(x1, x2)  =  a__U11
a__U21(x1)  =  a__U21
isNat(x1)  =  x1
a__U12(x1)  =  a__U12
U11(x1, x2)  =  U11(x1, x2)
U21(x1)  =  U21(x1)
U12(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[tt, aU12] > [aisNat, aU21] > aU11
[tt, aU12] > [aisNat, aU21] > U211

Status:
tt: multiset
plus2: multiset
aisNat: []
0: multiset
aU11: multiset
aU21: multiset
aU12: multiset
U112: multiset
U211: multiset


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U11(tt, V2) → A__ISNAT(V2)
A__ISNAT(s(V1)) → A__ISNAT(V1)

The TRS R consists of the following rules:

a__U11(tt, V2) → a__U12(a__isNat(V2))
a__U12(tt) → tt
a__U21(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → a__U42(a__isNat(N), M, N)
a__U42(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNat(V1), V2)
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__plus(N, 0) → a__U31(a__isNat(N), N)
a__plus(N, s(M)) → a__U41(a__isNat(M), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2, X3)) → a__U42(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNat(X) → isNat(X)
a__U21(X) → U21(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2, X3) → U42(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__ISNAT(s(V1)) → A__ISNAT(V1)

The TRS R consists of the following rules:

a__U11(tt, V2) → a__U12(a__isNat(V2))
a__U12(tt) → tt
a__U21(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → a__U42(a__isNat(N), M, N)
a__U42(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNat(V1), V2)
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__plus(N, 0) → a__U31(a__isNat(N), N)
a__plus(N, s(M)) → a__U41(a__isNat(M), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2, X3)) → a__U42(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNat(X) → isNat(X)
a__U21(X) → U21(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2, X3) → U42(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__ISNAT(s(V1)) → A__ISNAT(V1)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
s1 > AISNAT1

Status:
AISNAT1: multiset
s1: multiset


The following usable rules [FROCOS05] were oriented: none

(11) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__U11(tt, V2) → a__U12(a__isNat(V2))
a__U12(tt) → tt
a__U21(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → a__U42(a__isNat(N), M, N)
a__U42(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNat(V1), V2)
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__plus(N, 0) → a__U31(a__isNat(N), N)
a__plus(N, s(M)) → a__U41(a__isNat(M), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2, X3)) → a__U42(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNat(X) → isNat(X)
a__U21(X) → U21(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2, X3) → U42(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(13) TRUE

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2)) → MARK(X1)
MARK(U12(X)) → MARK(X)
MARK(U21(X)) → MARK(X)
MARK(U31(X1, X2)) → A__U31(mark(X1), X2)
A__U31(tt, N) → MARK(N)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U41(X1, X2, X3)) → A__U41(mark(X1), X2, X3)
A__U41(tt, M, N) → A__U42(a__isNat(N), M, N)
A__U42(tt, M, N) → A__PLUS(mark(N), mark(M))
A__PLUS(N, 0) → A__U31(a__isNat(N), N)
A__PLUS(N, s(M)) → A__U41(a__isNat(M), M, N)
A__U42(tt, M, N) → MARK(N)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(U42(X1, X2, X3)) → A__U42(mark(X1), X2, X3)
A__U42(tt, M, N) → MARK(M)
MARK(U42(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__U11(tt, V2) → a__U12(a__isNat(V2))
a__U12(tt) → tt
a__U21(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → a__U42(a__isNat(N), M, N)
a__U42(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNat(V1), V2)
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__plus(N, 0) → a__U31(a__isNat(N), N)
a__plus(N, s(M)) → a__U41(a__isNat(M), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2, X3)) → a__U42(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNat(X) → isNat(X)
a__U21(X) → U21(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2, X3) → U42(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U31(tt, N) → MARK(N)
MARK(U31(X1, X2)) → MARK(X1)
A__U42(tt, M, N) → A__PLUS(mark(N), mark(M))
A__PLUS(N, s(M)) → A__U41(a__isNat(M), M, N)
A__U42(tt, M, N) → MARK(N)
MARK(U41(X1, X2, X3)) → MARK(X1)
A__U42(tt, M, N) → MARK(M)
MARK(U42(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(s(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
U11(x1, x2)  =  x1
U12(x1)  =  x1
U21(x1)  =  x1
U31(x1, x2)  =  U31(x1, x2)
A__U31(x1, x2)  =  A__U31(x1, x2)
mark(x1)  =  x1
tt  =  tt
U41(x1, x2, x3)  =  U41(x1, x2, x3)
A__U41(x1, x2, x3)  =  A__U41(x1, x2, x3)
A__U42(x1, x2, x3)  =  A__U42(x1, x2, x3)
a__isNat(x1)  =  a__isNat
A__PLUS(x1, x2)  =  A__PLUS(x1, x2)
0  =  0
s(x1)  =  s(x1)
U42(x1, x2, x3)  =  U42(x1, x2, x3)
plus(x1, x2)  =  plus(x1, x2)
a__U11(x1, x2)  =  x1
a__U12(x1)  =  x1
isNat(x1)  =  isNat
a__U21(x1)  =  x1
a__U31(x1, x2)  =  a__U31(x1, x2)
a__plus(x1, x2)  =  a__plus(x1, x2)
a__U41(x1, x2, x3)  =  a__U41(x1, x2, x3)
a__U42(x1, x2, x3)  =  a__U42(x1, x2, x3)

Recursive path order with status [RPO].
Quasi-Precedence:
[U312, AU312, tt, U413, AU413, AU423, aisNat, APLUS2, 0, U423, plus2, isNat, aU312, aplus2, aU413, aU423] > s1

Status:
U312: [2,1]
AU312: [2,1]
tt: multiset
U413: [3,2,1]
AU413: [3,2,1]
AU423: [3,2,1]
aisNat: []
APLUS2: [1,2]
0: multiset
s1: multiset
U423: [3,2,1]
plus2: [1,2]
isNat: []
aU312: [2,1]
aplus2: [1,2]
aU413: [3,2,1]
aU423: [3,2,1]


The following usable rules [FROCOS05] were oriented:

mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
a__U31(tt, N) → mark(N)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
a__plus(N, 0) → a__U31(a__isNat(N), N)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2, X3)) → a__U42(mark(X1), X2, X3)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNat(V1), V2)
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__isNat(X) → isNat(X)
a__plus(N, s(M)) → a__U41(a__isNat(M), M, N)
a__U41(tt, M, N) → a__U42(a__isNat(N), M, N)
a__U42(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__plus(X1, X2) → plus(X1, X2)
a__U11(tt, V2) → a__U12(a__isNat(V2))
a__U11(X1, X2) → U11(X1, X2)
a__U12(tt) → tt
a__U12(X) → U12(X)
a__U21(tt) → tt
a__U21(X) → U21(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2, X3) → U42(X1, X2, X3)

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2)) → MARK(X1)
MARK(U12(X)) → MARK(X)
MARK(U21(X)) → MARK(X)
MARK(U31(X1, X2)) → A__U31(mark(X1), X2)
MARK(U41(X1, X2, X3)) → A__U41(mark(X1), X2, X3)
A__U41(tt, M, N) → A__U42(a__isNat(N), M, N)
A__PLUS(N, 0) → A__U31(a__isNat(N), N)
MARK(U42(X1, X2, X3)) → A__U42(mark(X1), X2, X3)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))

The TRS R consists of the following rules:

a__U11(tt, V2) → a__U12(a__isNat(V2))
a__U12(tt) → tt
a__U21(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → a__U42(a__isNat(N), M, N)
a__U42(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNat(V1), V2)
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__plus(N, 0) → a__U31(a__isNat(N), N)
a__plus(N, s(M)) → a__U41(a__isNat(M), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2, X3)) → a__U42(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNat(X) → isNat(X)
a__U21(X) → U21(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2, X3) → U42(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 6 less nodes.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U12(X)) → MARK(X)
MARK(U11(X1, X2)) → MARK(X1)
MARK(U21(X)) → MARK(X)

The TRS R consists of the following rules:

a__U11(tt, V2) → a__U12(a__isNat(V2))
a__U12(tt) → tt
a__U21(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → a__U42(a__isNat(N), M, N)
a__U42(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNat(V1), V2)
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__plus(N, 0) → a__U31(a__isNat(N), N)
a__plus(N, s(M)) → a__U41(a__isNat(M), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2, X3)) → a__U42(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNat(X) → isNat(X)
a__U21(X) → U21(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2, X3) → U42(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U11(X1, X2)) → MARK(X1)
MARK(U21(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
U12(x1)  =  x1
U11(x1, x2)  =  U11(x1, x2)
U21(x1)  =  U21(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
U112: multiset
U211: multiset


The following usable rules [FROCOS05] were oriented: none

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U12(X)) → MARK(X)

The TRS R consists of the following rules:

a__U11(tt, V2) → a__U12(a__isNat(V2))
a__U12(tt) → tt
a__U21(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → a__U42(a__isNat(N), M, N)
a__U42(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNat(V1), V2)
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__plus(N, 0) → a__U31(a__isNat(N), N)
a__plus(N, s(M)) → a__U41(a__isNat(M), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2, X3)) → a__U42(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNat(X) → isNat(X)
a__U21(X) → U21(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2, X3) → U42(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U12(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
U121 > MARK1

Status:
MARK1: multiset
U121: multiset


The following usable rules [FROCOS05] were oriented: none

(22) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__U11(tt, V2) → a__U12(a__isNat(V2))
a__U12(tt) → tt
a__U21(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → a__U42(a__isNat(N), M, N)
a__U42(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNat(V1), V2)
a__isNat(s(V1)) → a__U21(a__isNat(V1))
a__plus(N, 0) → a__U31(a__isNat(N), N)
a__plus(N, s(M)) → a__U41(a__isNat(M), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNat(X)) → a__isNat(X)
mark(U21(X)) → a__U21(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2, X3)) → a__U42(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNat(X) → isNat(X)
a__U21(X) → U21(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2, X3) → U42(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(24) TRUE