0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 QDP
↳5 QDPSizeChangeProof (⇔)
↳6 TRUE
U11(tt, N) → activate(N)
U21(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
isNat(n__s(V1)) → isNat(activate(V1))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
0 → n__0
plus(X1, X2) → n__plus(X1, X2)
isNat(X) → n__isNat(X)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNat(X)) → isNat(X)
activate(n__s(X)) → s(X)
activate(X) → X
U111(tt, N) → ACTIVATE(N)
U211(tt, M, N) → S(plus(activate(N), activate(M)))
U211(tt, M, N) → PLUS(activate(N), activate(M))
U211(tt, M, N) → ACTIVATE(N)
U211(tt, M, N) → ACTIVATE(M)
AND(tt, X) → ACTIVATE(X)
ISNAT(n__plus(V1, V2)) → AND(isNat(activate(V1)), n__isNat(activate(V2)))
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
PLUS(N, 0) → U111(isNat(N), N)
PLUS(N, 0) → ISNAT(N)
PLUS(N, s(M)) → U211(and(isNat(M), n__isNat(N)), M, N)
PLUS(N, s(M)) → AND(isNat(M), n__isNat(N))
PLUS(N, s(M)) → ISNAT(M)
ACTIVATE(n__0) → 01
ACTIVATE(n__plus(X1, X2)) → PLUS(X1, X2)
ACTIVATE(n__isNat(X)) → ISNAT(X)
ACTIVATE(n__s(X)) → S(X)
U11(tt, N) → activate(N)
U21(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
isNat(n__s(V1)) → isNat(activate(V1))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
0 → n__0
plus(X1, X2) → n__plus(X1, X2)
isNat(X) → n__isNat(X)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNat(X)) → isNat(X)
activate(n__s(X)) → s(X)
activate(X) → X
ACTIVATE(n__plus(X1, X2)) → PLUS(X1, X2)
PLUS(N, 0) → U111(isNat(N), N)
U111(tt, N) → ACTIVATE(N)
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNAT(n__plus(V1, V2)) → AND(isNat(activate(V1)), n__isNat(activate(V2)))
AND(tt, X) → ACTIVATE(X)
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
PLUS(N, 0) → ISNAT(N)
PLUS(N, s(M)) → U211(and(isNat(M), n__isNat(N)), M, N)
U211(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → AND(isNat(M), n__isNat(N))
PLUS(N, s(M)) → ISNAT(M)
U211(tt, M, N) → ACTIVATE(N)
U211(tt, M, N) → ACTIVATE(M)
U11(tt, N) → activate(N)
U21(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
isNat(n__s(V1)) → isNat(activate(V1))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
0 → n__0
plus(X1, X2) → n__plus(X1, X2)
isNat(X) → n__isNat(X)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNat(X)) → isNat(X)
activate(n__s(X)) → s(X)
activate(X) → X
Order:Combined order from the following AFS and order.
activate(x1) = x1
n__0 = n__0
0 = 0
n__plus(x1, x2) = n__plus(x1, x2)
plus(x1, x2) = plus(x1, x2)
U11(x1, x2) = U11(x1, x2)
isNat(x1) = x1
tt = tt
n__isNat(x1) = x1
and(x1, x2) = x2
n__s(x1) = n__s(x1)
s(x1) = s(x1)
U21(x1, x2, x3) = U21(x1, x2, x3)
Lexicographic path order with status [LPO].
Quasi-Precedence:
[n0, 0, tt]
[nplus2, plus2, U213] > U112
[nplus2, plus2, U213] > [ns1, s1]
n0: []
0: []
nplus2: [1,2]
plus2: [1,2]
U112: [2,1]
tt: []
ns1: [1]
s1: [1]
U213: [3,2,1]
AFS:
activate(x1) = x1
n__0 = n__0
0 = 0
n__plus(x1, x2) = n__plus(x1, x2)
plus(x1, x2) = plus(x1, x2)
U11(x1, x2) = U11(x1, x2)
isNat(x1) = x1
tt = tt
n__isNat(x1) = x1
and(x1, x2) = x2
n__s(x1) = n__s(x1)
s(x1) = s(x1)
U21(x1, x2, x3) = U21(x1, x2, x3)
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
plus(N, 0) → U11(isNat(N), N)
U11(tt, N) → activate(N)
activate(n__isNat(X)) → isNat(X)
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
and(tt, X) → activate(X)
isNat(n__s(V1)) → isNat(activate(V1))
activate(n__s(X)) → s(X)
activate(X) → X
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
U21(tt, M, N) → s(plus(activate(N), activate(M)))
plus(X1, X2) → n__plus(X1, X2)
isNat(n__0) → tt
isNat(X) → n__isNat(X)
s(X) → n__s(X)
0 → n__0