0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 QDPSizeChangeProof (⇔)
↳4 TRUE
a__U11(tt, N) → mark(N)
a__U21(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__isNat(s(V1)) → a__isNat(V1)
a__plus(N, 0) → a__U11(a__isNat(N), N)
a__plus(N, s(M)) → a__U21(a__and(a__isNat(M), isNat(N)), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
A__U11(tt, N) → MARK(N)
A__U21(tt, M, N) → A__PLUS(mark(N), mark(M))
A__U21(tt, M, N) → MARK(N)
A__U21(tt, M, N) → MARK(M)
A__AND(tt, X) → MARK(X)
A__ISNAT(plus(V1, V2)) → A__AND(a__isNat(V1), isNat(V2))
A__ISNAT(plus(V1, V2)) → A__ISNAT(V1)
A__ISNAT(s(V1)) → A__ISNAT(V1)
A__PLUS(N, 0) → A__U11(a__isNat(N), N)
A__PLUS(N, 0) → A__ISNAT(N)
A__PLUS(N, s(M)) → A__U21(a__and(a__isNat(M), isNat(N)), M, N)
A__PLUS(N, s(M)) → A__AND(a__isNat(M), isNat(N))
A__PLUS(N, s(M)) → A__ISNAT(M)
MARK(U11(X1, X2)) → A__U11(mark(X1), X2)
MARK(U11(X1, X2)) → MARK(X1)
MARK(U21(X1, X2, X3)) → A__U21(mark(X1), X2, X3)
MARK(U21(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isNat(X)) → A__ISNAT(X)
MARK(s(X)) → MARK(X)
a__U11(tt, N) → mark(N)
a__U21(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__isNat(s(V1)) → a__isNat(V1)
a__plus(N, 0) → a__U11(a__isNat(N), N)
a__plus(N, s(M)) → a__U21(a__and(a__isNat(M), isNat(N)), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)
Order:Combined order from the following AFS and order.
mark(x1) = x1
U11(x1, x2) = U11(x1, x2)
a__U11(x1, x2) = a__U11(x1, x2)
tt = tt
plus(x1, x2) = plus(x1, x2)
a__plus(x1, x2) = a__plus(x1, x2)
0 = 0
a__isNat(x1) = x1
and(x1, x2) = and(x1, x2)
a__and(x1, x2) = a__and(x1, x2)
isNat(x1) = x1
s(x1) = s(x1)
U21(x1, x2, x3) = U21(x1, x2, x3)
a__U21(x1, x2, x3) = a__U21(x1, x2, x3)
Lexicographic path order with status [LPO].
Quasi-Precedence:
[tt, 0] > [U112, aU112] > s1
[plus2, aplus2, U213, aU213] > [U112, aU112] > s1
[plus2, aplus2, U213, aU213] > [and2, aand2] > s1
U112: [1,2]
aU112: [1,2]
tt: []
plus2: [1,2]
aplus2: [1,2]
0: []
and2: [1,2]
aand2: [1,2]
s1: [1]
U213: [3,2,1]
aU213: [3,2,1]
AFS:
mark(x1) = x1
U11(x1, x2) = U11(x1, x2)
a__U11(x1, x2) = a__U11(x1, x2)
tt = tt
plus(x1, x2) = plus(x1, x2)
a__plus(x1, x2) = a__plus(x1, x2)
0 = 0
a__isNat(x1) = x1
and(x1, x2) = and(x1, x2)
a__and(x1, x2) = a__and(x1, x2)
isNat(x1) = x1
s(x1) = s(x1)
U21(x1, x2, x3) = U21(x1, x2, x3)
a__U21(x1, x2, x3) = a__U21(x1, x2, x3)
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
a__U11(tt, N) → mark(N)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
a__plus(N, 0) → a__U11(a__isNat(N), N)
mark(and(X1, X2)) → a__and(mark(X1), X2)
a__and(tt, X) → mark(X)
mark(isNat(X)) → a__isNat(X)
a__isNat(plus(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__isNat(s(V1)) → a__isNat(V1)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__plus(N, s(M)) → a__U21(a__and(a__isNat(M), isNat(N)), M, N)
a__U21(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U11(X1, X2) → U11(X1, X2)
a__plus(X1, X2) → plus(X1, X2)
a__isNat(0) → tt
a__isNat(X) → isNat(X)
a__and(X1, X2) → and(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)