(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__U11(tt, N) → mark(N)
a__U21(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__isNat(s(V1)) → a__isNat(V1)
a__plus(N, 0) → a__U11(a__isNat(N), N)
a__plus(N, s(M)) → a__U21(a__and(a__isNat(M), isNat(N)), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U11(tt, N) → MARK(N)
A__U21(tt, M, N) → A__PLUS(mark(N), mark(M))
A__U21(tt, M, N) → MARK(N)
A__U21(tt, M, N) → MARK(M)
A__AND(tt, X) → MARK(X)
A__ISNAT(plus(V1, V2)) → A__AND(a__isNat(V1), isNat(V2))
A__ISNAT(plus(V1, V2)) → A__ISNAT(V1)
A__ISNAT(s(V1)) → A__ISNAT(V1)
A__PLUS(N, 0) → A__U11(a__isNat(N), N)
A__PLUS(N, 0) → A__ISNAT(N)
A__PLUS(N, s(M)) → A__U21(a__and(a__isNat(M), isNat(N)), M, N)
A__PLUS(N, s(M)) → A__AND(a__isNat(M), isNat(N))
A__PLUS(N, s(M)) → A__ISNAT(M)
MARK(U11(X1, X2)) → A__U11(mark(X1), X2)
MARK(U11(X1, X2)) → MARK(X1)
MARK(U21(X1, X2, X3)) → A__U21(mark(X1), X2, X3)
MARK(U21(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isNat(X)) → A__ISNAT(X)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__U11(tt, N) → mark(N)
a__U21(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__isNat(s(V1)) → a__isNat(V1)
a__plus(N, 0) → a__U11(a__isNat(N), N)
a__plus(N, s(M)) → a__U21(a__and(a__isNat(M), isNat(N)), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U21(tt, M, N) → MARK(N)
A__U21(tt, M, N) → MARK(M)
A__AND(tt, X) → MARK(X)
A__ISNAT(plus(V1, V2)) → A__AND(a__isNat(V1), isNat(V2))
A__ISNAT(plus(V1, V2)) → A__ISNAT(V1)
A__ISNAT(s(V1)) → A__ISNAT(V1)
A__PLUS(N, 0) → A__U11(a__isNat(N), N)
A__PLUS(N, 0) → A__ISNAT(N)
A__PLUS(N, s(M)) → A__AND(a__isNat(M), isNat(N))
A__PLUS(N, s(M)) → A__ISNAT(M)
MARK(U11(X1, X2)) → A__U11(mark(X1), X2)
MARK(U11(X1, X2)) → MARK(X1)
MARK(U21(X1, X2, X3)) → A__U21(mark(X1), X2, X3)
MARK(U21(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
A__U11(x1, x2)  =  A__U11(x2)
MARK(x1)  =  MARK(x1)
A__U21(x1, x2, x3)  =  A__U21(x2, x3)
A__PLUS(x1, x2)  =  A__PLUS(x1, x2)
A__AND(x1, x2)  =  A__AND(x2)
A__ISNAT(x1)  =  A__ISNAT(x1)

Tags:
A__U11 has tags [14,5]
MARK has tags [5]
A__U21 has tags [11,15,9]
A__PLUS has tags [9,4]
A__AND has tags [11,6]
A__ISNAT has tags [5]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
tt  =  tt
mark(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
a__isNat(x1)  =  x1
isNat(x1)  =  x1
s(x1)  =  s(x1)
0  =  0
a__and(x1, x2)  =  a__and(x1, x2)
U11(x1, x2)  =  U11(x1, x2)
U21(x1, x2, x3)  =  U21(x1, x2, x3)
and(x1, x2)  =  and(x1, x2)
a__U11(x1, x2)  =  a__U11(x1, x2)
a__plus(x1, x2)  =  a__plus(x1, x2)
a__U21(x1, x2, x3)  =  a__U21(x1, x2, x3)

Recursive path order with status [RPO].
Quasi-Precedence:
[plus2, U213, aplus2, aU213] > s1 > [aand2, and2] > [U112, aU112]
0 > tt > s1 > [aand2, and2] > [U112, aU112]

Status:
tt: multiset
plus2: [1,2]
s1: [1]
0: multiset
aand2: multiset
U112: [2,1]
U213: [3,2,1]
and2: multiset
aU112: [2,1]
aplus2: [1,2]
aU213: [3,2,1]


The following usable rules [FROCOS05] were oriented:

mark(U11(X1, X2)) → a__U11(mark(X1), X2)
a__U11(tt, N) → mark(N)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
a__plus(N, 0) → a__U11(a__isNat(N), N)
mark(and(X1, X2)) → a__and(mark(X1), X2)
a__and(tt, X) → mark(X)
mark(isNat(X)) → a__isNat(X)
a__isNat(plus(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__isNat(s(V1)) → a__isNat(V1)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__isNat(0) → tt
a__isNat(X) → isNat(X)
a__and(X1, X2) → and(X1, X2)
a__plus(N, s(M)) → a__U21(a__and(a__isNat(M), isNat(N)), M, N)
a__U21(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U11(X1, X2) → U11(X1, X2)
a__plus(X1, X2) → plus(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U11(tt, N) → MARK(N)
A__U21(tt, M, N) → A__PLUS(mark(N), mark(M))
A__PLUS(N, s(M)) → A__U21(a__and(a__isNat(M), isNat(N)), M, N)
MARK(isNat(X)) → A__ISNAT(X)

The TRS R consists of the following rules:

a__U11(tt, N) → mark(N)
a__U21(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__isNat(s(V1)) → a__isNat(V1)
a__plus(N, 0) → a__U11(a__isNat(N), N)
a__plus(N, s(M)) → a__U21(a__and(a__isNat(M), isNat(N)), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__PLUS(N, s(M)) → A__U21(a__and(a__isNat(M), isNat(N)), M, N)
A__U21(tt, M, N) → A__PLUS(mark(N), mark(M))

The TRS R consists of the following rules:

a__U11(tt, N) → mark(N)
a__U21(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__isNat(s(V1)) → a__isNat(V1)
a__plus(N, 0) → a__U11(a__isNat(N), N)
a__plus(N, s(M)) → a__U21(a__and(a__isNat(M), isNat(N)), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__PLUS(N, s(M)) → A__U21(a__and(a__isNat(M), isNat(N)), M, N)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
A__PLUS(x1, x2)  =  A__PLUS(x2)
A__U21(x1, x2, x3)  =  A__U21(x1, x2)

Tags:
A__PLUS has tags [0,0]
A__U21 has tags [0,0,4]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
s(x1)  =  s(x1)
a__and(x1, x2)  =  x2
a__isNat(x1)  =  a__isNat
isNat(x1)  =  isNat
tt  =  tt
mark(x1)  =  x1
0  =  0
U11(x1, x2)  =  U11(x1, x2)
a__U11(x1, x2)  =  a__U11(x1, x2)
plus(x1, x2)  =  plus(x1, x2)
a__plus(x1, x2)  =  a__plus(x1, x2)
and(x1, x2)  =  x2
U21(x1, x2, x3)  =  U21(x1, x2, x3)
a__U21(x1, x2, x3)  =  a__U21(x1, x2, x3)

Recursive path order with status [RPO].
Quasi-Precedence:
[plus2, aplus2, U213, aU213] > s1 > [aisNat, isNat, tt]
[plus2, aplus2, U213, aU213] > [U112, aU112]

Status:
s1: multiset
aisNat: []
isNat: []
tt: multiset
0: multiset
U112: [1,2]
aU112: [1,2]
plus2: multiset
aplus2: multiset
U213: multiset
aU213: multiset


The following usable rules [FROCOS05] were oriented:

a__isNat(0) → tt
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
a__U11(tt, N) → mark(N)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
a__plus(N, 0) → a__U11(a__isNat(N), N)
mark(and(X1, X2)) → a__and(mark(X1), X2)
a__and(tt, X) → mark(X)
mark(isNat(X)) → a__isNat(X)
a__isNat(plus(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__isNat(s(V1)) → a__isNat(V1)
a__isNat(X) → isNat(X)
a__and(X1, X2) → and(X1, X2)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__plus(N, s(M)) → a__U21(a__and(a__isNat(M), isNat(N)), M, N)
a__U21(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U11(X1, X2) → U11(X1, X2)
a__plus(X1, X2) → plus(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U21(tt, M, N) → A__PLUS(mark(N), mark(M))

The TRS R consists of the following rules:

a__U11(tt, N) → mark(N)
a__U21(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__and(a__isNat(V1), isNat(V2))
a__isNat(s(V1)) → a__isNat(V1)
a__plus(N, 0) → a__U11(a__isNat(N), N)
a__plus(N, s(M)) → a__U21(a__and(a__isNat(M), isNat(N)), M, N)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2) → U11(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNat(X) → isNat(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(10) TRUE