(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

U11(tt, N) → activate(N)
U21(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
isNat(n__s(V1)) → isNat(activate(V1))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNat(X) → n__isNat(X)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__isNat(X)) → isNat(X)
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(tt, N) → ACTIVATE(N)
U211(tt, M, N) → S(plus(activate(N), activate(M)))
U211(tt, M, N) → PLUS(activate(N), activate(M))
U211(tt, M, N) → ACTIVATE(N)
U211(tt, M, N) → ACTIVATE(M)
AND(tt, X) → ACTIVATE(X)
ISNAT(n__plus(V1, V2)) → AND(isNat(activate(V1)), n__isNat(activate(V2)))
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
PLUS(N, 0) → U111(isNat(N), N)
PLUS(N, 0) → ISNAT(N)
PLUS(N, s(M)) → U211(and(isNat(M), n__isNat(N)), M, N)
PLUS(N, s(M)) → AND(isNat(M), n__isNat(N))
PLUS(N, s(M)) → ISNAT(M)
ACTIVATE(n__0) → 01
ACTIVATE(n__plus(X1, X2)) → PLUS(activate(X1), activate(X2))
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__isNat(X)) → ISNAT(X)
ACTIVATE(n__s(X)) → S(activate(X))
ACTIVATE(n__s(X)) → ACTIVATE(X)

The TRS R consists of the following rules:

U11(tt, N) → activate(N)
U21(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
isNat(n__s(V1)) → isNat(activate(V1))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNat(X) → n__isNat(X)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__isNat(X)) → isNat(X)
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__plus(X1, X2)) → PLUS(activate(X1), activate(X2))
PLUS(N, 0) → U111(isNat(N), N)
U111(tt, N) → ACTIVATE(N)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNAT(n__plus(V1, V2)) → AND(isNat(activate(V1)), n__isNat(activate(V2)))
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
PLUS(N, 0) → ISNAT(N)
PLUS(N, s(M)) → U211(and(isNat(M), n__isNat(N)), M, N)
U211(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → AND(isNat(M), n__isNat(N))
PLUS(N, s(M)) → ISNAT(M)
U211(tt, M, N) → ACTIVATE(N)
U211(tt, M, N) → ACTIVATE(M)

The TRS R consists of the following rules:

U11(tt, N) → activate(N)
U21(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
isNat(n__s(V1)) → isNat(activate(V1))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNat(X) → n__isNat(X)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__isNat(X)) → isNat(X)
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(N, 0) → U111(isNat(N), N)
U111(tt, N) → ACTIVATE(N)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X2)
AND(tt, X) → ACTIVATE(X)
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
PLUS(N, 0) → ISNAT(N)
PLUS(N, s(M)) → ISNAT(M)
U211(tt, M, N) → ACTIVATE(N)
U211(tt, M, N) → ACTIVATE(M)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVATE(x1)  =  x1
n__plus(x1, x2)  =  n__plus(x1, x2)
PLUS(x1, x2)  =  PLUS(x1, x2)
activate(x1)  =  x1
0  =  0
U111(x1, x2)  =  U111(x1, x2)
isNat(x1)  =  x1
tt  =  tt
n__isNat(x1)  =  x1
ISNAT(x1)  =  x1
AND(x1, x2)  =  AND(x1, x2)
n__s(x1)  =  x1
s(x1)  =  x1
U211(x1, x2, x3)  =  U211(x2, x3)
and(x1, x2)  =  and(x1, x2)
n__0  =  n__0
plus(x1, x2)  =  plus(x1, x2)
U11(x1, x2)  =  U11(x2)
U21(x1, x2, x3)  =  U21(x2, x3)

Recursive path order with status [RPO].
Quasi-Precedence:
[0, tt, n0] > [nplus2, PLUS2, AND2, U21^12, plus2, U212] > U11^12 > [and2, U111]

Status:
nplus2: multiset
PLUS2: multiset
0: multiset
U11^12: multiset
tt: multiset
AND2: multiset
U21^12: multiset
and2: multiset
n0: multiset
plus2: multiset
U111: [1]
U212: multiset


The following usable rules [FROCOS05] were oriented:

activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
plus(N, 0) → U11(isNat(N), N)
U11(tt, N) → activate(N)
activate(n__isNat(X)) → isNat(X)
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
and(tt, X) → activate(X)
isNat(n__s(V1)) → isNat(activate(V1))
activate(n__s(X)) → s(activate(X))
activate(X) → X
isNat(n__0) → tt
isNat(X) → n__isNat(X)
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
U21(tt, M, N) → s(plus(activate(N), activate(M)))
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
0n__0

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__plus(X1, X2)) → PLUS(activate(X1), activate(X2))
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNAT(n__plus(V1, V2)) → AND(isNat(activate(V1)), n__isNat(activate(V2)))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
PLUS(N, s(M)) → U211(and(isNat(M), n__isNat(N)), M, N)
U211(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → AND(isNat(M), n__isNat(N))

The TRS R consists of the following rules:

U11(tt, N) → activate(N)
U21(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
isNat(n__s(V1)) → isNat(activate(V1))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNat(X) → n__isNat(X)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__isNat(X)) → isNat(X)
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 3 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → U211(and(isNat(M), n__isNat(N)), M, N)

The TRS R consists of the following rules:

U11(tt, N) → activate(N)
U21(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
isNat(n__s(V1)) → isNat(activate(V1))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNat(X) → n__isNat(X)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__isNat(X)) → isNat(X)
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(N, s(M)) → U211(and(isNat(M), n__isNat(N)), M, N)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2, x3)  =  x2
tt  =  tt
PLUS(x1, x2)  =  x2
activate(x1)  =  x1
s(x1)  =  s(x1)
and(x1, x2)  =  x2
isNat(x1)  =  isNat
n__isNat(x1)  =  n__isNat
n__0  =  n__0
0  =  0
n__plus(x1, x2)  =  n__plus(x1, x2)
plus(x1, x2)  =  plus(x1, x2)
U11(x1, x2)  =  U11(x1, x2)
n__s(x1)  =  n__s(x1)
U21(x1, x2, x3)  =  U21(x1, x2, x3)

Recursive path order with status [RPO].
Quasi-Precedence:
[n0, 0] > U112 > [tt, s1, isNat, nisNat, ns1]
[nplus2, plus2, U213] > U112 > [tt, s1, isNat, nisNat, ns1]

Status:
tt: multiset
s1: multiset
isNat: []
nisNat: []
n0: multiset
0: multiset
nplus2: multiset
plus2: multiset
U112: multiset
ns1: multiset
U213: multiset


The following usable rules [FROCOS05] were oriented:

activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
plus(N, 0) → U11(isNat(N), N)
U11(tt, N) → activate(N)
activate(n__isNat(X)) → isNat(X)
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
and(tt, X) → activate(X)
isNat(n__s(V1)) → isNat(activate(V1))
activate(n__s(X)) → s(activate(X))
activate(X) → X
isNat(n__0) → tt
isNat(X) → n__isNat(X)
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
U21(tt, M, N) → s(plus(activate(N), activate(M)))
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
0n__0

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(tt, M, N) → PLUS(activate(N), activate(M))

The TRS R consists of the following rules:

U11(tt, N) → activate(N)
U21(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
isNat(n__s(V1)) → isNat(activate(V1))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNat(X) → n__isNat(X)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__isNat(X)) → isNat(X)
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(13) TRUE

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ACTIVATE(n__s(X)) → ACTIVATE(X)

The TRS R consists of the following rules:

U11(tt, N) → activate(N)
U21(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
isNat(n__s(V1)) → isNat(activate(V1))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNat(X) → n__isNat(X)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__isNat(X)) → isNat(X)
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__isNat(X)) → ISNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVATE(x1)  =  ACTIVATE(x1)
n__isNat(x1)  =  n__isNat(x1)
ISNAT(x1)  =  ISNAT(x1)
n__s(x1)  =  x1
activate(x1)  =  x1
n__0  =  n__0
0  =  0
n__plus(x1, x2)  =  n__plus(x1, x2)
plus(x1, x2)  =  plus(x1, x2)
U11(x1, x2)  =  x2
isNat(x1)  =  isNat(x1)
tt  =  tt
and(x1, x2)  =  and(x1, x2)
s(x1)  =  x1
U21(x1, x2, x3)  =  U21(x2, x3)

Recursive path order with status [RPO].
Quasi-Precedence:
[nisNat1, isNat1] > [ACTIVATE1, ISNAT1]
[nisNat1, isNat1] > tt
[nisNat1, isNat1] > and2
[n0, 0] > tt
[nplus2, plus2, U212]

Status:
ACTIVATE1: [1]
nisNat1: [1]
ISNAT1: [1]
n0: multiset
0: multiset
nplus2: [2,1]
plus2: [2,1]
isNat1: [1]
tt: multiset
and2: multiset
U212: [1,2]


The following usable rules [FROCOS05] were oriented:

activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
plus(N, 0) → U11(isNat(N), N)
U11(tt, N) → activate(N)
activate(n__isNat(X)) → isNat(X)
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
and(tt, X) → activate(X)
isNat(n__s(V1)) → isNat(activate(V1))
activate(n__s(X)) → s(activate(X))
activate(X) → X
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
U21(tt, M, N) → s(plus(activate(N), activate(M)))
plus(X1, X2) → n__plus(X1, X2)
isNat(n__0) → tt
isNat(X) → n__isNat(X)
s(X) → n__s(X)
0n__0

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ACTIVATE(n__s(X)) → ACTIVATE(X)

The TRS R consists of the following rules:

U11(tt, N) → activate(N)
U21(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
isNat(n__s(V1)) → isNat(activate(V1))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNat(X) → n__isNat(X)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__isNat(X)) → isNat(X)
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.

(18) Complex Obligation (AND)

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__s(X)) → ACTIVATE(X)

The TRS R consists of the following rules:

U11(tt, N) → activate(N)
U21(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
isNat(n__s(V1)) → isNat(activate(V1))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNat(X) → n__isNat(X)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__isNat(X)) → isNat(X)
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__s(X)) → ACTIVATE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
ns1 > ACTIVATE1

Status:
ACTIVATE1: multiset
ns1: multiset


The following usable rules [FROCOS05] were oriented: none

(21) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

U11(tt, N) → activate(N)
U21(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
isNat(n__s(V1)) → isNat(activate(V1))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNat(X) → n__isNat(X)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__isNat(X)) → isNat(X)
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(23) TRUE

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(n__s(V1)) → ISNAT(activate(V1))

The TRS R consists of the following rules:

U11(tt, N) → activate(N)
U21(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
isNat(n__s(V1)) → isNat(activate(V1))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNat(X) → n__isNat(X)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__isNat(X)) → isNat(X)
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNAT(n__s(V1)) → ISNAT(activate(V1))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNAT(x1)  =  ISNAT(x1)
n__s(x1)  =  n__s(x1)
activate(x1)  =  x1
n__0  =  n__0
0  =  0
n__plus(x1, x2)  =  n__plus(x1, x2)
plus(x1, x2)  =  plus(x1, x2)
U11(x1, x2)  =  U11(x1, x2)
isNat(x1)  =  isNat
tt  =  tt
n__isNat(x1)  =  n__isNat
and(x1, x2)  =  x2
s(x1)  =  s(x1)
U21(x1, x2, x3)  =  U21(x1, x2, x3)

Recursive path order with status [RPO].
Quasi-Precedence:
[nplus2, plus2, U112, U213] > [n0, 0, isNat, nisNat] > tt > [ns1, s1]

Status:
ISNAT1: [1]
ns1: multiset
n0: multiset
0: multiset
nplus2: [2,1]
plus2: [2,1]
U112: [1,2]
isNat: multiset
tt: multiset
nisNat: multiset
s1: multiset
U213: [2,3,1]


The following usable rules [FROCOS05] were oriented:

activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
plus(N, 0) → U11(isNat(N), N)
U11(tt, N) → activate(N)
activate(n__isNat(X)) → isNat(X)
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
and(tt, X) → activate(X)
isNat(n__s(V1)) → isNat(activate(V1))
activate(n__s(X)) → s(activate(X))
activate(X) → X
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
U21(tt, M, N) → s(plus(activate(N), activate(M)))
plus(X1, X2) → n__plus(X1, X2)
isNat(n__0) → tt
isNat(X) → n__isNat(X)
s(X) → n__s(X)
0n__0

(26) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

U11(tt, N) → activate(N)
U21(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
isNat(n__s(V1)) → isNat(activate(V1))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNat(X) → n__isNat(X)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__isNat(X)) → isNat(X)
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(28) TRUE