(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → U42(isNat(activate(N)), activate(M), activate(N))
U42(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
plus(N, 0) → U31(isNat(N), N)
plus(N, s(M)) → U41(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__s(X)) → s(X)
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(tt, V2) → U121(isNat(activate(V2)))
U111(tt, V2) → ISNAT(activate(V2))
U111(tt, V2) → ACTIVATE(V2)
U311(tt, N) → ACTIVATE(N)
U411(tt, M, N) → U421(isNat(activate(N)), activate(M), activate(N))
U411(tt, M, N) → ISNAT(activate(N))
U411(tt, M, N) → ACTIVATE(N)
U411(tt, M, N) → ACTIVATE(M)
U421(tt, M, N) → S(plus(activate(N), activate(M)))
U421(tt, M, N) → PLUS(activate(N), activate(M))
U421(tt, M, N) → ACTIVATE(N)
U421(tt, M, N) → ACTIVATE(M)
ISNAT(n__plus(V1, V2)) → U111(isNat(activate(V1)), activate(V2))
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → U211(isNat(activate(V1)))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
PLUS(N, 0) → U311(isNat(N), N)
PLUS(N, 0) → ISNAT(N)
PLUS(N, s(M)) → U411(isNat(M), M, N)
PLUS(N, s(M)) → ISNAT(M)
ACTIVATE(n__0) → 01
ACTIVATE(n__plus(X1, X2)) → PLUS(X1, X2)
ACTIVATE(n__s(X)) → S(X)

The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → U42(isNat(activate(N)), activate(M), activate(N))
U42(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
plus(N, 0) → U31(isNat(N), N)
plus(N, s(M)) → U41(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__s(X)) → s(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 5 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(tt, V2) → ISNAT(activate(V2))
ISNAT(n__plus(V1, V2)) → U111(isNat(activate(V1)), activate(V2))
U111(tt, V2) → ACTIVATE(V2)
ACTIVATE(n__plus(X1, X2)) → PLUS(X1, X2)
PLUS(N, 0) → U311(isNat(N), N)
U311(tt, N) → ACTIVATE(N)
PLUS(N, 0) → ISNAT(N)
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
PLUS(N, s(M)) → U411(isNat(M), M, N)
U411(tt, M, N) → U421(isNat(activate(N)), activate(M), activate(N))
U421(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → ISNAT(M)
U421(tt, M, N) → ACTIVATE(N)
U421(tt, M, N) → ACTIVATE(M)
U411(tt, M, N) → ISNAT(activate(N))
U411(tt, M, N) → ACTIVATE(N)
U411(tt, M, N) → ACTIVATE(M)

The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → U42(isNat(activate(N)), activate(M), activate(N))
U42(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
plus(N, 0) → U31(isNat(N), N)
plus(N, s(M)) → U41(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__s(X)) → s(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(tt, V2) → ISNAT(activate(V2))
ISNAT(n__plus(V1, V2)) → U111(isNat(activate(V1)), activate(V2))
U111(tt, V2) → ACTIVATE(V2)
ACTIVATE(n__plus(X1, X2)) → PLUS(X1, X2)
PLUS(N, 0) → U311(isNat(N), N)
U311(tt, N) → ACTIVATE(N)
PLUS(N, 0) → ISNAT(N)
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
U421(tt, M, N) → ACTIVATE(N)
U411(tt, M, N) → ISNAT(activate(N))
U411(tt, M, N) → ACTIVATE(N)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
U111(x0, x1, x2)  =  U111(x1, x2)
ISNAT(x0, x1)  =  ISNAT(x0, x1)
ACTIVATE(x0, x1)  =  ACTIVATE(x0, x1)
PLUS(x0, x1, x2)  =  PLUS(x0, x1)
U311(x0, x1, x2)  =  U311(x2)
U411(x0, x1, x2, x3)  =  U411(x0, x1, x2)
U421(x0, x1, x2, x3)  =  U421(x0, x2, x3)

Tags:
U111 has argument tags [0,6,0] and root tag 6
ISNAT has argument tags [1,0] and root tag 1
ACTIVATE has argument tags [0,0] and root tag 1
PLUS has argument tags [0,2,0] and root tag 1
U311 has argument tags [16,16,2] and root tag 0
U411 has argument tags [2,0,0,28] and root tag 1
U421 has argument tags [0,29,0,2] and root tag 1

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
U111(x1, x2)  =  x1
tt  =  tt
ISNAT(x1)  =  ISNAT
activate(x1)  =  x1
n__plus(x1, x2)  =  n__plus(x1, x2)
isNat(x1)  =  x1
ACTIVATE(x1)  =  x1
PLUS(x1, x2)  =  x2
0  =  0
U311(x1, x2)  =  U311(x2)
n__s(x1)  =  x1
s(x1)  =  x1
U411(x1, x2, x3)  =  x3
U421(x1, x2, x3)  =  U421
n__0  =  n__0
plus(x1, x2)  =  plus(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
U11(x1, x2)  =  x1
U21(x1)  =  x1
U41(x1, x2, x3)  =  U41(x2, x3)
U12(x1)  =  U12
U42(x1, x2, x3)  =  U42(x2, x3)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[tt, 0, U42^1, n0, U12] > [nplus2, plus2, U412, U422] > U312 > ISNAT
[tt, 0, U42^1, n0, U12] > U31^11 > ISNAT

Status:
tt: []
ISNAT: []
nplus2: [2,1]
0: []
U31^11: [1]
U42^1: []
n0: []
plus2: [2,1]
U312: [2,1]
U412: [1,2]
U12: []
U422: [1,2]


The following usable rules [FROCOS05] were oriented:

activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
plus(N, 0) → U31(isNat(N), N)
U31(tt, N) → activate(N)
activate(n__s(X)) → s(X)
activate(X) → X
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
plus(N, s(M)) → U41(isNat(M), M, N)
U11(tt, V2) → U12(isNat(activate(V2)))
U41(tt, M, N) → U42(isNat(activate(N)), activate(M), activate(N))
U42(tt, M, N) → s(plus(activate(N), activate(M)))
plus(X1, X2) → n__plus(X1, X2)
U21(tt) → tt
U12(tt) → tt
s(X) → n__s(X)
0n__0

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
PLUS(N, s(M)) → U411(isNat(M), M, N)
U411(tt, M, N) → U421(isNat(activate(N)), activate(M), activate(N))
U421(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → ISNAT(M)
U421(tt, M, N) → ACTIVATE(M)
U411(tt, M, N) → ACTIVATE(M)

The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → U42(isNat(activate(N)), activate(M), activate(N))
U42(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
plus(N, 0) → U31(isNat(N), N)
plus(N, s(M)) → U41(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__s(X)) → s(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 4 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(n__s(V1)) → ISNAT(activate(V1))

The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → U42(isNat(activate(N)), activate(M), activate(N))
U42(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
plus(N, 0) → U31(isNat(N), N)
plus(N, s(M)) → U41(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__s(X)) → s(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNAT(n__s(V1)) → ISNAT(activate(V1))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ISNAT(x0, x1)  =  ISNAT(x1)

Tags:
ISNAT has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
ISNAT(x1)  =  ISNAT
n__s(x1)  =  n__s(x1)
activate(x1)  =  x1
n__0  =  n__0
0  =  0
n__plus(x1, x2)  =  n__plus(x1, x2)
plus(x1, x2)  =  plus(x1, x2)
U31(x1, x2)  =  x2
isNat(x1)  =  isNat
tt  =  tt
s(x1)  =  s(x1)
U41(x1, x2, x3)  =  U41(x1, x2, x3)
U11(x1, x2)  =  x1
U21(x1)  =  x1
U42(x1, x2, x3)  =  U42(x1, x2, x3)
U12(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
ISNAT > [ns1, s1]
[n0, 0] > [isNat, tt] > [ns1, s1]
[nplus2, plus2, U413, U423] > [isNat, tt] > [ns1, s1]

Status:
ISNAT: []
ns1: [1]
n0: []
0: []
nplus2: [2,1]
plus2: [2,1]
isNat: []
tt: []
s1: [1]
U413: [2,3,1]
U423: [2,3,1]


The following usable rules [FROCOS05] were oriented: none

(11) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → U42(isNat(activate(N)), activate(M), activate(N))
U42(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
plus(N, 0) → U31(isNat(N), N)
plus(N, s(M)) → U41(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__s(X)) → s(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(13) TRUE

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(N, s(M)) → U411(isNat(M), M, N)
U411(tt, M, N) → U421(isNat(activate(N)), activate(M), activate(N))
U421(tt, M, N) → PLUS(activate(N), activate(M))

The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → U42(isNat(activate(N)), activate(M), activate(N))
U42(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
plus(N, 0) → U31(isNat(N), N)
plus(N, s(M)) → U41(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__s(X)) → s(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(N, s(M)) → U411(isNat(M), M, N)
U411(tt, M, N) → U421(isNat(activate(N)), activate(M), activate(N))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
PLUS(x0, x1, x2)  =  PLUS(x0)
U411(x0, x1, x2, x3)  =  U411(x2)
U421(x0, x1, x2, x3)  =  U421(x2)

Tags:
PLUS has argument tags [0,0,0] and root tag 0
U411 has argument tags [0,8,0,1] and root tag 2
U421 has argument tags [0,12,0,15] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
PLUS(x1, x2)  =  x2
s(x1)  =  s(x1)
U411(x1, x2, x3)  =  x1
isNat(x1)  =  isNat
tt  =  tt
U421(x1, x2, x3)  =  U421(x1, x2, x3)
activate(x1)  =  x1
n__0  =  n__0
n__plus(x1, x2)  =  n__plus(x1, x2)
U11(x1, x2)  =  x1
n__s(x1)  =  n__s(x1)
U21(x1)  =  x1
0  =  0
plus(x1, x2)  =  plus(x1, x2)
U31(x1, x2)  =  U31(x2)
U41(x1, x2, x3)  =  U41(x1, x2, x3)
U12(x1)  =  U12
U42(x1, x2, x3)  =  U42(x1, x2, x3)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[n0, 0] > U311
[nplus2, plus2, U413, U423] > [isNat, tt, U42^13, U12] > [s1, ns1]
[nplus2, plus2, U413, U423] > U311

Status:
s1: [1]
isNat: []
tt: []
U42^13: [2,1,3]
n0: []
nplus2: [2,1]
ns1: [1]
0: []
plus2: [2,1]
U311: [1]
U413: [2,3,1]
U12: []
U423: [2,3,1]


The following usable rules [FROCOS05] were oriented:

isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
plus(N, 0) → U31(isNat(N), N)
U31(tt, N) → activate(N)
activate(n__s(X)) → s(X)
activate(X) → X
plus(N, s(M)) → U41(isNat(M), M, N)
U11(tt, V2) → U12(isNat(activate(V2)))
U41(tt, M, N) → U42(isNat(activate(N)), activate(M), activate(N))
U42(tt, M, N) → s(plus(activate(N), activate(M)))
plus(X1, X2) → n__plus(X1, X2)
U21(tt) → tt
U12(tt) → tt
s(X) → n__s(X)
0n__0

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U421(tt, M, N) → PLUS(activate(N), activate(M))

The TRS R consists of the following rules:

U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → U42(isNat(activate(N)), activate(M), activate(N))
U42(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
plus(N, 0) → U31(isNat(N), N)
plus(N, s(M)) → U41(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__s(X)) → s(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(18) TRUE