0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 QDP
↳5 QDPSizeChangeProof (⇔)
↳6 TRUE
U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → U42(isNat(activate(N)), activate(M), activate(N))
U42(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
plus(N, 0) → U31(isNat(N), N)
plus(N, s(M)) → U41(isNat(M), M, N)
0 → n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X
U111(tt, V2) → U121(isNat(activate(V2)))
U111(tt, V2) → ISNAT(activate(V2))
U111(tt, V2) → ACTIVATE(V2)
U311(tt, N) → ACTIVATE(N)
U411(tt, M, N) → U421(isNat(activate(N)), activate(M), activate(N))
U411(tt, M, N) → ISNAT(activate(N))
U411(tt, M, N) → ACTIVATE(N)
U411(tt, M, N) → ACTIVATE(M)
U421(tt, M, N) → S(plus(activate(N), activate(M)))
U421(tt, M, N) → PLUS(activate(N), activate(M))
U421(tt, M, N) → ACTIVATE(N)
U421(tt, M, N) → ACTIVATE(M)
ISNAT(n__plus(V1, V2)) → U111(isNat(activate(V1)), activate(V2))
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → U211(isNat(activate(V1)))
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
PLUS(N, 0) → U311(isNat(N), N)
PLUS(N, 0) → ISNAT(N)
PLUS(N, s(M)) → U411(isNat(M), M, N)
PLUS(N, s(M)) → ISNAT(M)
ACTIVATE(n__0) → 01
ACTIVATE(n__plus(X1, X2)) → PLUS(activate(X1), activate(X2))
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__s(X)) → S(activate(X))
ACTIVATE(n__s(X)) → ACTIVATE(X)
U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → U42(isNat(activate(N)), activate(M), activate(N))
U42(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
plus(N, 0) → U31(isNat(N), N)
plus(N, s(M)) → U41(isNat(M), M, N)
0 → n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X
U111(tt, V2) → ISNAT(activate(V2))
ISNAT(n__plus(V1, V2)) → U111(isNat(activate(V1)), activate(V2))
U111(tt, V2) → ACTIVATE(V2)
ACTIVATE(n__plus(X1, X2)) → PLUS(activate(X1), activate(X2))
PLUS(N, 0) → U311(isNat(N), N)
U311(tt, N) → ACTIVATE(N)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__s(X)) → ACTIVATE(X)
PLUS(N, 0) → ISNAT(N)
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
PLUS(N, s(M)) → U411(isNat(M), M, N)
U411(tt, M, N) → U421(isNat(activate(N)), activate(M), activate(N))
U421(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → ISNAT(M)
U421(tt, M, N) → ACTIVATE(N)
U421(tt, M, N) → ACTIVATE(M)
U411(tt, M, N) → ISNAT(activate(N))
U411(tt, M, N) → ACTIVATE(N)
U411(tt, M, N) → ACTIVATE(M)
U11(tt, V2) → U12(isNat(activate(V2)))
U12(tt) → tt
U21(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → U42(isNat(activate(N)), activate(M), activate(N))
U42(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
plus(N, 0) → U31(isNat(N), N)
plus(N, s(M)) → U41(isNat(M), M, N)
0 → n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X
Order:Combined order from the following AFS and order.
activate(x1) = x1
n__0 = n__0
0 = 0
n__plus(x1, x2) = n__plus(x1, x2)
plus(x1, x2) = plus(x1, x2)
U31(x1, x2) = U31(x2)
isNat(x1) = isNat
tt = tt
n__s(x1) = n__s(x1)
s(x1) = s(x1)
U41(x1, x2, x3) = U41(x1, x2, x3)
U11(x1, x2) = x1
U21(x1) = U21
U42(x1, x2, x3) = U42(x1, x2, x3)
U12(x1) = x1
Lexicographic path order with status [LPO].
Quasi-Precedence:
[n0, 0] > U311 > [ns1, s1]
[n0, 0] > [isNat, tt, U21] > [ns1, s1]
[nplus2, plus2, U413, U423] > U311 > [ns1, s1]
[nplus2, plus2, U413, U423] > [isNat, tt, U21] > [ns1, s1]
n0: []
0: []
nplus2: [1,2]
plus2: [1,2]
U311: [1]
isNat: []
tt: []
ns1: [1]
s1: [1]
U413: [3,2,1]
U21: []
U423: [3,2,1]
AFS:
activate(x1) = x1
n__0 = n__0
0 = 0
n__plus(x1, x2) = n__plus(x1, x2)
plus(x1, x2) = plus(x1, x2)
U31(x1, x2) = U31(x2)
isNat(x1) = isNat
tt = tt
n__s(x1) = n__s(x1)
s(x1) = s(x1)
U41(x1, x2, x3) = U41(x1, x2, x3)
U11(x1, x2) = x1
U21(x1) = U21
U42(x1, x2, x3) = U42(x1, x2, x3)
U12(x1) = x1
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
plus(N, 0) → U31(isNat(N), N)
U31(tt, N) → activate(N)
activate(n__s(X)) → s(activate(X))
activate(X) → X
plus(N, s(M)) → U41(isNat(M), M, N)
isNat(n__plus(V1, V2)) → U11(isNat(activate(V1)), activate(V2))
isNat(n__s(V1)) → U21(isNat(activate(V1)))
U41(tt, M, N) → U42(isNat(activate(N)), activate(M), activate(N))
U11(tt, V2) → U12(isNat(activate(V2)))
U42(tt, M, N) → s(plus(activate(N), activate(M)))
plus(X1, X2) → n__plus(X1, X2)
isNat(n__0) → tt
s(X) → n__s(X)
U21(tt) → tt
U12(tt) → tt
0 → n__0