(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(tt, V1, V2) → U121(isNat(activate(V1)), activate(V2))
U111(tt, V1, V2) → ISNAT(activate(V1))
U111(tt, V1, V2) → ACTIVATE(V1)
U111(tt, V1, V2) → ACTIVATE(V2)
U121(tt, V2) → U131(isNat(activate(V2)))
U121(tt, V2) → ISNAT(activate(V2))
U121(tt, V2) → ACTIVATE(V2)
U211(tt, V1) → U221(isNat(activate(V1)))
U211(tt, V1) → ISNAT(activate(V1))
U211(tt, V1) → ACTIVATE(V1)
U311(tt, N) → ACTIVATE(N)
U411(tt, M, N) → S(plus(activate(N), activate(M)))
U411(tt, M, N) → PLUS(activate(N), activate(M))
U411(tt, M, N) → ACTIVATE(N)
U411(tt, M, N) → ACTIVATE(M)
AND(tt, X) → ACTIVATE(X)
ISNAT(n__plus(V1, V2)) → U111(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
ISNAT(n__plus(V1, V2)) → AND(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
ISNAT(n__plus(V1, V2)) → ISNATKIND(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
ISNAT(n__s(V1)) → ISNATKIND(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNATKIND(n__plus(V1, V2)) → AND(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
ISNATKIND(n__plus(V1, V2)) → ISNATKIND(activate(V1))
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V1)
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V2)
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
ISNATKIND(n__s(V1)) → ACTIVATE(V1)
PLUS(N, 0) → U311(and(isNat(N), n__isNatKind(N)), N)
PLUS(N, 0) → AND(isNat(N), n__isNatKind(N))
PLUS(N, 0) → ISNAT(N)
PLUS(N, s(M)) → U411(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
PLUS(N, s(M)) → AND(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N)))
PLUS(N, s(M)) → AND(isNat(M), n__isNatKind(M))
PLUS(N, s(M)) → ISNAT(M)
PLUS(N, s(M)) → ISNAT(N)
ACTIVATE(n__0) → 01
ACTIVATE(n__plus(X1, X2)) → PLUS(X1, X2)
ACTIVATE(n__isNatKind(X)) → ISNATKIND(X)
ACTIVATE(n__s(X)) → S(X)
ACTIVATE(n__and(X1, X2)) → AND(X1, X2)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 5 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(tt, V2) → ISNAT(activate(V2))
ISNAT(n__plus(V1, V2)) → U111(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
U111(tt, V1, V2) → U121(isNat(activate(V1)), activate(V2))
U121(tt, V2) → ACTIVATE(V2)
ACTIVATE(n__plus(X1, X2)) → PLUS(X1, X2)
PLUS(N, 0) → U311(and(isNat(N), n__isNatKind(N)), N)
U311(tt, N) → ACTIVATE(N)
ACTIVATE(n__isNatKind(X)) → ISNATKIND(X)
ISNATKIND(n__plus(V1, V2)) → AND(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → AND(X1, X2)
ISNATKIND(n__plus(V1, V2)) → ISNATKIND(activate(V1))
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V1)
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V2)
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
ISNATKIND(n__s(V1)) → ACTIVATE(V1)
PLUS(N, 0) → AND(isNat(N), n__isNatKind(N))
PLUS(N, 0) → ISNAT(N)
ISNAT(n__plus(V1, V2)) → AND(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
ISNAT(n__plus(V1, V2)) → ISNATKIND(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
U211(tt, V1) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ISNATKIND(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
U211(tt, V1) → ACTIVATE(V1)
PLUS(N, s(M)) → U411(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
U411(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → AND(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N)))
PLUS(N, s(M)) → AND(isNat(M), n__isNatKind(M))
PLUS(N, s(M)) → ISNAT(M)
PLUS(N, s(M)) → ISNAT(N)
U411(tt, M, N) → ACTIVATE(N)
U411(tt, M, N) → ACTIVATE(M)
U111(tt, V1, V2) → ISNAT(activate(V1))
U111(tt, V1, V2) → ACTIVATE(V1)
U111(tt, V1, V2) → ACTIVATE(V2)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(tt, V2) → ISNAT(activate(V2))
ISNAT(n__plus(V1, V2)) → U111(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
U111(tt, V1, V2) → U121(isNat(activate(V1)), activate(V2))
U121(tt, V2) → ACTIVATE(V2)
ACTIVATE(n__plus(X1, X2)) → PLUS(X1, X2)
ISNATKIND(n__plus(V1, V2)) → AND(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
ISNATKIND(n__plus(V1, V2)) → ISNATKIND(activate(V1))
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V1)
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__plus(V1, V2)) → AND(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
ISNAT(n__plus(V1, V2)) → ISNATKIND(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
PLUS(N, s(M)) → AND(isNat(M), n__isNatKind(M))
PLUS(N, s(M)) → ISNAT(M)
U411(tt, M, N) → ACTIVATE(M)
U111(tt, V1, V2) → ISNAT(activate(V1))
U111(tt, V1, V2) → ACTIVATE(V1)
U111(tt, V1, V2) → ACTIVATE(V2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
U121(x1, x2)  =  U121(x2)
ISNAT(x1)  =  ISNAT(x1)
U111(x1, x2, x3)  =  U111(x2, x3)
ACTIVATE(x1)  =  ACTIVATE(x1)
PLUS(x1, x2)  =  PLUS(x1, x2)
U311(x1, x2)  =  U311(x2)
ISNATKIND(x1)  =  ISNATKIND(x1)
AND(x1, x2)  =  AND(x2)
U211(x1, x2)  =  U211(x2)
U411(x1, x2, x3)  =  U411(x2, x3)

Tags:
U121 has tags [1,16]
ISNAT has tags [1]
U111 has tags [30,16,25]
ACTIVATE has tags [1]
PLUS has tags [1,16]
U311 has tags [27,1]
ISNATKIND has tags [1]
AND has tags [30,1]
U211 has tags [0,1]
U411 has tags [30,16,1]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
tt  =  tt
activate(x1)  =  x1
n__plus(x1, x2)  =  n__plus(x1, x2)
and(x1, x2)  =  x2
isNatKind(x1)  =  x1
n__isNatKind(x1)  =  x1
isNat(x1)  =  isNat(x1)
0  =  0
n__and(x1, x2)  =  x2
n__s(x1)  =  x1
s(x1)  =  x1
n__0  =  n__0
plus(x1, x2)  =  plus(x1, x2)
U31(x1, x2)  =  U31(x2)
U11(x1, x2, x3)  =  U11
U21(x1, x2)  =  U21(x1, x2)
U41(x1, x2, x3)  =  U41(x2, x3)
U12(x1, x2)  =  U12(x1, x2)
U22(x1)  =  x1
U13(x1)  =  U13(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[nplus2, plus2, U412] > [0, n0, U311] > isNat1 > tt
[nplus2, plus2, U412] > [0, n0, U311] > isNat1 > [U11, U122]
U212 > isNat1 > tt
U212 > isNat1 > [U11, U122]
U131 > tt

Status:
tt: multiset
nplus2: [2,1]
isNat1: [1]
0: multiset
n0: multiset
plus2: [2,1]
U311: multiset
U11: multiset
U212: multiset
U412: [1,2]
U122: multiset
U131: [1]


The following usable rules [FROCOS05] were oriented:

activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
U31(tt, N) → activate(N)
activate(n__isNatKind(X)) → isNatKind(X)
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
and(tt, X) → activate(X)
activate(n__and(X1, X2)) → and(X1, X2)
isNatKind(n__s(V1)) → isNatKind(activate(V1))
activate(n__s(X)) → s(X)
activate(X) → X
isNatKind(n__0) → tt
isNatKind(X) → n__isNatKind(X)
and(X1, X2) → n__and(X1, X2)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
0n__0

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(N, 0) → U311(and(isNat(N), n__isNatKind(N)), N)
U311(tt, N) → ACTIVATE(N)
ACTIVATE(n__isNatKind(X)) → ISNATKIND(X)
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → AND(X1, X2)
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
ISNATKIND(n__s(V1)) → ACTIVATE(V1)
PLUS(N, 0) → AND(isNat(N), n__isNatKind(N))
PLUS(N, 0) → ISNAT(N)
ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
U211(tt, V1) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ISNATKIND(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
U211(tt, V1) → ACTIVATE(V1)
PLUS(N, s(M)) → U411(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
U411(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → AND(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N)))
PLUS(N, s(M)) → ISNAT(N)
U411(tt, M, N) → ACTIVATE(N)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 10 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
ISNATKIND(n__s(V1)) → ACTIVATE(V1)
ACTIVATE(n__isNatKind(X)) → ISNATKIND(X)
ACTIVATE(n__and(X1, X2)) → AND(X1, X2)
AND(tt, X) → ACTIVATE(X)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__isNatKind(X)) → ISNATKIND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ISNATKIND(x1)  =  ISNATKIND(x1)
ACTIVATE(x1)  =  ACTIVATE(x1)
AND(x1, x2)  =  AND(x2)

Tags:
ISNATKIND has tags [3]
ACTIVATE has tags [3]
AND has tags [3,3]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
n__s(x1)  =  x1
activate(x1)  =  x1
n__isNatKind(x1)  =  n__isNatKind(x1)
n__and(x1, x2)  =  x2
tt  =  tt
n__0  =  n__0
0  =  0
n__plus(x1, x2)  =  n__plus(x1, x2)
plus(x1, x2)  =  plus(x1, x2)
U31(x1, x2)  =  x2
and(x1, x2)  =  x2
isNat(x1)  =  isNat
isNatKind(x1)  =  isNatKind(x1)
s(x1)  =  x1
U41(x1, x2, x3)  =  U41(x2, x3)
U11(x1, x2, x3)  =  U11(x1, x2)
U21(x1, x2)  =  U21
U12(x1, x2)  =  U12(x1, x2)
U22(x1)  =  U22
U13(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[nisNatKind1, nplus2, plus2, isNatKind1, U412] > isNat > U112 > U122
[nisNatKind1, nplus2, plus2, isNatKind1, U412] > isNat > [U21, U22] > tt
[n0, 0] > tt

Status:
nisNatKind1: multiset
tt: multiset
n0: multiset
0: multiset
nplus2: [1,2]
plus2: [1,2]
isNat: multiset
isNatKind1: multiset
U412: [2,1]
U112: [1,2]
U21: multiset
U122: [2,1]
U22: []


The following usable rules [FROCOS05] were oriented:

activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
U31(tt, N) → activate(N)
activate(n__isNatKind(X)) → isNatKind(X)
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
and(tt, X) → activate(X)
activate(n__and(X1, X2)) → and(X1, X2)
isNatKind(n__s(V1)) → isNatKind(activate(V1))
activate(n__s(X)) → s(X)
activate(X) → X
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
plus(X1, X2) → n__plus(X1, X2)
and(X1, X2) → n__and(X1, X2)
isNatKind(n__0) → tt
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
0n__0

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
ISNATKIND(n__s(V1)) → ACTIVATE(V1)
ACTIVATE(n__and(X1, X2)) → AND(X1, X2)
AND(tt, X) → ACTIVATE(X)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.

(13) Complex Obligation (AND)

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → AND(X1, X2)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__and(X1, X2)) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
AND(x1, x2)  =  AND(x2)
ACTIVATE(x1)  =  ACTIVATE(x1)

Tags:
AND has tags [0,3]
ACTIVATE has tags [3]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
tt  =  tt
n__and(x1, x2)  =  n__and(x2)

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
tt: multiset
nand1: multiset


The following usable rules [FROCOS05] were oriented: none

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(tt, X) → ACTIVATE(X)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(18) TRUE

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ISNATKIND(x1)  =  ISNATKIND(x1)

Tags:
ISNATKIND has tags [0]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
n__s(x1)  =  n__s(x1)
activate(x1)  =  x1
n__0  =  n__0
0  =  0
n__plus(x1, x2)  =  n__plus(x1, x2)
plus(x1, x2)  =  plus(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
and(x1, x2)  =  x2
isNat(x1)  =  isNat
n__isNatKind(x1)  =  n__isNatKind(x1)
tt  =  tt
isNatKind(x1)  =  isNatKind(x1)
n__and(x1, x2)  =  x2
s(x1)  =  s(x1)
U41(x1, x2, x3)  =  U41(x1, x2, x3)
U11(x1, x2, x3)  =  U11(x3)
U21(x1, x2)  =  x1
U12(x1, x2)  =  x2
U22(x1)  =  U22(x1)
U13(x1)  =  U13(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[n0, 0] > isNat > [nplus2, plus2, nisNatKind1, tt, isNatKind1, U413, U111] > [ns1, s1]
[n0, 0] > isNat > [nplus2, plus2, nisNatKind1, tt, isNatKind1, U413, U111] > U312
[n0, 0] > isNat > [nplus2, plus2, nisNatKind1, tt, isNatKind1, U413, U111] > U221
[n0, 0] > isNat > [nplus2, plus2, nisNatKind1, tt, isNatKind1, U413, U111] > U131

Status:
ns1: [1]
n0: multiset
0: multiset
nplus2: [1,2]
plus2: [1,2]
U312: multiset
isNat: []
nisNatKind1: [1]
tt: multiset
isNatKind1: [1]
s1: [1]
U413: [3,2,1]
U111: multiset
U221: [1]
U131: [1]


The following usable rules [FROCOS05] were oriented:

activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
U31(tt, N) → activate(N)
activate(n__isNatKind(X)) → isNatKind(X)
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
and(tt, X) → activate(X)
activate(n__and(X1, X2)) → and(X1, X2)
isNatKind(n__s(V1)) → isNatKind(activate(V1))
activate(n__s(X)) → s(X)
activate(X) → X
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
plus(X1, X2) → n__plus(X1, X2)
and(X1, X2) → n__and(X1, X2)
isNatKind(n__0) → tt
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
0n__0

(21) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(23) TRUE

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
U211(tt, V1) → ISNAT(activate(V1))

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
U211(tt, V1) → ISNAT(activate(V1))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ISNAT(x1)  =  ISNAT(x1)
U211(x1, x2)  =  U211(x2)

Tags:
ISNAT has tags [0]
U211 has tags [2,3]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
n__s(x1)  =  n__s(x1)
isNatKind(x1)  =  isNatKind
activate(x1)  =  x1
tt  =  tt
n__0  =  n__0
0  =  0
n__plus(x1, x2)  =  n__plus(x1, x2)
plus(x1, x2)  =  plus(x1, x2)
U31(x1, x2)  =  x2
and(x1, x2)  =  x2
isNat(x1)  =  isNat
n__isNatKind(x1)  =  n__isNatKind
n__and(x1, x2)  =  x2
s(x1)  =  s(x1)
U41(x1, x2, x3)  =  U41(x1, x2, x3)
U11(x1, x2, x3)  =  U11(x1)
U21(x1, x2)  =  U21
U12(x1, x2)  =  U12(x1, x2)
U22(x1)  =  U22
U13(x1)  =  U13

Recursive path order with status [RPO].
Quasi-Precedence:
[nplus2, plus2, U413] > [ns1, s1] > [isNatKind, n0, 0, nisNatKind] > tt
[nplus2, plus2, U413] > [ns1, s1] > U21
[nplus2, plus2, U413] > isNat > [isNatKind, n0, 0, nisNatKind] > tt
[nplus2, plus2, U413] > isNat > U111
[nplus2, plus2, U413] > isNat > U21
U122 > isNat > [isNatKind, n0, 0, nisNatKind] > tt
U122 > isNat > U111
U122 > isNat > U21
U122 > U13 > tt
U22 > tt

Status:
ns1: multiset
isNatKind: []
tt: multiset
n0: multiset
0: multiset
nplus2: multiset
plus2: multiset
isNat: multiset
nisNatKind: []
s1: multiset
U413: multiset
U111: multiset
U21: multiset
U122: multiset
U22: multiset
U13: multiset


The following usable rules [FROCOS05] were oriented:

activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
U31(tt, N) → activate(N)
activate(n__isNatKind(X)) → isNatKind(X)
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
and(tt, X) → activate(X)
activate(n__and(X1, X2)) → and(X1, X2)
isNatKind(n__s(V1)) → isNatKind(activate(V1))
activate(n__s(X)) → s(X)
activate(X) → X
isNatKind(n__0) → tt
isNatKind(X) → n__isNatKind(X)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
plus(X1, X2) → n__plus(X1, X2)
and(X1, X2) → n__and(X1, X2)
s(X) → n__s(X)
0n__0

(26) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(28) TRUE

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(N, s(M)) → U411(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
U411(tt, M, N) → PLUS(activate(N), activate(M))

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(30) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(N, s(M)) → U411(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
U411(tt, M, N) → PLUS(activate(N), activate(M))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
PLUS(x1, x2)  =  PLUS(x2)
U411(x1, x2, x3)  =  U411(x2)

Tags:
PLUS has tags [3,3]
U411 has tags [7,4,4]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
s(x1)  =  s(x1)
and(x1, x2)  =  and(x2)
isNat(x1)  =  x1
n__isNatKind(x1)  =  n__isNatKind(x1)
n__and(x1, x2)  =  n__and(x2)
tt  =  tt
activate(x1)  =  x1
n__0  =  n__0
n__plus(x1, x2)  =  n__plus(x1, x2)
U11(x1, x2, x3)  =  U11(x2, x3)
isNatKind(x1)  =  isNatKind(x1)
n__s(x1)  =  n__s(x1)
U21(x1, x2)  =  x1
plus(x1, x2)  =  plus(x1, x2)
0  =  0
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2, x3)  =  U41(x1, x2, x3)
U12(x1, x2)  =  U12
U22(x1)  =  U22
U13(x1)  =  U13

Recursive path order with status [RPO].
Quasi-Precedence:
[nisNatKind1, nplus2, U112, isNatKind1, plus2, U413] > [s1, and1, nand1, ns1] > U12
[nisNatKind1, nplus2, U112, isNatKind1, plus2, U413] > [n0, 0, U312] > tt > U13 > U12
U22 > tt > U13 > U12

Status:
s1: multiset
and1: multiset
nisNatKind1: [1]
nand1: multiset
tt: multiset
n0: multiset
nplus2: [1,2]
U112: multiset
isNatKind1: [1]
ns1: multiset
plus2: [1,2]
0: multiset
U312: [1,2]
U413: [3,2,1]
U12: multiset
U22: multiset
U13: multiset


The following usable rules [FROCOS05] were oriented:

activate(n__plus(X1, X2)) → plus(X1, X2)
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
U31(tt, N) → activate(N)
activate(n__isNatKind(X)) → isNatKind(X)
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
and(tt, X) → activate(X)
activate(n__and(X1, X2)) → and(X1, X2)
isNatKind(n__s(V1)) → isNatKind(activate(V1))
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(X) → X
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
plus(X1, X2) → n__plus(X1, X2)
isNatKind(n__0) → tt
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
0n__0

(31) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(isNat(N), n__isNatKind(N))), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(X)
activate(n__and(X1, X2)) → and(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(33) TRUE