(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__plus(N, 0) → a__U31(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U11(tt, V1, V2) → A__U12(a__isNat(V1), V2)
A__U11(tt, V1, V2) → A__ISNAT(V1)
A__U12(tt, V2) → A__U13(a__isNat(V2))
A__U12(tt, V2) → A__ISNAT(V2)
A__U21(tt, V1) → A__U22(a__isNat(V1))
A__U21(tt, V1) → A__ISNAT(V1)
A__U31(tt, N) → MARK(N)
A__U41(tt, M, N) → A__PLUS(mark(N), mark(M))
A__U41(tt, M, N) → MARK(N)
A__U41(tt, M, N) → MARK(M)
A__AND(tt, X) → MARK(X)
A__ISNAT(plus(V1, V2)) → A__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
A__ISNAT(plus(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__ISNAT(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__ISNAT(s(V1)) → A__ISNATKIND(V1)
A__ISNATKIND(plus(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__ISNATKIND(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
A__PLUS(N, 0) → A__U31(a__and(a__isNat(N), isNatKind(N)), N)
A__PLUS(N, 0) → A__AND(a__isNat(N), isNatKind(N))
A__PLUS(N, 0) → A__ISNAT(N)
A__PLUS(N, s(M)) → A__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
A__PLUS(N, s(M)) → A__AND(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N)))
A__PLUS(N, s(M)) → A__AND(a__isNat(M), isNatKind(M))
A__PLUS(N, s(M)) → A__ISNAT(M)
MARK(U11(X1, X2, X3)) → A__U11(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2)) → A__U12(mark(X1), X2)
MARK(U12(X1, X2)) → MARK(X1)
MARK(isNat(X)) → A__ISNAT(X)
MARK(U13(X)) → A__U13(mark(X))
MARK(U13(X)) → MARK(X)
MARK(U21(X1, X2)) → A__U21(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → A__U22(mark(X))
MARK(U22(X)) → MARK(X)
MARK(U31(X1, X2)) → A__U31(mark(X1), X2)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U41(X1, X2, X3)) → A__U41(mark(X1), X2, X3)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatKind(X)) → A__ISNATKIND(X)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__plus(N, 0) → a__U31(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U12(tt, V2) → A__ISNAT(V2)
A__ISNAT(plus(V1, V2)) → A__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
A__U11(tt, V1, V2) → A__U12(a__isNat(V1), V2)
A__U11(tt, V1, V2) → A__ISNAT(V1)
A__ISNAT(plus(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__AND(tt, X) → MARK(X)
MARK(U11(X1, X2, X3)) → A__U11(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2)) → A__U12(mark(X1), X2)
MARK(U12(X1, X2)) → MARK(X1)
MARK(isNat(X)) → A__ISNAT(X)
A__ISNAT(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(plus(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__ISNATKIND(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__U21(tt, V1) → A__ISNAT(V1)
A__ISNAT(s(V1)) → A__ISNATKIND(V1)
MARK(U13(X)) → MARK(X)
MARK(U21(X1, X2)) → A__U21(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → MARK(X)
MARK(U31(X1, X2)) → A__U31(mark(X1), X2)
A__U31(tt, N) → MARK(N)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U41(X1, X2, X3)) → A__U41(mark(X1), X2, X3)
A__U41(tt, M, N) → A__PLUS(mark(N), mark(M))
A__PLUS(N, 0) → A__U31(a__and(a__isNat(N), isNatKind(N)), N)
A__PLUS(N, 0) → A__AND(a__isNat(N), isNatKind(N))
A__PLUS(N, 0) → A__ISNAT(N)
A__PLUS(N, s(M)) → A__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
A__U41(tt, M, N) → MARK(N)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
A__PLUS(N, s(M)) → A__AND(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N)))
A__PLUS(N, s(M)) → A__AND(a__isNat(M), isNatKind(M))
A__PLUS(N, s(M)) → A__ISNAT(M)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatKind(X)) → A__ISNATKIND(X)
MARK(s(X)) → MARK(X)
A__U41(tt, M, N) → MARK(M)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__plus(N, 0) → a__U31(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U31(X1, X2)) → A__U31(mark(X1), X2)
A__U31(tt, N) → MARK(N)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U41(X1, X2, X3)) → A__U41(mark(X1), X2, X3)
A__U41(tt, M, N) → A__PLUS(mark(N), mark(M))
A__PLUS(N, 0) → A__U31(a__and(a__isNat(N), isNatKind(N)), N)
A__PLUS(N, 0) → A__AND(a__isNat(N), isNatKind(N))
A__PLUS(N, 0) → A__ISNAT(N)
A__PLUS(N, s(M)) → A__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
A__U41(tt, M, N) → MARK(N)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
A__PLUS(N, s(M)) → A__AND(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N)))
A__PLUS(N, s(M)) → A__AND(a__isNat(M), isNatKind(M))
A__PLUS(N, s(M)) → A__ISNAT(M)
MARK(s(X)) → MARK(X)
A__U41(tt, M, N) → MARK(M)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
A__U12(x0, x1, x2)  =  A__U12(x0, x1)
A__ISNAT(x0, x1)  =  A__ISNAT(x0)
A__U11(x0, x1, x2, x3)  =  A__U11(x0)
A__AND(x0, x1, x2)  =  A__AND(x2)
MARK(x0, x1)  =  MARK(x0, x1)
A__ISNATKIND(x0, x1)  =  A__ISNATKIND(x0)
A__U21(x0, x1, x2)  =  A__U21(x0)
A__U31(x0, x1, x2)  =  A__U31(x0)
A__U41(x0, x1, x2, x3)  =  A__U41(x0, x1)
A__PLUS(x0, x1, x2)  =  A__PLUS(x0)

Tags:
A__U12 has argument tags [1,1,28] and root tag 0
A__ISNAT has argument tags [1,20] and root tag 0
A__U11 has argument tags [1,0,0,0] and root tag 0
A__AND has argument tags [8,12,1] and root tag 0
MARK has argument tags [0,1] and root tag 0
A__ISNATKIND has argument tags [1,8] and root tag 0
A__U21 has argument tags [1,30,30] and root tag 0
A__U31 has argument tags [1,2,0] and root tag 10
A__U41 has argument tags [9,0,0,0] and root tag 15
A__PLUS has argument tags [0,0,2] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(0) = 1   
POL(A__AND(x1, x2)) = 1 + x2   
POL(A__ISNAT(x1)) = 0   
POL(A__ISNATKIND(x1)) = 0   
POL(A__PLUS(x1, x2)) = x1 + x2   
POL(A__U11(x1, x2, x3)) = x1   
POL(A__U12(x1, x2)) = x1   
POL(A__U21(x1, x2)) = 0   
POL(A__U31(x1, x2)) = x2   
POL(A__U41(x1, x2, x3)) = x2 + x3   
POL(MARK(x1)) = 0   
POL(U11(x1, x2, x3)) = x1   
POL(U12(x1, x2)) = x1   
POL(U13(x1)) = x1   
POL(U21(x1, x2)) = x1   
POL(U22(x1)) = x1   
POL(U31(x1, x2)) = 1 + x1 + x2   
POL(U41(x1, x2, x3)) = 1 + x1 + x2 + x3   
POL(a__U11(x1, x2, x3)) = x1   
POL(a__U12(x1, x2)) = x1   
POL(a__U13(x1)) = x1   
POL(a__U21(x1, x2)) = x1   
POL(a__U22(x1)) = x1   
POL(a__U31(x1, x2)) = 1 + x1 + x2   
POL(a__U41(x1, x2, x3)) = 1 + x1 + x2 + x3   
POL(a__and(x1, x2)) = x1 + x2   
POL(a__isNat(x1)) = 0   
POL(a__isNatKind(x1)) = 0   
POL(a__plus(x1, x2)) = x1 + x2   
POL(and(x1, x2)) = x1 + x2   
POL(isNat(x1)) = 0   
POL(isNatKind(x1)) = 0   
POL(mark(x1)) = x1   
POL(plus(x1, x2)) = x1 + x2   
POL(s(x1)) = 1 + x1   
POL(tt) = 0   

The following usable rules [FROCOS05] were oriented:

a__isNatKind(0) → tt
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
a__U31(tt, N) → mark(N)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
a__plus(N, 0) → a__U31(a__and(a__isNat(N), isNatKind(N)), N)
mark(and(X1, X2)) → a__and(mark(X1), X2)
a__and(tt, X) → mark(X)
mark(isNatKind(X)) → a__isNatKind(X)
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatKind(X) → isNatKind(X)
a__and(X1, X2) → and(X1, X2)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(X) → isNat(X)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__plus(N, s(M)) → a__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U41(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__U21(X1, X2) → U21(X1, X2)
a__U22(tt) → tt
a__U22(X) → U22(X)
a__U31(X1, X2) → U31(X1, X2)
a__plus(X1, X2) → plus(X1, X2)
a__U13(tt) → tt
a__U13(X) → U13(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U12(tt, V2) → A__ISNAT(V2)
A__ISNAT(plus(V1, V2)) → A__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
A__U11(tt, V1, V2) → A__U12(a__isNat(V1), V2)
A__U11(tt, V1, V2) → A__ISNAT(V1)
A__ISNAT(plus(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__AND(tt, X) → MARK(X)
MARK(U11(X1, X2, X3)) → A__U11(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2)) → A__U12(mark(X1), X2)
MARK(U12(X1, X2)) → MARK(X1)
MARK(isNat(X)) → A__ISNAT(X)
A__ISNAT(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(plus(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__ISNATKIND(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__U21(tt, V1) → A__ISNAT(V1)
A__ISNAT(s(V1)) → A__ISNATKIND(V1)
MARK(U13(X)) → MARK(X)
MARK(U21(X1, X2)) → A__U21(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → MARK(X)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatKind(X)) → A__ISNATKIND(X)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__plus(N, 0) → a__U31(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
A__U12(x0, x1, x2)  =  A__U12(x1, x2)
A__ISNAT(x0, x1)  =  A__ISNAT(x0, x1)
A__U11(x0, x1, x2, x3)  =  A__U11(x0, x1)
A__AND(x0, x1, x2)  =  A__AND(x2)
MARK(x0, x1)  =  MARK(x1)
A__ISNATKIND(x0, x1)  =  A__ISNATKIND(x0)
A__U21(x0, x1, x2)  =  A__U21(x0, x1, x2)

Tags:
A__U12 has argument tags [29,3,28] and root tag 0
A__ISNAT has argument tags [3,27] and root tag 0
A__U11 has argument tags [3,3,3,0] and root tag 0
A__AND has argument tags [24,30,3] and root tag 0
MARK has argument tags [0,3] and root tag 0
A__ISNATKIND has argument tags [3,0] and root tag 0
A__U21 has argument tags [16,3,16] and root tag 0

Comparison: MIN
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(0) = 0   
POL(A__AND(x1, x2)) = 1   
POL(A__ISNAT(x1)) = 0   
POL(A__ISNATKIND(x1)) = 0   
POL(A__U11(x1, x2, x3)) = x2   
POL(A__U12(x1, x2)) = 1 + x1 + x2   
POL(A__U21(x1, x2)) = x2   
POL(MARK(x1)) = 0   
POL(U11(x1, x2, x3)) = x1   
POL(U12(x1, x2)) = x1   
POL(U13(x1)) = x1   
POL(U21(x1, x2)) = x1   
POL(U22(x1)) = x1   
POL(U31(x1, x2)) = x2   
POL(U41(x1, x2, x3)) = 0   
POL(a__U11(x1, x2, x3)) = x1   
POL(a__U12(x1, x2)) = x1   
POL(a__U13(x1)) = x1   
POL(a__U21(x1, x2)) = x1   
POL(a__U22(x1)) = x1   
POL(a__U31(x1, x2)) = x2   
POL(a__U41(x1, x2, x3)) = 0   
POL(a__and(x1, x2)) = x1 + x2   
POL(a__isNat(x1)) = 0   
POL(a__isNatKind(x1)) = 0   
POL(a__plus(x1, x2)) = 1 + x1 + x2   
POL(and(x1, x2)) = x1 + x2   
POL(isNat(x1)) = 0   
POL(isNatKind(x1)) = 0   
POL(mark(x1)) = x1   
POL(plus(x1, x2)) = 1 + x1 + x2   
POL(s(x1)) = 0   
POL(tt) = 0   

The following usable rules [FROCOS05] were oriented:

a__isNatKind(0) → tt
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
a__U31(tt, N) → mark(N)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
a__plus(N, 0) → a__U31(a__and(a__isNat(N), isNatKind(N)), N)
mark(and(X1, X2)) → a__and(mark(X1), X2)
a__and(tt, X) → mark(X)
mark(isNatKind(X)) → a__isNatKind(X)
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatKind(X) → isNatKind(X)
a__and(X1, X2) → and(X1, X2)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(X) → isNat(X)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__plus(N, s(M)) → a__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U41(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__U21(X1, X2) → U21(X1, X2)
a__U22(tt) → tt
a__U22(X) → U22(X)
a__U31(X1, X2) → U31(X1, X2)
a__plus(X1, X2) → plus(X1, X2)
a__U13(tt) → tt
a__U13(X) → U13(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U12(tt, V2) → A__ISNAT(V2)
A__ISNAT(plus(V1, V2)) → A__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
A__U11(tt, V1, V2) → A__U12(a__isNat(V1), V2)
A__U11(tt, V1, V2) → A__ISNAT(V1)
A__ISNAT(plus(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__AND(tt, X) → MARK(X)
MARK(U11(X1, X2, X3)) → A__U11(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2)) → A__U12(mark(X1), X2)
MARK(U12(X1, X2)) → MARK(X1)
MARK(isNat(X)) → A__ISNAT(X)
A__ISNAT(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(plus(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__ISNATKIND(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__U21(tt, V1) → A__ISNAT(V1)
A__ISNAT(s(V1)) → A__ISNATKIND(V1)
MARK(U13(X)) → MARK(X)
MARK(U21(X1, X2)) → A__U21(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → MARK(X)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatKind(X)) → A__ISNATKIND(X)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__plus(N, 0) → a__U31(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U11(X1, X2, X3)) → A__U11(mark(X1), X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
A__U12(x0, x1, x2)  =  A__U12(x0, x2)
A__ISNAT(x0, x1)  =  A__ISNAT(x0, x1)
A__U11(x0, x1, x2, x3)  =  A__U11(x0)
A__AND(x0, x1, x2)  =  A__AND(x0, x2)
MARK(x0, x1)  =  MARK(x0, x1)
A__ISNATKIND(x0, x1)  =  A__ISNATKIND(x0, x1)
A__U21(x0, x1, x2)  =  A__U21(x0, x2)

Tags:
A__U12 has argument tags [0,0,1] and root tag 0
A__ISNAT has argument tags [0,0] and root tag 0
A__U11 has argument tags [0,0,0,16] and root tag 0
A__AND has argument tags [0,12,0] and root tag 0
MARK has argument tags [0,0] and root tag 0
A__ISNATKIND has argument tags [0,0] and root tag 0
A__U21 has argument tags [0,0,0] and root tag 0

Comparison: MIN
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(0) = 0   
POL(A__AND(x1, x2)) = 1   
POL(A__ISNAT(x1)) = 0   
POL(A__ISNATKIND(x1)) = 0   
POL(A__U11(x1, x2, x3)) = 0   
POL(A__U12(x1, x2)) = 0   
POL(A__U21(x1, x2)) = 0   
POL(MARK(x1)) = 1   
POL(U11(x1, x2, x3)) = 1   
POL(U12(x1, x2)) = x1   
POL(U13(x1)) = 1   
POL(U21(x1, x2)) = x1   
POL(U22(x1)) = 1   
POL(U31(x1, x2)) = x1   
POL(U41(x1, x2, x3)) = x1 + x3   
POL(a__U11(x1, x2, x3)) = x1 + x3   
POL(a__U12(x1, x2)) = 1   
POL(a__U13(x1)) = 0   
POL(a__U21(x1, x2)) = 0   
POL(a__U22(x1)) = 0   
POL(a__U31(x1, x2)) = 1 + x1   
POL(a__U41(x1, x2, x3)) = 1 + x2   
POL(a__and(x1, x2)) = 1   
POL(a__isNat(x1)) = 0   
POL(a__isNatKind(x1)) = 0   
POL(a__plus(x1, x2)) = 1   
POL(and(x1, x2)) = 1   
POL(isNat(x1)) = 0   
POL(isNatKind(x1)) = 0   
POL(mark(x1)) = x1   
POL(plus(x1, x2)) = 0   
POL(s(x1)) = 0   
POL(tt) = 0   

The following usable rules [FROCOS05] were oriented: none

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U12(tt, V2) → A__ISNAT(V2)
A__ISNAT(plus(V1, V2)) → A__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
A__U11(tt, V1, V2) → A__U12(a__isNat(V1), V2)
A__U11(tt, V1, V2) → A__ISNAT(V1)
A__ISNAT(plus(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__AND(tt, X) → MARK(X)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2)) → A__U12(mark(X1), X2)
MARK(U12(X1, X2)) → MARK(X1)
MARK(isNat(X)) → A__ISNAT(X)
A__ISNAT(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(plus(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__ISNATKIND(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__U21(tt, V1) → A__ISNAT(V1)
A__ISNAT(s(V1)) → A__ISNATKIND(V1)
MARK(U13(X)) → MARK(X)
MARK(U21(X1, X2)) → A__U21(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → MARK(X)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatKind(X)) → A__ISNATKIND(X)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__plus(N, 0) → a__U31(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U21(X1, X2)) → A__U21(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
A__U12(x0, x1, x2)  =  A__U12(x0, x1)
A__ISNAT(x0, x1)  =  A__ISNAT(x0)
A__U11(x0, x1, x2, x3)  =  A__U11(x0, x1, x2)
A__AND(x0, x1, x2)  =  A__AND(x0, x2)
MARK(x0, x1)  =  MARK(x0)
A__ISNATKIND(x0, x1)  =  A__ISNATKIND(x0)
A__U21(x0, x1, x2)  =  A__U21(x0, x1)

Tags:
A__U12 has argument tags [0,1,0] and root tag 0
A__ISNAT has argument tags [0,0] and root tag 0
A__U11 has argument tags [0,31,1,0] and root tag 0
A__AND has argument tags [1,15,0] and root tag 0
MARK has argument tags [0,8] and root tag 0
A__ISNATKIND has argument tags [0,12] and root tag 0
A__U21 has argument tags [0,0,0] and root tag 0

Comparison: MIN
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(0) = 0   
POL(A__AND(x1, x2)) = x2   
POL(A__ISNAT(x1)) = 0   
POL(A__ISNATKIND(x1)) = 0   
POL(A__U11(x1, x2, x3)) = 0   
POL(A__U12(x1, x2)) = 0   
POL(A__U21(x1, x2)) = 1 + x2   
POL(MARK(x1)) = x1   
POL(U11(x1, x2, x3)) = x1 + x2 + x3   
POL(U12(x1, x2)) = x1 + x2   
POL(U13(x1)) = x1   
POL(U21(x1, x2)) = 1 + x1 + x2   
POL(U22(x1)) = x1   
POL(U31(x1, x2)) = x2   
POL(U41(x1, x2, x3)) = 1 + x2 + x3   
POL(a__U11(x1, x2, x3)) = x1 + x2 + x3   
POL(a__U12(x1, x2)) = x1 + x2   
POL(a__U13(x1)) = x1   
POL(a__U21(x1, x2)) = 1 + x1 + x2   
POL(a__U22(x1)) = x1   
POL(a__U31(x1, x2)) = x2   
POL(a__U41(x1, x2, x3)) = 1 + x2 + x3   
POL(a__and(x1, x2)) = x1 + x2   
POL(a__isNat(x1)) = x1   
POL(a__isNatKind(x1)) = 0   
POL(a__plus(x1, x2)) = x1 + x2   
POL(and(x1, x2)) = x1 + x2   
POL(isNat(x1)) = x1   
POL(isNatKind(x1)) = 0   
POL(mark(x1)) = x1   
POL(plus(x1, x2)) = x1 + x2   
POL(s(x1)) = 1 + x1   
POL(tt) = 0   

The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U12(tt, V2) → A__ISNAT(V2)
A__ISNAT(plus(V1, V2)) → A__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
A__U11(tt, V1, V2) → A__U12(a__isNat(V1), V2)
A__U11(tt, V1, V2) → A__ISNAT(V1)
A__ISNAT(plus(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__AND(tt, X) → MARK(X)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2)) → A__U12(mark(X1), X2)
MARK(U12(X1, X2)) → MARK(X1)
MARK(isNat(X)) → A__ISNAT(X)
A__ISNAT(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(plus(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__ISNATKIND(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__U21(tt, V1) → A__ISNAT(V1)
A__ISNAT(s(V1)) → A__ISNATKIND(V1)
MARK(U13(X)) → MARK(X)
MARK(U22(X)) → MARK(X)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatKind(X)) → A__ISNATKIND(X)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__plus(N, 0) → a__U31(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__ISNAT(plus(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
MARK(U12(X1, X2)) → A__U12(mark(X1), X2)
MARK(isNat(X)) → A__ISNAT(X)
A__ISNAT(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNAT(s(V1)) → A__ISNATKIND(V1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
A__U12(x0, x1, x2)  =  A__U12(x0, x1)
A__ISNAT(x0, x1)  =  A__ISNAT(x0, x1)
A__U11(x0, x1, x2, x3)  =  A__U11(x0, x1, x3)
A__AND(x0, x1, x2)  =  A__AND(x0, x1, x2)
MARK(x0, x1)  =  MARK(x0, x1)
A__ISNATKIND(x0, x1)  =  A__ISNATKIND(x0)
A__U21(x0, x1, x2)  =  A__U21(x0)

Tags:
A__U12 has argument tags [0,8,16] and root tag 1
A__ISNAT has argument tags [0,1] and root tag 1
A__U11 has argument tags [0,0,25,0] and root tag 1
A__AND has argument tags [4,5,0] and root tag 0
MARK has argument tags [4,0] and root tag 0
A__ISNATKIND has argument tags [0,0] and root tag 0
A__U21 has argument tags [0,0,27] and root tag 1

Comparison: MIN
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(0) = 0   
POL(A__AND(x1, x2)) = 0   
POL(A__ISNAT(x1)) = 0   
POL(A__ISNATKIND(x1)) = 0   
POL(A__U11(x1, x2, x3)) = x2 + x3   
POL(A__U12(x1, x2)) = 0   
POL(A__U21(x1, x2)) = 0   
POL(MARK(x1)) = 0   
POL(U11(x1, x2, x3)) = 1   
POL(U12(x1, x2)) = 1   
POL(U13(x1)) = x1   
POL(U21(x1, x2)) = 1   
POL(U22(x1)) = x1   
POL(U31(x1, x2)) = x2   
POL(U41(x1, x2, x3)) = 0   
POL(a__U11(x1, x2, x3)) = 1   
POL(a__U12(x1, x2)) = 1   
POL(a__U13(x1)) = x1   
POL(a__U21(x1, x2)) = 1   
POL(a__U22(x1)) = x1   
POL(a__U31(x1, x2)) = x2   
POL(a__U41(x1, x2, x3)) = 0   
POL(a__and(x1, x2)) = x1 + x2   
POL(a__isNat(x1)) = 1   
POL(a__isNatKind(x1)) = 0   
POL(a__plus(x1, x2)) = x1   
POL(and(x1, x2)) = x1 + x2   
POL(isNat(x1)) = 1   
POL(isNatKind(x1)) = 0   
POL(mark(x1)) = x1   
POL(plus(x1, x2)) = x1   
POL(s(x1)) = 0   
POL(tt) = 0   

The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U12(tt, V2) → A__ISNAT(V2)
A__ISNAT(plus(V1, V2)) → A__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
A__U11(tt, V1, V2) → A__U12(a__isNat(V1), V2)
A__U11(tt, V1, V2) → A__ISNAT(V1)
A__AND(tt, X) → MARK(X)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2)) → MARK(X1)
A__ISNATKIND(plus(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__ISNATKIND(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__U21(tt, V1) → A__ISNAT(V1)
MARK(U13(X)) → MARK(X)
MARK(U22(X)) → MARK(X)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatKind(X)) → A__ISNATKIND(X)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__plus(N, 0) → a__U31(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.

(16) Complex Obligation (AND)

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2)) → MARK(X1)
MARK(U13(X)) → MARK(X)
MARK(U22(X)) → MARK(X)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
A__AND(tt, X) → MARK(X)
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatKind(X)) → A__ISNATKIND(X)
A__ISNATKIND(plus(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__ISNATKIND(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__plus(N, 0) → a__U31(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(and(X1, X2)) → A__AND(mark(X1), X2)
A__AND(tt, X) → MARK(X)
MARK(and(X1, X2)) → MARK(X1)
A__ISNATKIND(plus(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__ISNATKIND(plus(V1, V2)) → A__ISNATKIND(V1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x0, x1)
A__AND(x0, x1, x2)  =  A__AND(x0, x2)
A__ISNATKIND(x0, x1)  =  A__ISNATKIND(x0, x1)

Tags:
MARK has argument tags [4,0] and root tag 2
A__AND has argument tags [0,2,4] and root tag 0
A__ISNATKIND has argument tags [0,4] and root tag 2

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(0) = 1   
POL(A__AND(x1, x2)) = 1   
POL(A__ISNATKIND(x1)) = 1   
POL(MARK(x1)) = 0   
POL(U11(x1, x2, x3)) = x1   
POL(U12(x1, x2)) = x1 + x2   
POL(U13(x1)) = x1   
POL(U21(x1, x2)) = 1 + x2   
POL(U22(x1)) = x1   
POL(U31(x1, x2)) = x1 + x2   
POL(U41(x1, x2, x3)) = x2   
POL(a__U11(x1, x2, x3)) = x2   
POL(a__U12(x1, x2)) = x2   
POL(a__U13(x1)) = x1   
POL(a__U21(x1, x2)) = 0   
POL(a__U22(x1)) = 1   
POL(a__U31(x1, x2)) = x2   
POL(a__U41(x1, x2, x3)) = 1 + x2 + x3   
POL(a__and(x1, x2)) = x2   
POL(a__isNat(x1)) = 1   
POL(a__isNatKind(x1)) = 0   
POL(a__plus(x1, x2)) = 0   
POL(and(x1, x2)) = 1 + x1 + x2   
POL(isNat(x1)) = x1   
POL(isNatKind(x1)) = 1 + x1   
POL(mark(x1)) = 0   
POL(plus(x1, x2)) = 1 + x1 + x2   
POL(s(x1)) = x1   
POL(tt) = 0   

The following usable rules [FROCOS05] were oriented: none

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2)) → MARK(X1)
MARK(U13(X)) → MARK(X)
MARK(U22(X)) → MARK(X)
MARK(isNatKind(X)) → A__ISNATKIND(X)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__plus(N, 0) → a__U31(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.

(21) Complex Obligation (AND)

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__plus(N, 0) → a__U31(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
A__ISNATKIND(x0, x1)  =  A__ISNATKIND(x1)

Tags:
A__ISNATKIND has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(A__ISNATKIND(x1)) = 1   
POL(s(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(24) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__plus(N, 0) → a__U31(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(26) TRUE

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U12(X1, X2)) → MARK(X1)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U13(X)) → MARK(X)
MARK(U22(X)) → MARK(X)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__plus(N, 0) → a__U31(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U11(X1, X2, X3)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x0, x1)

Tags:
MARK has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(MARK(x1)) = 0   
POL(U11(x1, x2, x3)) = 1 + x1   
POL(U12(x1, x2)) = x1   
POL(U13(x1)) = x1   
POL(U22(x1)) = x1   

The following usable rules [FROCOS05] were oriented: none

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U12(X1, X2)) → MARK(X1)
MARK(U13(X)) → MARK(X)
MARK(U22(X)) → MARK(X)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__plus(N, 0) → a__U31(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(30) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U22(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x0, x1)

Tags:
MARK has argument tags [0,0] and root tag 0

Comparison: MS
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(MARK(x1)) = 1   
POL(U12(x1, x2)) = x1   
POL(U13(x1)) = x1   
POL(U22(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U12(X1, X2)) → MARK(X1)
MARK(U13(X)) → MARK(X)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__plus(N, 0) → a__U31(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U13(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x1)

Tags:
MARK has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(MARK(x1)) = 1   
POL(U12(x1, x2)) = x1   
POL(U13(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U12(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__plus(N, 0) → a__U31(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U12(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x1)

Tags:
MARK has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(MARK(x1)) = 1   
POL(U12(x1, x2)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(35) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__plus(N, 0) → a__U31(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(37) TRUE

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__ISNAT(plus(V1, V2)) → A__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
A__U11(tt, V1, V2) → A__U12(a__isNat(V1), V2)
A__U12(tt, V2) → A__ISNAT(V2)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__U21(tt, V1) → A__ISNAT(V1)
A__U11(tt, V1, V2) → A__ISNAT(V1)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__plus(N, 0) → a__U31(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(39) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__ISNAT(plus(V1, V2)) → A__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
A__U11(tt, V1, V2) → A__U12(a__isNat(V1), V2)
A__U12(tt, V2) → A__ISNAT(V2)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__U21(tt, V1) → A__ISNAT(V1)
A__U11(tt, V1, V2) → A__ISNAT(V1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
A__ISNAT(x0, x1)  =  A__ISNAT(x0, x1)
A__U11(x0, x1, x2, x3)  =  A__U11(x0)
A__U12(x0, x1, x2)  =  A__U12(x0, x2)
A__U21(x0, x1, x2)  =  A__U21(x2)

Tags:
A__ISNAT has argument tags [0,0] and root tag 2
A__U11 has argument tags [0,3,0,0] and root tag 2
A__U12 has argument tags [1,10,0] and root tag 3
A__U21 has argument tags [14,8,0] and root tag 1

Comparison: DMS
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(0) = 0   
POL(A__ISNAT(x1)) = 1 + x1   
POL(A__U11(x1, x2, x3)) = x2 + x3   
POL(A__U12(x1, x2)) = 1 + x1 + x2   
POL(A__U21(x1, x2)) = 1   
POL(U11(x1, x2, x3)) = 0   
POL(U12(x1, x2)) = 0   
POL(U13(x1)) = 0   
POL(U21(x1, x2)) = 1   
POL(U22(x1)) = 0   
POL(U31(x1, x2)) = 1 + x1   
POL(U41(x1, x2, x3)) = 1 + x3   
POL(a__U11(x1, x2, x3)) = 1   
POL(a__U12(x1, x2)) = 0   
POL(a__U13(x1)) = 0   
POL(a__U21(x1, x2)) = 1   
POL(a__U22(x1)) = 0   
POL(a__U31(x1, x2)) = 0   
POL(a__U41(x1, x2, x3)) = x2 + x3   
POL(a__and(x1, x2)) = 0   
POL(a__isNat(x1)) = 1   
POL(a__isNatKind(x1)) = x1   
POL(a__plus(x1, x2)) = 1   
POL(and(x1, x2)) = 1 + x1   
POL(isNat(x1)) = 0   
POL(isNatKind(x1)) = 0   
POL(mark(x1)) = 0   
POL(plus(x1, x2)) = 1 + x1 + x2   
POL(s(x1)) = 1 + x1   
POL(tt) = 0   

The following usable rules [FROCOS05] were oriented:

a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(X) → isNat(X)
a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__U21(X1, X2) → U21(X1, X2)
a__U22(tt) → tt
a__U22(X) → U22(X)
a__U13(tt) → tt
a__U13(X) → U13(X)

(40) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, N) → mark(N)
a__U41(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__plus(N, 0) → a__U31(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U41(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2) → U31(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(41) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(42) TRUE