(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(n__isNat(N), n__isNatKind(N))), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
isNat(X) → n__isNat(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(activate(X))
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isNat(X)) → isNat(X)
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(tt, V1, V2) → U121(isNat(activate(V1)), activate(V2))
U111(tt, V1, V2) → ISNAT(activate(V1))
U111(tt, V1, V2) → ACTIVATE(V1)
U111(tt, V1, V2) → ACTIVATE(V2)
U121(tt, V2) → U131(isNat(activate(V2)))
U121(tt, V2) → ISNAT(activate(V2))
U121(tt, V2) → ACTIVATE(V2)
U211(tt, V1) → U221(isNat(activate(V1)))
U211(tt, V1) → ISNAT(activate(V1))
U211(tt, V1) → ACTIVATE(V1)
U311(tt, N) → ACTIVATE(N)
U411(tt, M, N) → S(plus(activate(N), activate(M)))
U411(tt, M, N) → PLUS(activate(N), activate(M))
U411(tt, M, N) → ACTIVATE(N)
U411(tt, M, N) → ACTIVATE(M)
AND(tt, X) → ACTIVATE(X)
ISNAT(n__plus(V1, V2)) → U111(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
ISNAT(n__plus(V1, V2)) → AND(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
ISNAT(n__plus(V1, V2)) → ISNATKIND(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
ISNAT(n__s(V1)) → ISNATKIND(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNATKIND(n__plus(V1, V2)) → AND(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
ISNATKIND(n__plus(V1, V2)) → ISNATKIND(activate(V1))
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V1)
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V2)
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
ISNATKIND(n__s(V1)) → ACTIVATE(V1)
PLUS(N, 0) → U311(and(isNat(N), n__isNatKind(N)), N)
PLUS(N, 0) → AND(isNat(N), n__isNatKind(N))
PLUS(N, 0) → ISNAT(N)
PLUS(N, s(M)) → U411(and(and(isNat(M), n__isNatKind(M)), n__and(n__isNat(N), n__isNatKind(N))), M, N)
PLUS(N, s(M)) → AND(and(isNat(M), n__isNatKind(M)), n__and(n__isNat(N), n__isNatKind(N)))
PLUS(N, s(M)) → AND(isNat(M), n__isNatKind(M))
PLUS(N, s(M)) → ISNAT(M)
ACTIVATE(n__0) → 01
ACTIVATE(n__plus(X1, X2)) → PLUS(activate(X1), activate(X2))
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__isNatKind(X)) → ISNATKIND(X)
ACTIVATE(n__s(X)) → S(activate(X))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNat(X)) → ISNAT(X)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(n__isNat(N), n__isNatKind(N))), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
isNat(X) → n__isNat(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(activate(X))
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isNat(X)) → isNat(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 5 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(tt, V2) → ISNAT(activate(V2))
ISNAT(n__plus(V1, V2)) → U111(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
U111(tt, V1, V2) → U121(isNat(activate(V1)), activate(V2))
U121(tt, V2) → ACTIVATE(V2)
ACTIVATE(n__plus(X1, X2)) → PLUS(activate(X1), activate(X2))
PLUS(N, 0) → U311(and(isNat(N), n__isNatKind(N)), N)
U311(tt, N) → ACTIVATE(N)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__isNatKind(X)) → ISNATKIND(X)
ISNATKIND(n__plus(V1, V2)) → AND(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNAT(n__plus(V1, V2)) → AND(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
ISNAT(n__plus(V1, V2)) → ISNATKIND(activate(V1))
ISNATKIND(n__plus(V1, V2)) → ISNATKIND(activate(V1))
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V1)
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V2)
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
ISNATKIND(n__s(V1)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
U211(tt, V1) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ISNATKIND(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
U211(tt, V1) → ACTIVATE(V1)
PLUS(N, 0) → AND(isNat(N), n__isNatKind(N))
PLUS(N, 0) → ISNAT(N)
PLUS(N, s(M)) → U411(and(and(isNat(M), n__isNatKind(M)), n__and(n__isNat(N), n__isNatKind(N))), M, N)
U411(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → AND(and(isNat(M), n__isNatKind(M)), n__and(n__isNat(N), n__isNatKind(N)))
PLUS(N, s(M)) → AND(isNat(M), n__isNatKind(M))
PLUS(N, s(M)) → ISNAT(M)
U411(tt, M, N) → ACTIVATE(N)
U411(tt, M, N) → ACTIVATE(M)
U111(tt, V1, V2) → ISNAT(activate(V1))
U111(tt, V1, V2) → ACTIVATE(V1)
U111(tt, V1, V2) → ACTIVATE(V2)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(n__isNat(N), n__isNatKind(N))), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
isNat(X) → n__isNat(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(activate(X))
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isNat(X)) → isNat(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(tt, V2) → ISNAT(activate(V2))
ISNAT(n__plus(V1, V2)) → U111(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
U111(tt, V1, V2) → U121(isNat(activate(V1)), activate(V2))
U121(tt, V2) → ACTIVATE(V2)
PLUS(N, 0) → U311(and(isNat(N), n__isNatKind(N)), N)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__isNatKind(X)) → ISNATKIND(X)
ISNATKIND(n__plus(V1, V2)) → AND(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__and(X1, X2)) → AND(activate(X1), X2)
ACTIVATE(n__and(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNAT(n__plus(V1, V2)) → AND(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
ISNAT(n__plus(V1, V2)) → ISNATKIND(activate(V1))
ISNATKIND(n__plus(V1, V2)) → ISNATKIND(activate(V1))
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V1)
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V2)
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
ISNATKIND(n__s(V1)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
U211(tt, V1) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ISNATKIND(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
PLUS(N, 0) → AND(isNat(N), n__isNatKind(N))
PLUS(N, 0) → ISNAT(N)
PLUS(N, s(M)) → U411(and(and(isNat(M), n__isNatKind(M)), n__and(n__isNat(N), n__isNatKind(N))), M, N)
U411(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → AND(and(isNat(M), n__isNatKind(M)), n__and(n__isNat(N), n__isNatKind(N)))
PLUS(N, s(M)) → AND(isNat(M), n__isNatKind(M))
PLUS(N, s(M)) → ISNAT(M)
U411(tt, M, N) → ACTIVATE(N)
U411(tt, M, N) → ACTIVATE(M)
U111(tt, V1, V2) → ISNAT(activate(V1))
U111(tt, V1, V2) → ACTIVATE(V1)
U111(tt, V1, V2) → ACTIVATE(V2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
U121(x0, x1, x2)  =  U121(x2)
ISNAT(x0, x1)  =  ISNAT(x1)
U111(x0, x1, x2, x3)  =  U111(x0, x2)
ACTIVATE(x0, x1)  =  ACTIVATE(x1)
PLUS(x0, x1, x2)  =  PLUS(x0, x2)
U311(x0, x1, x2)  =  U311(x0, x2)
ISNATKIND(x0, x1)  =  ISNATKIND(x1)
AND(x0, x1, x2)  =  AND(x1, x2)
U211(x0, x1, x2)  =  U211(x2)
U411(x0, x1, x2, x3)  =  U411(x0, x1, x3)

Tags:
U121 has argument tags [16,11,28] and root tag 7
ISNAT has argument tags [4,6] and root tag 8
U111 has argument tags [29,0,29,0] and root tag 6
ACTIVATE has argument tags [24,28] and root tag 0
PLUS has argument tags [28,7,0] and root tag 0
U311 has argument tags [0,30,28] and root tag 0
ISNATKIND has argument tags [2,20] and root tag 12
AND has argument tags [24,31,28] and root tag 15
U211 has argument tags [1,19,28] and root tag 0
U411 has argument tags [31,0,15,4] and root tag 14

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
U121(x1, x2)  =  U121(x1, x2)
tt  =  tt
ISNAT(x1)  =  ISNAT(x1)
activate(x1)  =  x1
n__plus(x1, x2)  =  n__plus(x1, x2)
U111(x1, x2, x3)  =  x3
and(x1, x2)  =  and(x1, x2)
isNatKind(x1)  =  isNatKind(x1)
n__isNatKind(x1)  =  n__isNatKind(x1)
isNat(x1)  =  isNat(x1)
ACTIVATE(x1)  =  x1
PLUS(x1, x2)  =  PLUS(x1, x2)
0  =  0
U311(x1, x2)  =  x1
ISNATKIND(x1)  =  x1
AND(x1, x2)  =  AND(x2)
n__s(x1)  =  n__s(x1)
n__and(x1, x2)  =  n__and(x1, x2)
n__isNat(x1)  =  n__isNat(x1)
U211(x1, x2)  =  x1
s(x1)  =  s(x1)
U411(x1, x2, x3)  =  U411(x2, x3)
n__0  =  n__0
plus(x1, x2)  =  plus(x1, x2)
U31(x1, x2)  =  U31(x1, x2)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
U21(x1, x2)  =  x1
U41(x1, x2, x3)  =  U41(x1, x2, x3)
U12(x1, x2)  =  U12(x1, x2)
U22(x1)  =  U22
U13(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
U12^12 > ISNAT1 > [tt, isNatKind1, nisNatKind1, isNat1, nisNat1, U22] > [ns1, s1]
[nplus2, PLUS2, U41^12, plus2, U413] > [0, n0, U312] > ISNAT1 > [tt, isNatKind1, nisNatKind1, isNat1, nisNat1, U22] > [ns1, s1]
[nplus2, PLUS2, U41^12, plus2, U413] > [0, n0, U312] > [and2, AND1, nand2] > [ns1, s1]
[nplus2, PLUS2, U41^12, plus2, U413] > U113 > U122 > [tt, isNatKind1, nisNatKind1, isNat1, nisNat1, U22] > [ns1, s1]

Status:
U12^12: [2,1]
tt: []
ISNAT1: [1]
nplus2: [1,2]
and2: [1,2]
isNatKind1: [1]
nisNatKind1: [1]
isNat1: [1]
PLUS2: [1,2]
0: []
AND1: [1]
ns1: [1]
nand2: [1,2]
nisNat1: [1]
s1: [1]
U41^12: [2,1]
n0: []
plus2: [1,2]
U312: [2,1]
U113: [1,3,2]
U413: [3,2,1]
U122: [2,1]
U22: []


The following usable rules [FROCOS05] were oriented:

activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
U31(tt, N) → activate(N)
activate(n__isNatKind(X)) → isNatKind(X)
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
and(tt, X) → activate(X)
activate(n__and(X1, X2)) → and(activate(X1), X2)
isNatKind(n__s(V1)) → isNatKind(activate(V1))
activate(n__s(X)) → s(activate(X))
activate(n__isNat(X)) → isNat(X)
activate(X) → X
isNatKind(n__0) → tt
isNatKind(X) → n__isNatKind(X)
and(X1, X2) → n__and(X1, X2)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNat(X) → n__isNat(X)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(n__isNat(N), n__isNatKind(N))), M, N)
U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U21(tt, V1) → U22(isNat(activate(V1)))
U41(tt, M, N) → s(plus(activate(N), activate(M)))
U12(tt, V2) → U13(isNat(activate(V2)))
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
U22(tt) → tt
U13(tt) → tt
0n__0

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__plus(X1, X2)) → PLUS(activate(X1), activate(X2))
U311(tt, N) → ACTIVATE(N)
U211(tt, V1) → ACTIVATE(V1)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNat(activate(V1)), activate(V2))
U12(tt, V2) → U13(isNat(activate(V2)))
U13(tt) → tt
U21(tt, V1) → U22(isNat(activate(V1)))
U22(tt) → tt
U31(tt, N) → activate(N)
U41(tt, M, N) → s(plus(activate(N), activate(M)))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(and(isNatKind(activate(V1)), n__isNatKind(activate(V2))), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → and(isNatKind(activate(V1)), n__isNatKind(activate(V2)))
isNatKind(n__s(V1)) → isNatKind(activate(V1))
plus(N, 0) → U31(and(isNat(N), n__isNatKind(N)), N)
plus(N, s(M)) → U41(and(and(isNat(M), n__isNatKind(M)), n__and(n__isNat(N), n__isNatKind(N))), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNatKind(X) → n__isNatKind(X)
s(X) → n__s(X)
and(X1, X2) → n__and(X1, X2)
isNat(X) → n__isNat(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__isNatKind(X)) → isNatKind(X)
activate(n__s(X)) → s(activate(X))
activate(n__and(X1, X2)) → and(activate(X1), X2)
activate(n__isNat(X)) → isNat(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 3 less nodes.

(8) TRUE