(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U11(tt, V1, V2)) → U121(isNat(V1), V2)
ACTIVE(U11(tt, V1, V2)) → ISNAT(V1)
ACTIVE(U12(tt, V2)) → U131(isNat(V2))
ACTIVE(U12(tt, V2)) → ISNAT(V2)
ACTIVE(U21(tt, V1)) → U221(isNat(V1))
ACTIVE(U21(tt, V1)) → ISNAT(V1)
ACTIVE(U41(tt, M, N)) → S(plus(N, M))
ACTIVE(U41(tt, M, N)) → PLUS(N, M)
ACTIVE(isNat(plus(V1, V2))) → U111(and(isNatKind(V1), isNatKind(V2)), V1, V2)
ACTIVE(isNat(plus(V1, V2))) → AND(isNatKind(V1), isNatKind(V2))
ACTIVE(isNat(plus(V1, V2))) → ISNATKIND(V1)
ACTIVE(isNat(plus(V1, V2))) → ISNATKIND(V2)
ACTIVE(isNat(s(V1))) → U211(isNatKind(V1), V1)
ACTIVE(isNat(s(V1))) → ISNATKIND(V1)
ACTIVE(isNatKind(plus(V1, V2))) → AND(isNatKind(V1), isNatKind(V2))
ACTIVE(isNatKind(plus(V1, V2))) → ISNATKIND(V1)
ACTIVE(isNatKind(plus(V1, V2))) → ISNATKIND(V2)
ACTIVE(isNatKind(s(V1))) → ISNATKIND(V1)
ACTIVE(plus(N, 0)) → U311(and(isNat(N), isNatKind(N)), N)
ACTIVE(plus(N, 0)) → AND(isNat(N), isNatKind(N))
ACTIVE(plus(N, 0)) → ISNAT(N)
ACTIVE(plus(N, 0)) → ISNATKIND(N)
ACTIVE(plus(N, s(M))) → U411(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
ACTIVE(plus(N, s(M))) → AND(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N)))
ACTIVE(plus(N, s(M))) → AND(isNat(M), isNatKind(M))
ACTIVE(plus(N, s(M))) → ISNAT(M)
ACTIVE(plus(N, s(M))) → ISNATKIND(M)
ACTIVE(plus(N, s(M))) → AND(isNat(N), isNatKind(N))
ACTIVE(plus(N, s(M))) → ISNAT(N)
ACTIVE(plus(N, s(M))) → ISNATKIND(N)
ACTIVE(U11(X1, X2, X3)) → U111(active(X1), X2, X3)
ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U12(X1, X2)) → U121(active(X1), X2)
ACTIVE(U12(X1, X2)) → ACTIVE(X1)
ACTIVE(U13(X)) → U131(active(X))
ACTIVE(U13(X)) → ACTIVE(X)
ACTIVE(U21(X1, X2)) → U211(active(X1), X2)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U22(X)) → U221(active(X))
ACTIVE(U22(X)) → ACTIVE(X)
ACTIVE(U31(X1, X2)) → U311(active(X1), X2)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(X1, X2, X3)) → U411(active(X1), X2, X3)
ACTIVE(U41(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(s(X)) → S(active(X))
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(plus(X1, X2)) → PLUS(active(X1), X2)
ACTIVE(plus(X1, X2)) → ACTIVE(X1)
ACTIVE(plus(X1, X2)) → PLUS(X1, active(X2))
ACTIVE(plus(X1, X2)) → ACTIVE(X2)
ACTIVE(and(X1, X2)) → AND(active(X1), X2)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)
U121(mark(X1), X2) → U121(X1, X2)
U131(mark(X)) → U131(X)
U211(mark(X1), X2) → U211(X1, X2)
U221(mark(X)) → U221(X)
U311(mark(X1), X2) → U311(X1, X2)
U411(mark(X1), X2, X3) → U411(X1, X2, X3)
S(mark(X)) → S(X)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(X1, mark(X2)) → PLUS(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
PROPER(U11(X1, X2, X3)) → U111(proper(X1), proper(X2), proper(X3))
PROPER(U11(X1, X2, X3)) → PROPER(X1)
PROPER(U11(X1, X2, X3)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → PROPER(X3)
PROPER(U12(X1, X2)) → U121(proper(X1), proper(X2))
PROPER(U12(X1, X2)) → PROPER(X1)
PROPER(U12(X1, X2)) → PROPER(X2)
PROPER(isNat(X)) → ISNAT(proper(X))
PROPER(isNat(X)) → PROPER(X)
PROPER(U13(X)) → U131(proper(X))
PROPER(U13(X)) → PROPER(X)
PROPER(U21(X1, X2)) → U211(proper(X1), proper(X2))
PROPER(U21(X1, X2)) → PROPER(X1)
PROPER(U21(X1, X2)) → PROPER(X2)
PROPER(U22(X)) → U221(proper(X))
PROPER(U22(X)) → PROPER(X)
PROPER(U31(X1, X2)) → U311(proper(X1), proper(X2))
PROPER(U31(X1, X2)) → PROPER(X1)
PROPER(U31(X1, X2)) → PROPER(X2)
PROPER(U41(X1, X2, X3)) → U411(proper(X1), proper(X2), proper(X3))
PROPER(U41(X1, X2, X3)) → PROPER(X1)
PROPER(U41(X1, X2, X3)) → PROPER(X2)
PROPER(U41(X1, X2, X3)) → PROPER(X3)
PROPER(s(X)) → S(proper(X))
PROPER(s(X)) → PROPER(X)
PROPER(plus(X1, X2)) → PLUS(proper(X1), proper(X2))
PROPER(plus(X1, X2)) → PROPER(X1)
PROPER(plus(X1, X2)) → PROPER(X2)
PROPER(and(X1, X2)) → AND(proper(X1), proper(X2))
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X2)
PROPER(isNatKind(X)) → ISNATKIND(proper(X))
PROPER(isNatKind(X)) → PROPER(X)
U111(ok(X1), ok(X2), ok(X3)) → U111(X1, X2, X3)
U121(ok(X1), ok(X2)) → U121(X1, X2)
ISNAT(ok(X)) → ISNAT(X)
U131(ok(X)) → U131(X)
U211(ok(X1), ok(X2)) → U211(X1, X2)
U221(ok(X)) → U221(X)
U311(ok(X1), ok(X2)) → U311(X1, X2)
U411(ok(X1), ok(X2), ok(X3)) → U411(X1, X2, X3)
S(ok(X)) → S(X)
PLUS(ok(X1), ok(X2)) → PLUS(X1, X2)
AND(ok(X1), ok(X2)) → AND(X1, X2)
ISNATKIND(ok(X)) → ISNATKIND(X)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 15 SCCs with 55 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATKIND(ok(X)) → ISNATKIND(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATKIND(ok(X)) → ISNATKIND(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNATKIND(x1)  =  x1
ok(x1)  =  ok(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
ok1: [1]


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNAT(ok(X)) → ISNAT(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNAT(ok(X)) → ISNAT(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ISNAT(x1)  =  x1
ok(x1)  =  ok(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
ok1: [1]


The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(ok(X1), ok(X2)) → AND(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(ok(X1), ok(X2)) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  AND(x1, x2)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
AND2: [2,1]
ok1: [1]


The following usable rules [FROCOS05] were oriented: none

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(mark(X1), X2) → AND(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(mark(X1), X2) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[AND2, mark1]

Status:
AND2: [2,1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(19) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(21) TRUE

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(X1, mark(X2)) → PLUS(X1, X2)
PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(ok(X1), ok(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(X1, mark(X2)) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  PLUS(x2)
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
PLUS1: [1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(mark(X1), X2) → PLUS(X1, X2)
PLUS(ok(X1), ok(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(mark(X1), X2) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  PLUS(x1, x2)
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[PLUS2, mark1]

Status:
PLUS2: [2,1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PLUS(ok(X1), ok(X2)) → PLUS(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PLUS(ok(X1), ok(X2)) → PLUS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PLUS(x1, x2)  =  PLUS(x2)
ok(x1)  =  ok(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
PLUS1: [1]
ok1: [1]


The following usable rules [FROCOS05] were oriented: none

(28) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(30) TRUE

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(ok(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(ok(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
ok1: [1]


The following usable rules [FROCOS05] were oriented: none

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
S(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(35) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(37) TRUE

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(ok(X1), ok(X2), ok(X3)) → U411(X1, X2, X3)
U411(mark(X1), X2, X3) → U411(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(39) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(ok(X1), ok(X2), ok(X3)) → U411(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2, x3)  =  U411(x1, x2, x3)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U41^13, ok1]

Status:
U41^13: [3,2,1]
ok1: [1]


The following usable rules [FROCOS05] were oriented: none

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(mark(X1), X2, X3) → U411(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(41) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U411(mark(X1), X2, X3) → U411(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U411(x1, x2, x3)  =  U411(x1)
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
U41^11: [1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(42) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(43) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(44) TRUE

(45) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(ok(X1), ok(X2)) → U311(X1, X2)
U311(mark(X1), X2) → U311(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(46) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(ok(X1), ok(X2)) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U311(x1, x2)  =  U311(x1, x2)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
U31^12: [2,1]
ok1: [1]


The following usable rules [FROCOS05] were oriented: none

(47) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(mark(X1), X2) → U311(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(48) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(mark(X1), X2) → U311(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[U31^12, mark1]

Status:
U31^12: [2,1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(49) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(50) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(51) TRUE

(52) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(ok(X)) → U221(X)
U221(mark(X)) → U221(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(53) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(ok(X)) → U221(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U221(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
ok1: [1]


The following usable rules [FROCOS05] were oriented: none

(54) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(mark(X)) → U221(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(55) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U221(mark(X)) → U221(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U221(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(56) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(57) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(58) TRUE

(59) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(ok(X1), ok(X2)) → U211(X1, X2)
U211(mark(X1), X2) → U211(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(60) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(ok(X1), ok(X2)) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U211(x1, x2)  =  U211(x1, x2)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
U21^12: [2,1]
ok1: [1]


The following usable rules [FROCOS05] were oriented: none

(61) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(mark(X1), X2) → U211(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(62) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(mark(X1), X2) → U211(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[U21^12, mark1]

Status:
U21^12: [2,1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(63) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(64) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(65) TRUE

(66) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U131(ok(X)) → U131(X)
U131(mark(X)) → U131(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(67) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U131(ok(X)) → U131(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U131(x1)  =  x1
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
ok1: [1]


The following usable rules [FROCOS05] were oriented: none

(68) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U131(mark(X)) → U131(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(69) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U131(mark(X)) → U131(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U131(x1)  =  x1
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(70) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(71) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(72) TRUE

(73) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(ok(X1), ok(X2)) → U121(X1, X2)
U121(mark(X1), X2) → U121(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(74) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(ok(X1), ok(X2)) → U121(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U121(x1, x2)  =  U121(x1, x2)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
U12^12: [2,1]
ok1: [1]


The following usable rules [FROCOS05] were oriented: none

(75) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(mark(X1), X2) → U121(X1, X2)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(76) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(mark(X1), X2) → U121(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Lexicographic path order with status [LPO].
Quasi-Precedence:
[U12^12, mark1]

Status:
U12^12: [2,1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(77) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(78) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(79) TRUE

(80) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(ok(X1), ok(X2), ok(X3)) → U111(X1, X2, X3)
U111(mark(X1), X2, X3) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(81) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(ok(X1), ok(X2), ok(X3)) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  U111(x1, x2, x3)
ok(x1)  =  ok(x1)
mark(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U11^13, ok1]

Status:
U11^13: [3,2,1]
ok1: [1]


The following usable rules [FROCOS05] were oriented: none

(82) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(mark(X1), X2, X3) → U111(X1, X2, X3)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(83) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(mark(X1), X2, X3) → U111(X1, X2, X3)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
U111(x1, x2, x3)  =  U111(x1)
mark(x1)  =  mark(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
U11^11: [1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(84) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(85) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(86) TRUE

(87) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(U11(X1, X2, X3)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → PROPER(X1)
PROPER(U11(X1, X2, X3)) → PROPER(X3)
PROPER(U12(X1, X2)) → PROPER(X1)
PROPER(U12(X1, X2)) → PROPER(X2)
PROPER(isNat(X)) → PROPER(X)
PROPER(U13(X)) → PROPER(X)
PROPER(U21(X1, X2)) → PROPER(X1)
PROPER(U21(X1, X2)) → PROPER(X2)
PROPER(U22(X)) → PROPER(X)
PROPER(U31(X1, X2)) → PROPER(X1)
PROPER(U31(X1, X2)) → PROPER(X2)
PROPER(U41(X1, X2, X3)) → PROPER(X1)
PROPER(U41(X1, X2, X3)) → PROPER(X2)
PROPER(U41(X1, X2, X3)) → PROPER(X3)
PROPER(s(X)) → PROPER(X)
PROPER(plus(X1, X2)) → PROPER(X1)
PROPER(plus(X1, X2)) → PROPER(X2)
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X2)
PROPER(isNatKind(X)) → PROPER(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(88) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(U11(X1, X2, X3)) → PROPER(X2)
PROPER(U11(X1, X2, X3)) → PROPER(X1)
PROPER(U11(X1, X2, X3)) → PROPER(X3)
PROPER(U12(X1, X2)) → PROPER(X1)
PROPER(U12(X1, X2)) → PROPER(X2)
PROPER(U13(X)) → PROPER(X)
PROPER(U21(X1, X2)) → PROPER(X1)
PROPER(U21(X1, X2)) → PROPER(X2)
PROPER(U31(X1, X2)) → PROPER(X1)
PROPER(U31(X1, X2)) → PROPER(X2)
PROPER(U41(X1, X2, X3)) → PROPER(X1)
PROPER(U41(X1, X2, X3)) → PROPER(X2)
PROPER(U41(X1, X2, X3)) → PROPER(X3)
PROPER(plus(X1, X2)) → PROPER(X1)
PROPER(plus(X1, X2)) → PROPER(X2)
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
U11(x1, x2, x3)  =  U11(x1, x2, x3)
U12(x1, x2)  =  U12(x1, x2)
isNat(x1)  =  x1
U13(x1)  =  U13(x1)
U21(x1, x2)  =  U21(x1, x2)
U22(x1)  =  x1
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2, x3)  =  U41(x1, x2, x3)
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
and(x1, x2)  =  and(x1, x2)
isNatKind(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
U113: [3,2,1]
U122: [2,1]
U131: [1]
U212: [2,1]
U312: [2,1]
U413: [3,2,1]
plus2: [2,1]
and2: [2,1]


The following usable rules [FROCOS05] were oriented: none

(89) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(isNat(X)) → PROPER(X)
PROPER(U22(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(isNatKind(X)) → PROPER(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(90) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(U22(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
isNat(x1)  =  x1
U22(x1)  =  U22(x1)
s(x1)  =  x1
isNatKind(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
U221: [1]


The following usable rules [FROCOS05] were oriented: none

(91) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(isNat(X)) → PROPER(X)
PROPER(s(X)) → PROPER(X)
PROPER(isNatKind(X)) → PROPER(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(92) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(isNat(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
isNat(x1)  =  isNat(x1)
s(x1)  =  x1
isNatKind(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
PROPER1: [1]
isNat1: [1]


The following usable rules [FROCOS05] were oriented: none

(93) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(s(X)) → PROPER(X)
PROPER(isNatKind(X)) → PROPER(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(94) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(s(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
s(x1)  =  s(x1)
isNatKind(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
s1: [1]


The following usable rules [FROCOS05] were oriented: none

(95) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(isNatKind(X)) → PROPER(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(96) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(isNatKind(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  x1
isNatKind(x1)  =  isNatKind(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
isNatKind1: [1]


The following usable rules [FROCOS05] were oriented: none

(97) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(98) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(99) TRUE

(100) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U12(X1, X2)) → ACTIVE(X1)
ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U13(X)) → ACTIVE(X)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(U22(X)) → ACTIVE(X)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(plus(X1, X2)) → ACTIVE(X1)
ACTIVE(plus(X1, X2)) → ACTIVE(X2)
ACTIVE(and(X1, X2)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(101) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U11(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(U21(X1, X2)) → ACTIVE(X1)
ACTIVE(plus(X1, X2)) → ACTIVE(X1)
ACTIVE(plus(X1, X2)) → ACTIVE(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U12(x1, x2)  =  x1
U11(x1, x2, x3)  =  U11(x1)
U13(x1)  =  x1
U21(x1, x2)  =  U21(x1, x2)
U22(x1)  =  x1
U31(x1, x2)  =  x1
U41(x1, x2, x3)  =  x1
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
and(x1, x2)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
plus2 > [ACTIVE1, U212]

Status:
ACTIVE1: [1]
U111: [1]
U212: [2,1]
plus2: [1,2]


The following usable rules [FROCOS05] were oriented: none

(102) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U12(X1, X2)) → ACTIVE(X1)
ACTIVE(U13(X)) → ACTIVE(X)
ACTIVE(U22(X)) → ACTIVE(X)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)
ACTIVE(and(X1, X2)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(103) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(and(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U12(x1, x2)  =  x1
U13(x1)  =  x1
U22(x1)  =  x1
U31(x1, x2)  =  x1
U41(x1, x2, x3)  =  x1
s(x1)  =  x1
and(x1, x2)  =  and(x1, x2)

Lexicographic path order with status [LPO].
Quasi-Precedence:
[ACTIVE1, and2]

Status:
ACTIVE1: [1]
and2: [2,1]


The following usable rules [FROCOS05] were oriented: none

(104) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U12(X1, X2)) → ACTIVE(X1)
ACTIVE(U13(X)) → ACTIVE(X)
ACTIVE(U22(X)) → ACTIVE(X)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(X1, X2, X3)) → ACTIVE(X1)
ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(105) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U12(X1, X2)) → ACTIVE(X1)
ACTIVE(U31(X1, X2)) → ACTIVE(X1)
ACTIVE(U41(X1, X2, X3)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
U12(x1, x2)  =  U12(x1, x2)
U13(x1)  =  x1
U22(x1)  =  x1
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2, x3)  =  U41(x1, x2, x3)
s(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
U122: [2,1]
U312: [2,1]
U413: [3,2,1]


The following usable rules [FROCOS05] were oriented: none

(106) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U13(X)) → ACTIVE(X)
ACTIVE(U22(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(107) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U13(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  ACTIVE(x1)
U13(x1)  =  U13(x1)
U22(x1)  =  x1
s(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
ACTIVE1: [1]
U131: [1]


The following usable rules [FROCOS05] were oriented: none

(108) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(U22(X)) → ACTIVE(X)
ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(109) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(U22(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
U22(x1)  =  U22(x1)
s(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
U221: [1]


The following usable rules [FROCOS05] were oriented: none

(110) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(s(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(111) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(s(X)) → ACTIVE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
ACTIVE(x1)  =  x1
s(x1)  =  s(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
s1: [1]


The following usable rules [FROCOS05] were oriented: none

(112) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(113) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(114) TRUE

(115) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(116) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TOP(mark(X)) → TOP(proper(X))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TOP(x1)  =  TOP(x1)
ok(x1)  =  x1
active(x1)  =  x1
mark(x1)  =  mark(x1)
proper(x1)  =  x1
U11(x1, x2, x3)  =  U11(x1, x2, x3)
tt  =  tt
U12(x1, x2)  =  U12(x1, x2)
isNat(x1)  =  x1
U13(x1)  =  U13(x1)
U21(x1, x2)  =  U21(x1, x2)
U22(x1)  =  U22(x1)
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2, x3)  =  U41(x1, x2, x3)
s(x1)  =  s(x1)
plus(x1, x2)  =  plus(x1, x2)
and(x1, x2)  =  and(x1, x2)
0  =  0
isNatKind(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[U413, plus2] > U113 > [U122, U131] > tt > [mark1, U221]
[U413, plus2] > [s1, and2, 0] > tt > [mark1, U221]
[U413, plus2] > [s1, and2, 0] > U212 > [mark1, U221]
[U413, plus2] > [s1, and2, 0] > U312 > [mark1, U221]

Status:
TOP1: [1]
mark1: [1]
U113: [1,2,3]
tt: []
U122: [2,1]
U131: [1]
U212: [2,1]
U221: [1]
U312: [1,2]
U413: [3,2,1]
s1: [1]
plus2: [1,2]
and2: [2,1]
0: []


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U12(mark(X1), X2) → mark(U12(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U13(mark(X)) → mark(U13(X))
U13(ok(X)) → ok(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U22(ok(X)) → ok(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNat(ok(X)) → ok(isNat(X))
isNatKind(ok(X)) → ok(isNatKind(X))

(117) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))

The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(118) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TOP(ok(X)) → TOP(active(X))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TOP(x1)  =  TOP(x1)
ok(x1)  =  ok(x1)
active(x1)  =  x1
U11(x1, x2, x3)  =  U11(x1)
tt  =  tt
mark(x1)  =  mark
U12(x1, x2)  =  x2
isNat(x1)  =  isNat
U13(x1)  =  x1
U21(x1, x2)  =  x2
U22(x1)  =  U22(x1)
U31(x1, x2)  =  U31(x2)
U41(x1, x2, x3)  =  x3
s(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
and(x1, x2)  =  and(x1, x2)
0  =  0
isNatKind(x1)  =  isNatKind(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
TOP1 > mark
[plus2, and2] > [ok1, U111, tt, isNat, U221, U311] > isNatKind1 > mark
0 > mark

Status:
TOP1: [1]
ok1: [1]
U111: [1]
tt: []
mark: []
isNat: []
U221: [1]
U311: [1]
plus2: [1,2]
and2: [1,2]
0: []
isNatKind1: [1]


The following usable rules [FROCOS05] were oriented:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U12(mark(X1), X2) → mark(U12(X1, X2))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U13(mark(X)) → mark(U13(X))
U13(ok(X)) → ok(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U22(ok(X)) → ok(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
s(ok(X)) → ok(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))

(119) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(U11(tt, V1, V2)) → mark(U12(isNat(V1), V2))
active(U12(tt, V2)) → mark(U13(isNat(V2)))
active(U13(tt)) → mark(tt)
active(U21(tt, V1)) → mark(U22(isNat(V1)))
active(U22(tt)) → mark(tt)
active(U31(tt, N)) → mark(N)
active(U41(tt, M, N)) → mark(s(plus(N, M)))
active(and(tt, X)) → mark(X)
active(isNat(0)) → mark(tt)
active(isNat(plus(V1, V2))) → mark(U11(and(isNatKind(V1), isNatKind(V2)), V1, V2))
active(isNat(s(V1))) → mark(U21(isNatKind(V1), V1))
active(isNatKind(0)) → mark(tt)
active(isNatKind(plus(V1, V2))) → mark(and(isNatKind(V1), isNatKind(V2)))
active(isNatKind(s(V1))) → mark(isNatKind(V1))
active(plus(N, 0)) → mark(U31(and(isNat(N), isNatKind(N)), N))
active(plus(N, s(M))) → mark(U41(and(and(isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N))
active(U11(X1, X2, X3)) → U11(active(X1), X2, X3)
active(U12(X1, X2)) → U12(active(X1), X2)
active(U13(X)) → U13(active(X))
active(U21(X1, X2)) → U21(active(X1), X2)
active(U22(X)) → U22(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(s(X)) → s(active(X))
active(plus(X1, X2)) → plus(active(X1), X2)
active(plus(X1, X2)) → plus(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
U11(mark(X1), X2, X3) → mark(U11(X1, X2, X3))
U12(mark(X1), X2) → mark(U12(X1, X2))
U13(mark(X)) → mark(U13(X))
U21(mark(X1), X2) → mark(U21(X1, X2))
U22(mark(X)) → mark(U22(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
s(mark(X)) → mark(s(X))
plus(mark(X1), X2) → mark(plus(X1, X2))
plus(X1, mark(X2)) → mark(plus(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(U11(X1, X2, X3)) → U11(proper(X1), proper(X2), proper(X3))
proper(tt) → ok(tt)
proper(U12(X1, X2)) → U12(proper(X1), proper(X2))
proper(isNat(X)) → isNat(proper(X))
proper(U13(X)) → U13(proper(X))
proper(U21(X1, X2)) → U21(proper(X1), proper(X2))
proper(U22(X)) → U22(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(s(X)) → s(proper(X))
proper(plus(X1, X2)) → plus(proper(X1), proper(X2))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(0) → ok(0)
proper(isNatKind(X)) → isNatKind(proper(X))
U11(ok(X1), ok(X2), ok(X3)) → ok(U11(X1, X2, X3))
U12(ok(X1), ok(X2)) → ok(U12(X1, X2))
isNat(ok(X)) → ok(isNat(X))
U13(ok(X)) → ok(U13(X))
U21(ok(X1), ok(X2)) → ok(U21(X1, X2))
U22(ok(X)) → ok(U22(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
s(ok(X)) → ok(s(X))
plus(ok(X1), ok(X2)) → ok(plus(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNatKind(ok(X)) → ok(isNatKind(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(120) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(121) TRUE