(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNatKind(activate(V1)), activate(V1), activate(V2))
U12(tt, V1, V2) → U13(isNatKind(activate(V2)), activate(V1), activate(V2))
U13(tt, V1, V2) → U14(isNatKind(activate(V2)), activate(V1), activate(V2))
U14(tt, V1, V2) → U15(isNat(activate(V1)), activate(V2))
U15(tt, V2) → U16(isNat(activate(V2)))
U16(tt) → tt
U21(tt, V1) → U22(isNatKind(activate(V1)), activate(V1))
U22(tt, V1) → U23(isNat(activate(V1)))
U23(tt) → tt
U31(tt, V2) → U32(isNatKind(activate(V2)))
U32(tt) → tt
U41(tt) → tt
U51(tt, N) → U52(isNatKind(activate(N)), activate(N))
U52(tt, N) → activate(N)
U61(tt, M, N) → U62(isNatKind(activate(M)), activate(M), activate(N))
U62(tt, M, N) → U63(isNat(activate(N)), activate(M), activate(N))
U63(tt, M, N) → U64(isNatKind(activate(N)), activate(M), activate(N))
U64(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNatKind(activate(V1)), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → U31(isNatKind(activate(V1)), activate(V2))
isNatKind(n__s(V1)) → U41(isNatKind(activate(V1)))
plus(N, 0) → U51(isNat(N), N)
plus(N, s(M)) → U61(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(tt, V1, V2) → U121(isNatKind(activate(V1)), activate(V1), activate(V2))
U111(tt, V1, V2) → ISNATKIND(activate(V1))
U111(tt, V1, V2) → ACTIVATE(V1)
U111(tt, V1, V2) → ACTIVATE(V2)
U121(tt, V1, V2) → U131(isNatKind(activate(V2)), activate(V1), activate(V2))
U121(tt, V1, V2) → ISNATKIND(activate(V2))
U121(tt, V1, V2) → ACTIVATE(V2)
U121(tt, V1, V2) → ACTIVATE(V1)
U131(tt, V1, V2) → U141(isNatKind(activate(V2)), activate(V1), activate(V2))
U131(tt, V1, V2) → ISNATKIND(activate(V2))
U131(tt, V1, V2) → ACTIVATE(V2)
U131(tt, V1, V2) → ACTIVATE(V1)
U141(tt, V1, V2) → U151(isNat(activate(V1)), activate(V2))
U141(tt, V1, V2) → ISNAT(activate(V1))
U141(tt, V1, V2) → ACTIVATE(V1)
U141(tt, V1, V2) → ACTIVATE(V2)
U151(tt, V2) → U161(isNat(activate(V2)))
U151(tt, V2) → ISNAT(activate(V2))
U151(tt, V2) → ACTIVATE(V2)
U211(tt, V1) → U221(isNatKind(activate(V1)), activate(V1))
U211(tt, V1) → ISNATKIND(activate(V1))
U211(tt, V1) → ACTIVATE(V1)
U221(tt, V1) → U231(isNat(activate(V1)))
U221(tt, V1) → ISNAT(activate(V1))
U221(tt, V1) → ACTIVATE(V1)
U311(tt, V2) → U321(isNatKind(activate(V2)))
U311(tt, V2) → ISNATKIND(activate(V2))
U311(tt, V2) → ACTIVATE(V2)
U511(tt, N) → U521(isNatKind(activate(N)), activate(N))
U511(tt, N) → ISNATKIND(activate(N))
U511(tt, N) → ACTIVATE(N)
U521(tt, N) → ACTIVATE(N)
U611(tt, M, N) → U621(isNatKind(activate(M)), activate(M), activate(N))
U611(tt, M, N) → ISNATKIND(activate(M))
U611(tt, M, N) → ACTIVATE(M)
U611(tt, M, N) → ACTIVATE(N)
U621(tt, M, N) → U631(isNat(activate(N)), activate(M), activate(N))
U621(tt, M, N) → ISNAT(activate(N))
U621(tt, M, N) → ACTIVATE(N)
U621(tt, M, N) → ACTIVATE(M)
U631(tt, M, N) → U641(isNatKind(activate(N)), activate(M), activate(N))
U631(tt, M, N) → ISNATKIND(activate(N))
U631(tt, M, N) → ACTIVATE(N)
U631(tt, M, N) → ACTIVATE(M)
U641(tt, M, N) → S(plus(activate(N), activate(M)))
U641(tt, M, N) → PLUS(activate(N), activate(M))
U641(tt, M, N) → ACTIVATE(N)
U641(tt, M, N) → ACTIVATE(M)
ISNAT(n__plus(V1, V2)) → U111(isNatKind(activate(V1)), activate(V1), activate(V2))
ISNAT(n__plus(V1, V2)) → ISNATKIND(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
ISNAT(n__s(V1)) → ISNATKIND(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNATKIND(n__plus(V1, V2)) → U311(isNatKind(activate(V1)), activate(V2))
ISNATKIND(n__plus(V1, V2)) → ISNATKIND(activate(V1))
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V1)
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V2)
ISNATKIND(n__s(V1)) → U411(isNatKind(activate(V1)))
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
ISNATKIND(n__s(V1)) → ACTIVATE(V1)
PLUS(N, 0) → U511(isNat(N), N)
PLUS(N, 0) → ISNAT(N)
PLUS(N, s(M)) → U611(isNat(M), M, N)
PLUS(N, s(M)) → ISNAT(M)
ACTIVATE(n__0) → 01
ACTIVATE(n__plus(X1, X2)) → PLUS(activate(X1), activate(X2))
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__s(X)) → S(activate(X))
ACTIVATE(n__s(X)) → ACTIVATE(X)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNatKind(activate(V1)), activate(V1), activate(V2))
U12(tt, V1, V2) → U13(isNatKind(activate(V2)), activate(V1), activate(V2))
U13(tt, V1, V2) → U14(isNatKind(activate(V2)), activate(V1), activate(V2))
U14(tt, V1, V2) → U15(isNat(activate(V1)), activate(V2))
U15(tt, V2) → U16(isNat(activate(V2)))
U16(tt) → tt
U21(tt, V1) → U22(isNatKind(activate(V1)), activate(V1))
U22(tt, V1) → U23(isNat(activate(V1)))
U23(tt) → tt
U31(tt, V2) → U32(isNatKind(activate(V2)))
U32(tt) → tt
U41(tt) → tt
U51(tt, N) → U52(isNatKind(activate(N)), activate(N))
U52(tt, N) → activate(N)
U61(tt, M, N) → U62(isNatKind(activate(M)), activate(M), activate(N))
U62(tt, M, N) → U63(isNat(activate(N)), activate(M), activate(N))
U63(tt, M, N) → U64(isNatKind(activate(N)), activate(M), activate(N))
U64(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNatKind(activate(V1)), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → U31(isNatKind(activate(V1)), activate(V2))
isNatKind(n__s(V1)) → U41(isNatKind(activate(V1)))
plus(N, 0) → U51(isNat(N), N)
plus(N, s(M)) → U61(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 7 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(tt, V1, V2) → U131(isNatKind(activate(V2)), activate(V1), activate(V2))
U131(tt, V1, V2) → U141(isNatKind(activate(V2)), activate(V1), activate(V2))
U141(tt, V1, V2) → U151(isNat(activate(V1)), activate(V2))
U151(tt, V2) → ISNAT(activate(V2))
ISNAT(n__plus(V1, V2)) → U111(isNatKind(activate(V1)), activate(V1), activate(V2))
U111(tt, V1, V2) → U121(isNatKind(activate(V1)), activate(V1), activate(V2))
U121(tt, V1, V2) → ISNATKIND(activate(V2))
ISNATKIND(n__plus(V1, V2)) → U311(isNatKind(activate(V1)), activate(V2))
U311(tt, V2) → ISNATKIND(activate(V2))
ISNATKIND(n__plus(V1, V2)) → ISNATKIND(activate(V1))
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__plus(X1, X2)) → PLUS(activate(X1), activate(X2))
PLUS(N, 0) → U511(isNat(N), N)
U511(tt, N) → U521(isNatKind(activate(N)), activate(N))
U521(tt, N) → ACTIVATE(N)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__s(X)) → ACTIVATE(X)
U511(tt, N) → ISNATKIND(activate(N))
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V2)
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
ISNATKIND(n__s(V1)) → ACTIVATE(V1)
U511(tt, N) → ACTIVATE(N)
PLUS(N, 0) → ISNAT(N)
ISNAT(n__plus(V1, V2)) → ISNATKIND(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
U211(tt, V1) → U221(isNatKind(activate(V1)), activate(V1))
U221(tt, V1) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ISNATKIND(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
U221(tt, V1) → ACTIVATE(V1)
U211(tt, V1) → ISNATKIND(activate(V1))
U211(tt, V1) → ACTIVATE(V1)
PLUS(N, s(M)) → U611(isNat(M), M, N)
U611(tt, M, N) → U621(isNatKind(activate(M)), activate(M), activate(N))
U621(tt, M, N) → U631(isNat(activate(N)), activate(M), activate(N))
U631(tt, M, N) → U641(isNatKind(activate(N)), activate(M), activate(N))
U641(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → ISNAT(M)
U641(tt, M, N) → ACTIVATE(N)
U641(tt, M, N) → ACTIVATE(M)
U631(tt, M, N) → ISNATKIND(activate(N))
U631(tt, M, N) → ACTIVATE(N)
U631(tt, M, N) → ACTIVATE(M)
U621(tt, M, N) → ISNAT(activate(N))
U621(tt, M, N) → ACTIVATE(N)
U621(tt, M, N) → ACTIVATE(M)
U611(tt, M, N) → ISNATKIND(activate(M))
U611(tt, M, N) → ACTIVATE(M)
U611(tt, M, N) → ACTIVATE(N)
U311(tt, V2) → ACTIVATE(V2)
U121(tt, V1, V2) → ACTIVATE(V2)
U121(tt, V1, V2) → ACTIVATE(V1)
U111(tt, V1, V2) → ISNATKIND(activate(V1))
U111(tt, V1, V2) → ACTIVATE(V1)
U111(tt, V1, V2) → ACTIVATE(V2)
U151(tt, V2) → ACTIVATE(V2)
U141(tt, V1, V2) → ISNAT(activate(V1))
U141(tt, V1, V2) → ACTIVATE(V1)
U141(tt, V1, V2) → ACTIVATE(V2)
U131(tt, V1, V2) → ISNATKIND(activate(V2))
U131(tt, V1, V2) → ACTIVATE(V2)
U131(tt, V1, V2) → ACTIVATE(V1)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNatKind(activate(V1)), activate(V1), activate(V2))
U12(tt, V1, V2) → U13(isNatKind(activate(V2)), activate(V1), activate(V2))
U13(tt, V1, V2) → U14(isNatKind(activate(V2)), activate(V1), activate(V2))
U14(tt, V1, V2) → U15(isNat(activate(V1)), activate(V2))
U15(tt, V2) → U16(isNat(activate(V2)))
U16(tt) → tt
U21(tt, V1) → U22(isNatKind(activate(V1)), activate(V1))
U22(tt, V1) → U23(isNat(activate(V1)))
U23(tt) → tt
U31(tt, V2) → U32(isNatKind(activate(V2)))
U32(tt) → tt
U41(tt) → tt
U51(tt, N) → U52(isNatKind(activate(N)), activate(N))
U52(tt, N) → activate(N)
U61(tt, M, N) → U62(isNatKind(activate(M)), activate(M), activate(N))
U62(tt, M, N) → U63(isNat(activate(N)), activate(M), activate(N))
U63(tt, M, N) → U64(isNatKind(activate(N)), activate(M), activate(N))
U64(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNatKind(activate(V1)), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → U31(isNatKind(activate(V1)), activate(V2))
isNatKind(n__s(V1)) → U41(isNatKind(activate(V1)))
plus(N, 0) → U51(isNat(N), N)
plus(N, s(M)) → U61(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(tt, V1, V2) → U131(isNatKind(activate(V2)), activate(V1), activate(V2))
U131(tt, V1, V2) → U141(isNatKind(activate(V2)), activate(V1), activate(V2))
U141(tt, V1, V2) → U151(isNat(activate(V1)), activate(V2))
U151(tt, V2) → ISNAT(activate(V2))
ISNAT(n__plus(V1, V2)) → U111(isNatKind(activate(V1)), activate(V1), activate(V2))
U111(tt, V1, V2) → U121(isNatKind(activate(V1)), activate(V1), activate(V2))
U121(tt, V1, V2) → ISNATKIND(activate(V2))
ISNATKIND(n__plus(V1, V2)) → U311(isNatKind(activate(V1)), activate(V2))
U311(tt, V2) → ISNATKIND(activate(V2))
ISNATKIND(n__plus(V1, V2)) → ISNATKIND(activate(V1))
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__plus(X1, X2)) → PLUS(activate(X1), activate(X2))
PLUS(N, 0) → U511(isNat(N), N)
U511(tt, N) → U521(isNatKind(activate(N)), activate(N))
U521(tt, N) → ACTIVATE(N)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X2)
U511(tt, N) → ISNATKIND(activate(N))
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V2)
ISNATKIND(n__s(V1)) → ACTIVATE(V1)
U511(tt, N) → ACTIVATE(N)
PLUS(N, 0) → ISNAT(N)
ISNAT(n__plus(V1, V2)) → ISNATKIND(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → ISNATKIND(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
U221(tt, V1) → ACTIVATE(V1)
U211(tt, V1) → ISNATKIND(activate(V1))
U211(tt, V1) → ACTIVATE(V1)
PLUS(N, s(M)) → ISNAT(M)
U641(tt, M, N) → ACTIVATE(N)
U641(tt, M, N) → ACTIVATE(M)
U631(tt, M, N) → ISNATKIND(activate(N))
U631(tt, M, N) → ACTIVATE(N)
U631(tt, M, N) → ACTIVATE(M)
U621(tt, M, N) → ISNAT(activate(N))
U621(tt, M, N) → ACTIVATE(N)
U621(tt, M, N) → ACTIVATE(M)
U611(tt, M, N) → ISNATKIND(activate(M))
U611(tt, M, N) → ACTIVATE(M)
U611(tt, M, N) → ACTIVATE(N)
U311(tt, V2) → ACTIVATE(V2)
U121(tt, V1, V2) → ACTIVATE(V2)
U121(tt, V1, V2) → ACTIVATE(V1)
U111(tt, V1, V2) → ISNATKIND(activate(V1))
U111(tt, V1, V2) → ACTIVATE(V1)
U111(tt, V1, V2) → ACTIVATE(V2)
U151(tt, V2) → ACTIVATE(V2)
U141(tt, V1, V2) → ISNAT(activate(V1))
U141(tt, V1, V2) → ACTIVATE(V1)
U141(tt, V1, V2) → ACTIVATE(V2)
U131(tt, V1, V2) → ISNATKIND(activate(V2))
U131(tt, V1, V2) → ACTIVATE(V2)
U131(tt, V1, V2) → ACTIVATE(V1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
U121(x0, x1, x2, x3)  =  U121(x2, x3)
U131(x0, x1, x2, x3)  =  U131(x0, x2)
U141(x0, x1, x2, x3)  =  U141(x0, x2)
U151(x0, x1, x2)  =  U151(x2)
ISNAT(x0, x1)  =  ISNAT(x1)
U111(x0, x1, x2, x3)  =  U111(x2, x3)
ISNATKIND(x0, x1)  =  ISNATKIND(x1)
U311(x0, x1, x2)  =  U311(x0)
ACTIVATE(x0, x1)  =  ACTIVATE(x1)
PLUS(x0, x1, x2)  =  PLUS(x0, x2)
U511(x0, x1, x2)  =  U511(x2)
U521(x0, x1, x2)  =  U521(x0)
U211(x0, x1, x2)  =  U211(x0, x2)
U221(x0, x1, x2)  =  U221(x2)
U611(x0, x1, x2, x3)  =  U611(x2, x3)
U621(x0, x1, x2, x3)  =  U621(x0, x2, x3)
U631(x0, x1, x2, x3)  =  U631(x0, x2)
U641(x0, x1, x2, x3)  =  U641(x0, x2)

Tags:
U121 has argument tags [60,28,8,0] and root tag 28
U131 has argument tags [0,60,8,0] and root tag 24
U141 has argument tags [0,32,0,2] and root tag 18
U151 has argument tags [15,32,0] and root tag 17
ISNAT has argument tags [32,0] and root tag 16
U111 has argument tags [19,63,32,32] and root tag 0
ISNATKIND has argument tags [57,0] and root tag 7
U311 has argument tags [14,57,0] and root tag 29
ACTIVATE has argument tags [6,0] and root tag 3
PLUS has argument tags [17,2,38] and root tag 0
U511 has argument tags [32,2,0] and root tag 18
U521 has argument tags [0,46,50] and root tag 17
U211 has argument tags [0,62,0] and root tag 16
U221 has argument tags [25,16,0] and root tag 16
U611 has argument tags [36,33,38,17] and root tag 0
U621 has argument tags [16,47,38,17] and root tag 0
U631 has argument tags [17,0,38,0] and root tag 0
U641 has argument tags [17,44,38,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
U121(x1, x2, x3)  =  x1
tt  =  tt
U131(x1, x2, x3)  =  x3
isNatKind(x1)  =  x1
activate(x1)  =  x1
U141(x1, x2, x3)  =  x3
U151(x1, x2)  =  U151(x1)
isNat(x1)  =  isNat(x1)
ISNAT(x1)  =  x1
n__plus(x1, x2)  =  n__plus(x1, x2)
U111(x1, x2, x3)  =  U111(x1, x2, x3)
ISNATKIND(x1)  =  ISNATKIND
U311(x1, x2)  =  U311(x1, x2)
ACTIVATE(x1)  =  ACTIVATE
PLUS(x1, x2)  =  x1
0  =  0
U511(x1, x2)  =  x1
U521(x1, x2)  =  x2
n__s(x1)  =  x1
U211(x1, x2)  =  x1
U221(x1, x2)  =  U221(x1)
s(x1)  =  x1
U611(x1, x2, x3)  =  x1
U621(x1, x2, x3)  =  x3
U631(x1, x2, x3)  =  x3
U641(x1, x2, x3)  =  x3
n__0  =  n__0
U52(x1, x2)  =  U52(x1, x2)
plus(x1, x2)  =  plus(x1, x2)
U51(x1, x2)  =  U51(x2)
U31(x1, x2)  =  x1
U41(x1)  =  U41
U11(x1, x2, x3)  =  U11(x2, x3)
U21(x1, x2)  =  U21(x1, x2)
U61(x1, x2, x3)  =  U61(x2, x3)
U12(x1, x2, x3)  =  U12(x2, x3)
U32(x1)  =  U32
U22(x1, x2)  =  x1
U62(x1, x2, x3)  =  U62(x2, x3)
U13(x1, x2, x3)  =  U13(x1, x3)
U23(x1)  =  U23
U63(x1, x2, x3)  =  U63(x2, x3)
U14(x1, x2, x3)  =  U14
U64(x1, x2, x3)  =  U64(x2, x3)
U15(x1, x2)  =  U15
U16(x1)  =  U16

Recursive path order with status [RPO].
Quasi-Precedence:
U15^11 > [tt, U41, U32, U23]
isNat1 > [U112, U122] > [U132, U14] > U15 > U16 > [tt, U41, U32, U23]
isNat1 > U212 > [tt, U41, U32, U23]
U11^13 > [ISNATKIND, U31^12] > [tt, U41, U32, U23]
U11^13 > ACTIVATE > [tt, U41, U32, U23]
[0, n0] > [nplus2, plus2, U511, U612, U622, U632, U642] > [ISNATKIND, U31^12] > [tt, U41, U32, U23]
[0, n0] > [nplus2, plus2, U511, U612, U622, U632, U642] > U522 > [tt, U41, U32, U23]
U22^11 > [tt, U41, U32, U23]

Status:
tt: multiset
U15^11: multiset
isNat1: multiset
nplus2: multiset
U11^13: multiset
ISNATKIND: multiset
U31^12: [1,2]
ACTIVATE: multiset
0: multiset
U22^11: [1]
n0: multiset
U522: multiset
plus2: multiset
U511: multiset
U41: []
U112: multiset
U212: [1,2]
U612: multiset
U122: multiset
U32: []
U622: multiset
U132: multiset
U23: []
U632: multiset
U14: multiset
U642: multiset
U15: []
U16: multiset


The following usable rules [FROCOS05] were oriented:

activate(n__0) → 0
U52(tt, N) → activate(N)
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
plus(N, 0) → U51(isNat(N), N)
U51(tt, N) → U52(isNatKind(activate(N)), activate(N))
activate(n__s(X)) → s(activate(X))
activate(X) → X
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → U31(isNatKind(activate(V1)), activate(V2))
isNatKind(n__s(V1)) → U41(isNatKind(activate(V1)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNatKind(activate(V1)), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
plus(N, s(M)) → U61(isNat(M), M, N)
U11(tt, V1, V2) → U12(isNatKind(activate(V1)), activate(V1), activate(V2))
U31(tt, V2) → U32(isNatKind(activate(V2)))
U21(tt, V1) → U22(isNatKind(activate(V1)), activate(V1))
U61(tt, M, N) → U62(isNatKind(activate(M)), activate(M), activate(N))
U12(tt, V1, V2) → U13(isNatKind(activate(V2)), activate(V1), activate(V2))
U22(tt, V1) → U23(isNat(activate(V1)))
U62(tt, M, N) → U63(isNat(activate(N)), activate(M), activate(N))
U13(tt, V1, V2) → U14(isNatKind(activate(V2)), activate(V1), activate(V2))
U63(tt, M, N) → U64(isNatKind(activate(N)), activate(M), activate(N))
U14(tt, V1, V2) → U15(isNat(activate(V1)), activate(V2))
U64(tt, M, N) → s(plus(activate(N), activate(M)))
U15(tt, V2) → U16(isNat(activate(V2)))
s(X) → n__s(X)
plus(X1, X2) → n__plus(X1, X2)
U41(tt) → tt
U32(tt) → tt
U23(tt) → tt
U16(tt) → tt
0n__0

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
U211(tt, V1) → U221(isNatKind(activate(V1)), activate(V1))
U221(tt, V1) → ISNAT(activate(V1))
PLUS(N, s(M)) → U611(isNat(M), M, N)
U611(tt, M, N) → U621(isNatKind(activate(M)), activate(M), activate(N))
U621(tt, M, N) → U631(isNat(activate(N)), activate(M), activate(N))
U631(tt, M, N) → U641(isNatKind(activate(N)), activate(M), activate(N))
U641(tt, M, N) → PLUS(activate(N), activate(M))

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNatKind(activate(V1)), activate(V1), activate(V2))
U12(tt, V1, V2) → U13(isNatKind(activate(V2)), activate(V1), activate(V2))
U13(tt, V1, V2) → U14(isNatKind(activate(V2)), activate(V1), activate(V2))
U14(tt, V1, V2) → U15(isNat(activate(V1)), activate(V2))
U15(tt, V2) → U16(isNat(activate(V2)))
U16(tt) → tt
U21(tt, V1) → U22(isNatKind(activate(V1)), activate(V1))
U22(tt, V1) → U23(isNat(activate(V1)))
U23(tt) → tt
U31(tt, V2) → U32(isNatKind(activate(V2)))
U32(tt) → tt
U41(tt) → tt
U51(tt, N) → U52(isNatKind(activate(N)), activate(N))
U52(tt, N) → activate(N)
U61(tt, M, N) → U62(isNatKind(activate(M)), activate(M), activate(N))
U62(tt, M, N) → U63(isNat(activate(N)), activate(M), activate(N))
U63(tt, M, N) → U64(isNatKind(activate(N)), activate(M), activate(N))
U64(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNatKind(activate(V1)), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → U31(isNatKind(activate(V1)), activate(V2))
isNatKind(n__s(V1)) → U41(isNatKind(activate(V1)))
plus(N, 0) → U51(isNat(N), N)
plus(N, s(M)) → U61(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs.

(8) Complex Obligation (AND)

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(tt, M, N) → U621(isNatKind(activate(M)), activate(M), activate(N))
U621(tt, M, N) → U631(isNat(activate(N)), activate(M), activate(N))
U631(tt, M, N) → U641(isNatKind(activate(N)), activate(M), activate(N))
U641(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → U611(isNat(M), M, N)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNatKind(activate(V1)), activate(V1), activate(V2))
U12(tt, V1, V2) → U13(isNatKind(activate(V2)), activate(V1), activate(V2))
U13(tt, V1, V2) → U14(isNatKind(activate(V2)), activate(V1), activate(V2))
U14(tt, V1, V2) → U15(isNat(activate(V1)), activate(V2))
U15(tt, V2) → U16(isNat(activate(V2)))
U16(tt) → tt
U21(tt, V1) → U22(isNatKind(activate(V1)), activate(V1))
U22(tt, V1) → U23(isNat(activate(V1)))
U23(tt) → tt
U31(tt, V2) → U32(isNatKind(activate(V2)))
U32(tt) → tt
U41(tt) → tt
U51(tt, N) → U52(isNatKind(activate(N)), activate(N))
U52(tt, N) → activate(N)
U61(tt, M, N) → U62(isNatKind(activate(M)), activate(M), activate(N))
U62(tt, M, N) → U63(isNat(activate(N)), activate(M), activate(N))
U63(tt, M, N) → U64(isNatKind(activate(N)), activate(M), activate(N))
U64(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNatKind(activate(V1)), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → U31(isNatKind(activate(V1)), activate(V2))
isNatKind(n__s(V1)) → U41(isNatKind(activate(V1)))
plus(N, 0) → U51(isNat(N), N)
plus(N, s(M)) → U61(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U631(tt, M, N) → U641(isNatKind(activate(N)), activate(M), activate(N))
U641(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → U611(isNat(M), M, N)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
U611(x0, x1, x2, x3)  =  U611(x2)
U621(x0, x1, x2, x3)  =  U621(x2)
U631(x0, x1, x2, x3)  =  U631(x0, x2)
U641(x0, x1, x2, x3)  =  U641(x0)
PLUS(x0, x1, x2)  =  PLUS(x2)

Tags:
U611 has argument tags [12,17,12,20] and root tag 6
U621 has argument tags [0,18,12,5] and root tag 6
U631 has argument tags [2,29,12,24] and root tag 6
U641 has argument tags [8,3,5,8] and root tag 7
PLUS has argument tags [16,15,8] and root tag 1

Comparison: MIN
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
U611(x1, x2, x3)  =  U611
tt  =  tt
U621(x1, x2, x3)  =  x2
isNatKind(x1)  =  isNatKind
activate(x1)  =  x1
U631(x1, x2, x3)  =  U631(x1, x2)
isNat(x1)  =  isNat
U641(x1, x2, x3)  =  x2
PLUS(x1, x2)  =  PLUS
s(x1)  =  s(x1)
n__0  =  n__0
0  =  0
U52(x1, x2)  =  U52(x1, x2)
n__plus(x1, x2)  =  n__plus(x1, x2)
plus(x1, x2)  =  plus(x1, x2)
U51(x1, x2)  =  U51(x1, x2)
n__s(x1)  =  n__s(x1)
U31(x1, x2)  =  U31
U41(x1)  =  U41
U11(x1, x2, x3)  =  U11
U21(x1, x2)  =  U21
U61(x1, x2, x3)  =  U61(x1, x2, x3)
U12(x1, x2, x3)  =  U12
U32(x1)  =  x1
U22(x1, x2)  =  x1
U62(x1, x2, x3)  =  U62(x1, x2, x3)
U13(x1, x2, x3)  =  U13
U23(x1)  =  x1
U63(x1, x2, x3)  =  U63(x1, x2, x3)
U14(x1, x2, x3)  =  U14
U64(x1, x2, x3)  =  U64(x1, x2, x3)
U15(x1, x2)  =  x1
U16(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[nplus2, plus2, U512, U613, U623, U633, U643] > [U61^1, tt, isNatKind, U63^12, isNat, PLUS, s1, n0, 0, ns1, U31, U41, U11, U21, U12, U13, U14] > U522

Status:
U61^1: multiset
tt: multiset
isNatKind: []
U63^12: multiset
isNat: []
PLUS: multiset
s1: [1]
n0: multiset
0: multiset
U522: multiset
nplus2: multiset
plus2: multiset
U512: multiset
ns1: [1]
U31: []
U41: []
U11: []
U21: []
U613: multiset
U12: []
U623: multiset
U13: []
U633: multiset
U14: []
U643: multiset


The following usable rules [FROCOS05] were oriented:

activate(n__0) → 0
U52(tt, N) → activate(N)
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
plus(N, 0) → U51(isNat(N), N)
U51(tt, N) → U52(isNatKind(activate(N)), activate(N))
activate(n__s(X)) → s(activate(X))
activate(X) → X
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → U31(isNatKind(activate(V1)), activate(V2))
isNatKind(n__s(V1)) → U41(isNatKind(activate(V1)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNatKind(activate(V1)), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
plus(N, s(M)) → U61(isNat(M), M, N)
U11(tt, V1, V2) → U12(isNatKind(activate(V1)), activate(V1), activate(V2))
U31(tt, V2) → U32(isNatKind(activate(V2)))
U21(tt, V1) → U22(isNatKind(activate(V1)), activate(V1))
U61(tt, M, N) → U62(isNatKind(activate(M)), activate(M), activate(N))
U12(tt, V1, V2) → U13(isNatKind(activate(V2)), activate(V1), activate(V2))
U22(tt, V1) → U23(isNat(activate(V1)))
U62(tt, M, N) → U63(isNat(activate(N)), activate(M), activate(N))
U13(tt, V1, V2) → U14(isNatKind(activate(V2)), activate(V1), activate(V2))
U63(tt, M, N) → U64(isNatKind(activate(N)), activate(M), activate(N))
U14(tt, V1, V2) → U15(isNat(activate(V1)), activate(V2))
U64(tt, M, N) → s(plus(activate(N), activate(M)))
U15(tt, V2) → U16(isNat(activate(V2)))
s(X) → n__s(X)
plus(X1, X2) → n__plus(X1, X2)
U41(tt) → tt
U32(tt) → tt
U23(tt) → tt
U16(tt) → tt
0n__0

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U611(tt, M, N) → U621(isNatKind(activate(M)), activate(M), activate(N))
U621(tt, M, N) → U631(isNat(activate(N)), activate(M), activate(N))

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNatKind(activate(V1)), activate(V1), activate(V2))
U12(tt, V1, V2) → U13(isNatKind(activate(V2)), activate(V1), activate(V2))
U13(tt, V1, V2) → U14(isNatKind(activate(V2)), activate(V1), activate(V2))
U14(tt, V1, V2) → U15(isNat(activate(V1)), activate(V2))
U15(tt, V2) → U16(isNat(activate(V2)))
U16(tt) → tt
U21(tt, V1) → U22(isNatKind(activate(V1)), activate(V1))
U22(tt, V1) → U23(isNat(activate(V1)))
U23(tt) → tt
U31(tt, V2) → U32(isNatKind(activate(V2)))
U32(tt) → tt
U41(tt) → tt
U51(tt, N) → U52(isNatKind(activate(N)), activate(N))
U52(tt, N) → activate(N)
U61(tt, M, N) → U62(isNatKind(activate(M)), activate(M), activate(N))
U62(tt, M, N) → U63(isNat(activate(N)), activate(M), activate(N))
U63(tt, M, N) → U64(isNatKind(activate(N)), activate(M), activate(N))
U64(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNatKind(activate(V1)), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → U31(isNatKind(activate(V1)), activate(V2))
isNatKind(n__s(V1)) → U41(isNatKind(activate(V1)))
plus(N, 0) → U51(isNat(N), N)
plus(N, s(M)) → U61(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(13) TRUE

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(tt, V1) → U221(isNatKind(activate(V1)), activate(V1))
U221(tt, V1) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNatKind(activate(V1)), activate(V1), activate(V2))
U12(tt, V1, V2) → U13(isNatKind(activate(V2)), activate(V1), activate(V2))
U13(tt, V1, V2) → U14(isNatKind(activate(V2)), activate(V1), activate(V2))
U14(tt, V1, V2) → U15(isNat(activate(V1)), activate(V2))
U15(tt, V2) → U16(isNat(activate(V2)))
U16(tt) → tt
U21(tt, V1) → U22(isNatKind(activate(V1)), activate(V1))
U22(tt, V1) → U23(isNat(activate(V1)))
U23(tt) → tt
U31(tt, V2) → U32(isNatKind(activate(V2)))
U32(tt) → tt
U41(tt) → tt
U51(tt, N) → U52(isNatKind(activate(N)), activate(N))
U52(tt, N) → activate(N)
U61(tt, M, N) → U62(isNatKind(activate(M)), activate(M), activate(N))
U62(tt, M, N) → U63(isNat(activate(N)), activate(M), activate(N))
U63(tt, M, N) → U64(isNatKind(activate(N)), activate(M), activate(N))
U64(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNatKind(activate(V1)), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → U31(isNatKind(activate(V1)), activate(V2))
isNatKind(n__s(V1)) → U41(isNatKind(activate(V1)))
plus(N, 0) → U51(isNat(N), N)
plus(N, s(M)) → U61(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(tt, V1) → U221(isNatKind(activate(V1)), activate(V1))
U221(tt, V1) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
U211(x0, x1, x2)  =  U211(x0, x2)
U221(x0, x1, x2)  =  U221(x1, x2)
ISNAT(x0, x1)  =  ISNAT(x0, x1)

Tags:
U211 has argument tags [1,1,2] and root tag 2
U221 has argument tags [0,4,4] and root tag 0
ISNAT has argument tags [0,1] and root tag 1

Comparison: MS
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
U211(x1, x2)  =  U211(x2)
tt  =  tt
U221(x1, x2)  =  x1
isNatKind(x1)  =  isNatKind
activate(x1)  =  x1
ISNAT(x1)  =  x1
n__s(x1)  =  n__s(x1)
n__0  =  n__0
0  =  0
U52(x1, x2)  =  U52(x1, x2)
n__plus(x1, x2)  =  n__plus(x1, x2)
plus(x1, x2)  =  plus(x1, x2)
U51(x1, x2)  =  U51(x1, x2)
isNat(x1)  =  isNat
s(x1)  =  s(x1)
U31(x1, x2)  =  U31
U41(x1)  =  x1
U61(x1, x2, x3)  =  U61(x1, x2, x3)
U11(x1, x2, x3)  =  x1
U21(x1, x2)  =  U21
U32(x1)  =  U32
U62(x1, x2, x3)  =  U62(x1, x2, x3)
U12(x1, x2, x3)  =  U12
U22(x1, x2)  =  U22
U63(x1, x2, x3)  =  U63(x1, x2, x3)
U13(x1, x2, x3)  =  U13
U23(x1)  =  x1
U64(x1, x2, x3)  =  U64(x1, x2, x3)
U14(x1, x2, x3)  =  U14
U15(x1, x2)  =  x1
U16(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[nplus2, plus2, U613, U623, U633, U643] > [U522, U512] > [U21^11, tt, isNatKind, ns1, n0, 0, isNat, s1, U31, U21, U32, U12, U22, U13, U14]

Status:
U21^11: multiset
tt: multiset
isNatKind: multiset
ns1: multiset
n0: multiset
0: multiset
U522: multiset
nplus2: multiset
plus2: multiset
U512: multiset
isNat: multiset
s1: multiset
U31: multiset
U613: multiset
U21: multiset
U32: multiset
U623: multiset
U12: multiset
U22: multiset
U633: multiset
U13: multiset
U643: multiset
U14: multiset


The following usable rules [FROCOS05] were oriented:

activate(n__0) → 0
U52(tt, N) → activate(N)
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
plus(N, 0) → U51(isNat(N), N)
U51(tt, N) → U52(isNatKind(activate(N)), activate(N))
activate(n__s(X)) → s(activate(X))
activate(X) → X
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → U31(isNatKind(activate(V1)), activate(V2))
isNatKind(n__s(V1)) → U41(isNatKind(activate(V1)))
plus(N, s(M)) → U61(isNat(M), M, N)
isNat(n__plus(V1, V2)) → U11(isNatKind(activate(V1)), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
U31(tt, V2) → U32(isNatKind(activate(V2)))
U61(tt, M, N) → U62(isNatKind(activate(M)), activate(M), activate(N))
U11(tt, V1, V2) → U12(isNatKind(activate(V1)), activate(V1), activate(V2))
U21(tt, V1) → U22(isNatKind(activate(V1)), activate(V1))
U62(tt, M, N) → U63(isNat(activate(N)), activate(M), activate(N))
U12(tt, V1, V2) → U13(isNatKind(activate(V2)), activate(V1), activate(V2))
U22(tt, V1) → U23(isNat(activate(V1)))
U63(tt, M, N) → U64(isNatKind(activate(N)), activate(M), activate(N))
U13(tt, V1, V2) → U14(isNatKind(activate(V2)), activate(V1), activate(V2))
U64(tt, M, N) → s(plus(activate(N), activate(M)))
U14(tt, V1, V2) → U15(isNat(activate(V1)), activate(V2))
U15(tt, V2) → U16(isNat(activate(V2)))
s(X) → n__s(X)
plus(X1, X2) → n__plus(X1, X2)
isNat(n__0) → tt
U41(tt) → tt
U32(tt) → tt
U23(tt) → tt
U16(tt) → tt
0n__0

(16) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNatKind(activate(V1)), activate(V1), activate(V2))
U12(tt, V1, V2) → U13(isNatKind(activate(V2)), activate(V1), activate(V2))
U13(tt, V1, V2) → U14(isNatKind(activate(V2)), activate(V1), activate(V2))
U14(tt, V1, V2) → U15(isNat(activate(V1)), activate(V2))
U15(tt, V2) → U16(isNat(activate(V2)))
U16(tt) → tt
U21(tt, V1) → U22(isNatKind(activate(V1)), activate(V1))
U22(tt, V1) → U23(isNat(activate(V1)))
U23(tt) → tt
U31(tt, V2) → U32(isNatKind(activate(V2)))
U32(tt) → tt
U41(tt) → tt
U51(tt, N) → U52(isNatKind(activate(N)), activate(N))
U52(tt, N) → activate(N)
U61(tt, M, N) → U62(isNatKind(activate(M)), activate(M), activate(N))
U62(tt, M, N) → U63(isNat(activate(N)), activate(M), activate(N))
U63(tt, M, N) → U64(isNatKind(activate(N)), activate(M), activate(N))
U64(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNatKind(activate(V1)), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → U31(isNatKind(activate(V1)), activate(V2))
isNatKind(n__s(V1)) → U41(isNatKind(activate(V1)))
plus(N, 0) → U51(isNat(N), N)
plus(N, s(M)) → U61(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(18) TRUE

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNatKind(activate(V1)), activate(V1), activate(V2))
U12(tt, V1, V2) → U13(isNatKind(activate(V2)), activate(V1), activate(V2))
U13(tt, V1, V2) → U14(isNatKind(activate(V2)), activate(V1), activate(V2))
U14(tt, V1, V2) → U15(isNat(activate(V1)), activate(V2))
U15(tt, V2) → U16(isNat(activate(V2)))
U16(tt) → tt
U21(tt, V1) → U22(isNatKind(activate(V1)), activate(V1))
U22(tt, V1) → U23(isNat(activate(V1)))
U23(tt) → tt
U31(tt, V2) → U32(isNatKind(activate(V2)))
U32(tt) → tt
U41(tt) → tt
U51(tt, N) → U52(isNatKind(activate(N)), activate(N))
U52(tt, N) → activate(N)
U61(tt, M, N) → U62(isNatKind(activate(M)), activate(M), activate(N))
U62(tt, M, N) → U63(isNat(activate(N)), activate(M), activate(N))
U63(tt, M, N) → U64(isNatKind(activate(N)), activate(M), activate(N))
U64(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNatKind(activate(V1)), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → U31(isNatKind(activate(V1)), activate(V2))
isNatKind(n__s(V1)) → U41(isNatKind(activate(V1)))
plus(N, 0) → U51(isNat(N), N)
plus(N, s(M)) → U61(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ISNATKIND(x0, x1)  =  ISNATKIND(x0, x1)

Tags:
ISNATKIND has argument tags [0,0] and root tag 0

Comparison: DMS
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
ISNATKIND(x1)  =  ISNATKIND
n__s(x1)  =  n__s(x1)
activate(x1)  =  x1
n__0  =  n__0
0  =  0
U52(x1, x2)  =  U52(x1, x2)
tt  =  tt
n__plus(x1, x2)  =  n__plus(x1, x2)
plus(x1, x2)  =  plus(x1, x2)
U51(x1, x2)  =  U51(x1, x2)
isNat(x1)  =  isNat
isNatKind(x1)  =  isNatKind
s(x1)  =  s(x1)
U61(x1, x2, x3)  =  U61(x1, x2, x3)
U11(x1, x2, x3)  =  x1
U21(x1, x2)  =  U21
U31(x1, x2)  =  x1
U41(x1)  =  U41
U62(x1, x2, x3)  =  U62(x1, x2, x3)
U12(x1, x2, x3)  =  U12
U22(x1, x2)  =  U22
U32(x1)  =  U32
U63(x1, x2, x3)  =  U63(x1, x2, x3)
U13(x1, x2, x3)  =  x1
U23(x1)  =  x1
U64(x1, x2, x3)  =  U64(x1, x2, x3)
U14(x1, x2, x3)  =  U14
U15(x1, x2)  =  U15
U16(x1)  =  U16

Recursive path order with status [RPO].
Quasi-Precedence:
[n0, 0]
[nplus2, plus2, U613, U623, U633, U643] > [ns1, s1] > [tt, isNat, isNatKind, U21, U41, U12, U22, U32, U14, U15, U16] > [U522, U512]

Status:
ISNATKIND: []
ns1: multiset
n0: multiset
0: multiset
U522: multiset
tt: multiset
nplus2: multiset
plus2: multiset
U512: multiset
isNat: multiset
isNatKind: multiset
s1: multiset
U613: multiset
U21: multiset
U41: multiset
U623: multiset
U12: multiset
U22: multiset
U32: multiset
U633: multiset
U643: multiset
U14: multiset
U15: multiset
U16: multiset


The following usable rules [FROCOS05] were oriented: none

(21) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNatKind(activate(V1)), activate(V1), activate(V2))
U12(tt, V1, V2) → U13(isNatKind(activate(V2)), activate(V1), activate(V2))
U13(tt, V1, V2) → U14(isNatKind(activate(V2)), activate(V1), activate(V2))
U14(tt, V1, V2) → U15(isNat(activate(V1)), activate(V2))
U15(tt, V2) → U16(isNat(activate(V2)))
U16(tt) → tt
U21(tt, V1) → U22(isNatKind(activate(V1)), activate(V1))
U22(tt, V1) → U23(isNat(activate(V1)))
U23(tt) → tt
U31(tt, V2) → U32(isNatKind(activate(V2)))
U32(tt) → tt
U41(tt) → tt
U51(tt, N) → U52(isNatKind(activate(N)), activate(N))
U52(tt, N) → activate(N)
U61(tt, M, N) → U62(isNatKind(activate(M)), activate(M), activate(N))
U62(tt, M, N) → U63(isNat(activate(N)), activate(M), activate(N))
U63(tt, M, N) → U64(isNatKind(activate(N)), activate(M), activate(N))
U64(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNatKind(activate(V1)), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → U31(isNatKind(activate(V1)), activate(V2))
isNatKind(n__s(V1)) → U41(isNatKind(activate(V1)))
plus(N, 0) → U51(isNat(N), N)
plus(N, s(M)) → U61(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(23) TRUE

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__s(X)) → ACTIVATE(X)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNatKind(activate(V1)), activate(V1), activate(V2))
U12(tt, V1, V2) → U13(isNatKind(activate(V2)), activate(V1), activate(V2))
U13(tt, V1, V2) → U14(isNatKind(activate(V2)), activate(V1), activate(V2))
U14(tt, V1, V2) → U15(isNat(activate(V1)), activate(V2))
U15(tt, V2) → U16(isNat(activate(V2)))
U16(tt) → tt
U21(tt, V1) → U22(isNatKind(activate(V1)), activate(V1))
U22(tt, V1) → U23(isNat(activate(V1)))
U23(tt) → tt
U31(tt, V2) → U32(isNatKind(activate(V2)))
U32(tt) → tt
U41(tt) → tt
U51(tt, N) → U52(isNatKind(activate(N)), activate(N))
U52(tt, N) → activate(N)
U61(tt, M, N) → U62(isNatKind(activate(M)), activate(M), activate(N))
U62(tt, M, N) → U63(isNat(activate(N)), activate(M), activate(N))
U63(tt, M, N) → U64(isNatKind(activate(N)), activate(M), activate(N))
U64(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNatKind(activate(V1)), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → U31(isNatKind(activate(V1)), activate(V2))
isNatKind(n__s(V1)) → U41(isNatKind(activate(V1)))
plus(N, 0) → U51(isNat(N), N)
plus(N, s(M)) → U61(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__s(X)) → ACTIVATE(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ACTIVATE(x0, x1)  =  ACTIVATE(x0, x1)

Tags:
ACTIVATE has argument tags [0,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
ACTIVATE(x1)  =  ACTIVATE
n__s(x1)  =  n__s(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[ACTIVATE, ns1]

Status:
ACTIVATE: multiset
ns1: multiset


The following usable rules [FROCOS05] were oriented: none

(26) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNatKind(activate(V1)), activate(V1), activate(V2))
U12(tt, V1, V2) → U13(isNatKind(activate(V2)), activate(V1), activate(V2))
U13(tt, V1, V2) → U14(isNatKind(activate(V2)), activate(V1), activate(V2))
U14(tt, V1, V2) → U15(isNat(activate(V1)), activate(V2))
U15(tt, V2) → U16(isNat(activate(V2)))
U16(tt) → tt
U21(tt, V1) → U22(isNatKind(activate(V1)), activate(V1))
U22(tt, V1) → U23(isNat(activate(V1)))
U23(tt) → tt
U31(tt, V2) → U32(isNatKind(activate(V2)))
U32(tt) → tt
U41(tt) → tt
U51(tt, N) → U52(isNatKind(activate(N)), activate(N))
U52(tt, N) → activate(N)
U61(tt, M, N) → U62(isNatKind(activate(M)), activate(M), activate(N))
U62(tt, M, N) → U63(isNat(activate(N)), activate(M), activate(N))
U63(tt, M, N) → U64(isNatKind(activate(N)), activate(M), activate(N))
U64(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNatKind(activate(V1)), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → U31(isNatKind(activate(V1)), activate(V2))
isNatKind(n__s(V1)) → U41(isNatKind(activate(V1)))
plus(N, 0) → U51(isNat(N), N)
plus(N, s(M)) → U61(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(28) TRUE