(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNatKind(activate(V1)), activate(V1), activate(V2))
U12(tt, V1, V2) → U13(isNatKind(activate(V2)), activate(V1), activate(V2))
U13(tt, V1, V2) → U14(isNatKind(activate(V2)), activate(V1), activate(V2))
U14(tt, V1, V2) → U15(isNat(activate(V1)), activate(V2))
U15(tt, V2) → U16(isNat(activate(V2)))
U16(tt) → tt
U21(tt, V1) → U22(isNatKind(activate(V1)), activate(V1))
U22(tt, V1) → U23(isNat(activate(V1)))
U23(tt) → tt
U31(tt, V2) → U32(isNatKind(activate(V2)))
U32(tt) → tt
U41(tt) → tt
U51(tt, N) → U52(isNatKind(activate(N)), activate(N))
U52(tt, N) → activate(N)
U61(tt, M, N) → U62(isNatKind(activate(M)), activate(M), activate(N))
U62(tt, M, N) → U63(isNat(activate(N)), activate(M), activate(N))
U63(tt, M, N) → U64(isNatKind(activate(N)), activate(M), activate(N))
U64(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNatKind(activate(V1)), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → U31(isNatKind(activate(V1)), activate(V2))
isNatKind(n__s(V1)) → U41(isNatKind(activate(V1)))
plus(N, 0) → U51(isNat(N), N)
plus(N, s(M)) → U61(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(tt, V1, V2) → U121(isNatKind(activate(V1)), activate(V1), activate(V2))
U111(tt, V1, V2) → ISNATKIND(activate(V1))
U111(tt, V1, V2) → ACTIVATE(V1)
U111(tt, V1, V2) → ACTIVATE(V2)
U121(tt, V1, V2) → U131(isNatKind(activate(V2)), activate(V1), activate(V2))
U121(tt, V1, V2) → ISNATKIND(activate(V2))
U121(tt, V1, V2) → ACTIVATE(V2)
U121(tt, V1, V2) → ACTIVATE(V1)
U131(tt, V1, V2) → U141(isNatKind(activate(V2)), activate(V1), activate(V2))
U131(tt, V1, V2) → ISNATKIND(activate(V2))
U131(tt, V1, V2) → ACTIVATE(V2)
U131(tt, V1, V2) → ACTIVATE(V1)
U141(tt, V1, V2) → U151(isNat(activate(V1)), activate(V2))
U141(tt, V1, V2) → ISNAT(activate(V1))
U141(tt, V1, V2) → ACTIVATE(V1)
U141(tt, V1, V2) → ACTIVATE(V2)
U151(tt, V2) → U161(isNat(activate(V2)))
U151(tt, V2) → ISNAT(activate(V2))
U151(tt, V2) → ACTIVATE(V2)
U211(tt, V1) → U221(isNatKind(activate(V1)), activate(V1))
U211(tt, V1) → ISNATKIND(activate(V1))
U211(tt, V1) → ACTIVATE(V1)
U221(tt, V1) → U231(isNat(activate(V1)))
U221(tt, V1) → ISNAT(activate(V1))
U221(tt, V1) → ACTIVATE(V1)
U311(tt, V2) → U321(isNatKind(activate(V2)))
U311(tt, V2) → ISNATKIND(activate(V2))
U311(tt, V2) → ACTIVATE(V2)
U511(tt, N) → U521(isNatKind(activate(N)), activate(N))
U511(tt, N) → ISNATKIND(activate(N))
U511(tt, N) → ACTIVATE(N)
U521(tt, N) → ACTIVATE(N)
U611(tt, M, N) → U621(isNatKind(activate(M)), activate(M), activate(N))
U611(tt, M, N) → ISNATKIND(activate(M))
U611(tt, M, N) → ACTIVATE(M)
U611(tt, M, N) → ACTIVATE(N)
U621(tt, M, N) → U631(isNat(activate(N)), activate(M), activate(N))
U621(tt, M, N) → ISNAT(activate(N))
U621(tt, M, N) → ACTIVATE(N)
U621(tt, M, N) → ACTIVATE(M)
U631(tt, M, N) → U641(isNatKind(activate(N)), activate(M), activate(N))
U631(tt, M, N) → ISNATKIND(activate(N))
U631(tt, M, N) → ACTIVATE(N)
U631(tt, M, N) → ACTIVATE(M)
U641(tt, M, N) → S(plus(activate(N), activate(M)))
U641(tt, M, N) → PLUS(activate(N), activate(M))
U641(tt, M, N) → ACTIVATE(N)
U641(tt, M, N) → ACTIVATE(M)
ISNAT(n__plus(V1, V2)) → U111(isNatKind(activate(V1)), activate(V1), activate(V2))
ISNAT(n__plus(V1, V2)) → ISNATKIND(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
ISNAT(n__s(V1)) → ISNATKIND(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNATKIND(n__plus(V1, V2)) → U311(isNatKind(activate(V1)), activate(V2))
ISNATKIND(n__plus(V1, V2)) → ISNATKIND(activate(V1))
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V1)
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V2)
ISNATKIND(n__s(V1)) → U411(isNatKind(activate(V1)))
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
ISNATKIND(n__s(V1)) → ACTIVATE(V1)
PLUS(N, 0) → U511(isNat(N), N)
PLUS(N, 0) → ISNAT(N)
PLUS(N, s(M)) → U611(isNat(M), M, N)
PLUS(N, s(M)) → ISNAT(M)
ACTIVATE(n__0) → 01
ACTIVATE(n__plus(X1, X2)) → PLUS(activate(X1), activate(X2))
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__s(X)) → S(activate(X))
ACTIVATE(n__s(X)) → ACTIVATE(X)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNatKind(activate(V1)), activate(V1), activate(V2))
U12(tt, V1, V2) → U13(isNatKind(activate(V2)), activate(V1), activate(V2))
U13(tt, V1, V2) → U14(isNatKind(activate(V2)), activate(V1), activate(V2))
U14(tt, V1, V2) → U15(isNat(activate(V1)), activate(V2))
U15(tt, V2) → U16(isNat(activate(V2)))
U16(tt) → tt
U21(tt, V1) → U22(isNatKind(activate(V1)), activate(V1))
U22(tt, V1) → U23(isNat(activate(V1)))
U23(tt) → tt
U31(tt, V2) → U32(isNatKind(activate(V2)))
U32(tt) → tt
U41(tt) → tt
U51(tt, N) → U52(isNatKind(activate(N)), activate(N))
U52(tt, N) → activate(N)
U61(tt, M, N) → U62(isNatKind(activate(M)), activate(M), activate(N))
U62(tt, M, N) → U63(isNat(activate(N)), activate(M), activate(N))
U63(tt, M, N) → U64(isNatKind(activate(N)), activate(M), activate(N))
U64(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNatKind(activate(V1)), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → U31(isNatKind(activate(V1)), activate(V2))
isNatKind(n__s(V1)) → U41(isNatKind(activate(V1)))
plus(N, 0) → U51(isNat(N), N)
plus(N, s(M)) → U61(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 7 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(tt, V1, V2) → U131(isNatKind(activate(V2)), activate(V1), activate(V2))
U131(tt, V1, V2) → U141(isNatKind(activate(V2)), activate(V1), activate(V2))
U141(tt, V1, V2) → U151(isNat(activate(V1)), activate(V2))
U151(tt, V2) → ISNAT(activate(V2))
ISNAT(n__plus(V1, V2)) → U111(isNatKind(activate(V1)), activate(V1), activate(V2))
U111(tt, V1, V2) → U121(isNatKind(activate(V1)), activate(V1), activate(V2))
U121(tt, V1, V2) → ISNATKIND(activate(V2))
ISNATKIND(n__plus(V1, V2)) → U311(isNatKind(activate(V1)), activate(V2))
U311(tt, V2) → ISNATKIND(activate(V2))
ISNATKIND(n__plus(V1, V2)) → ISNATKIND(activate(V1))
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__plus(X1, X2)) → PLUS(activate(X1), activate(X2))
PLUS(N, 0) → U511(isNat(N), N)
U511(tt, N) → U521(isNatKind(activate(N)), activate(N))
U521(tt, N) → ACTIVATE(N)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__s(X)) → ACTIVATE(X)
U511(tt, N) → ISNATKIND(activate(N))
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V2)
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
ISNATKIND(n__s(V1)) → ACTIVATE(V1)
U511(tt, N) → ACTIVATE(N)
PLUS(N, 0) → ISNAT(N)
ISNAT(n__plus(V1, V2)) → ISNATKIND(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
U211(tt, V1) → U221(isNatKind(activate(V1)), activate(V1))
U221(tt, V1) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ISNATKIND(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
U221(tt, V1) → ACTIVATE(V1)
U211(tt, V1) → ISNATKIND(activate(V1))
U211(tt, V1) → ACTIVATE(V1)
PLUS(N, s(M)) → U611(isNat(M), M, N)
U611(tt, M, N) → U621(isNatKind(activate(M)), activate(M), activate(N))
U621(tt, M, N) → U631(isNat(activate(N)), activate(M), activate(N))
U631(tt, M, N) → U641(isNatKind(activate(N)), activate(M), activate(N))
U641(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → ISNAT(M)
U641(tt, M, N) → ACTIVATE(N)
U641(tt, M, N) → ACTIVATE(M)
U631(tt, M, N) → ISNATKIND(activate(N))
U631(tt, M, N) → ACTIVATE(N)
U631(tt, M, N) → ACTIVATE(M)
U621(tt, M, N) → ISNAT(activate(N))
U621(tt, M, N) → ACTIVATE(N)
U621(tt, M, N) → ACTIVATE(M)
U611(tt, M, N) → ISNATKIND(activate(M))
U611(tt, M, N) → ACTIVATE(M)
U611(tt, M, N) → ACTIVATE(N)
U311(tt, V2) → ACTIVATE(V2)
U121(tt, V1, V2) → ACTIVATE(V2)
U121(tt, V1, V2) → ACTIVATE(V1)
U111(tt, V1, V2) → ISNATKIND(activate(V1))
U111(tt, V1, V2) → ACTIVATE(V1)
U111(tt, V1, V2) → ACTIVATE(V2)
U151(tt, V2) → ACTIVATE(V2)
U141(tt, V1, V2) → ISNAT(activate(V1))
U141(tt, V1, V2) → ACTIVATE(V1)
U141(tt, V1, V2) → ACTIVATE(V2)
U131(tt, V1, V2) → ISNATKIND(activate(V2))
U131(tt, V1, V2) → ACTIVATE(V2)
U131(tt, V1, V2) → ACTIVATE(V1)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNatKind(activate(V1)), activate(V1), activate(V2))
U12(tt, V1, V2) → U13(isNatKind(activate(V2)), activate(V1), activate(V2))
U13(tt, V1, V2) → U14(isNatKind(activate(V2)), activate(V1), activate(V2))
U14(tt, V1, V2) → U15(isNat(activate(V1)), activate(V2))
U15(tt, V2) → U16(isNat(activate(V2)))
U16(tt) → tt
U21(tt, V1) → U22(isNatKind(activate(V1)), activate(V1))
U22(tt, V1) → U23(isNat(activate(V1)))
U23(tt) → tt
U31(tt, V2) → U32(isNatKind(activate(V2)))
U32(tt) → tt
U41(tt) → tt
U51(tt, N) → U52(isNatKind(activate(N)), activate(N))
U52(tt, N) → activate(N)
U61(tt, M, N) → U62(isNatKind(activate(M)), activate(M), activate(N))
U62(tt, M, N) → U63(isNat(activate(N)), activate(M), activate(N))
U63(tt, M, N) → U64(isNatKind(activate(N)), activate(M), activate(N))
U64(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNatKind(activate(V1)), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → U31(isNatKind(activate(V1)), activate(V2))
isNatKind(n__s(V1)) → U41(isNatKind(activate(V1)))
plus(N, 0) → U51(isNat(N), N)
plus(N, s(M)) → U61(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V1)
PLUS(N, 0) → U511(isNat(N), N)
U511(tt, N) → U521(isNatKind(activate(N)), activate(N))
ACTIVATE(n__s(X)) → ACTIVATE(X)
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V2)
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
ISNATKIND(n__s(V1)) → ACTIVATE(V1)
U511(tt, N) → ACTIVATE(N)
PLUS(N, 0) → ISNAT(N)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
U211(tt, V1) → U221(isNatKind(activate(V1)), activate(V1))
U221(tt, V1) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ISNATKIND(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
U221(tt, V1) → ACTIVATE(V1)
U211(tt, V1) → ISNATKIND(activate(V1))
U211(tt, V1) → ACTIVATE(V1)
U621(tt, M, N) → U631(isNat(activate(N)), activate(M), activate(N))
U631(tt, M, N) → U641(isNatKind(activate(N)), activate(M), activate(N))
U641(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → ISNAT(M)
U641(tt, M, N) → ACTIVATE(N)
U641(tt, M, N) → ACTIVATE(M)
U631(tt, M, N) → ISNATKIND(activate(N))
U631(tt, M, N) → ACTIVATE(N)
U631(tt, M, N) → ACTIVATE(M)
U621(tt, M, N) → ISNAT(activate(N))
U621(tt, M, N) → ACTIVATE(N)
U621(tt, M, N) → ACTIVATE(M)
U611(tt, M, N) → ISNATKIND(activate(M))
U611(tt, M, N) → ACTIVATE(M)
U611(tt, M, N) → ACTIVATE(N)
U311(tt, V2) → ACTIVATE(V2)
U121(tt, V1, V2) → ACTIVATE(V2)
U121(tt, V1, V2) → ACTIVATE(V1)
U111(tt, V1, V2) → ACTIVATE(V1)
U111(tt, V1, V2) → ACTIVATE(V2)
U151(tt, V2) → ACTIVATE(V2)
U141(tt, V1, V2) → ACTIVATE(V1)
U141(tt, V1, V2) → ACTIVATE(V2)
U131(tt, V1, V2) → ACTIVATE(V2)
U131(tt, V1, V2) → ACTIVATE(V1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
U121(x0, x1, x2, x3)  =  U121(x0)
U131(x0, x1, x2, x3)  =  U131(x0)
U141(x0, x1, x2, x3)  =  U141(x0)
U151(x0, x1, x2)  =  U151(x2)
ISNAT(x0, x1)  =  ISNAT(x0)
U111(x0, x1, x2, x3)  =  U111(x0)
ISNATKIND(x0, x1)  =  ISNATKIND(x1)
U311(x0, x1, x2)  =  U311(x0)
ACTIVATE(x0, x1)  =  ACTIVATE(x0, x1)
PLUS(x0, x1, x2)  =  PLUS(x0)
U511(x0, x1, x2)  =  U511(x2)
U521(x0, x1, x2)  =  U521(x2)
U211(x0, x1, x2)  =  U211(x0, x2)
U221(x0, x1, x2)  =  U221(x0)
U611(x0, x1, x2, x3)  =  U611(x0)
U621(x0, x1, x2, x3)  =  U621(x0)
U631(x0, x1, x2, x3)  =  U631(x0)
U641(x0, x1, x2, x3)  =  U641(x0)

Tags:
U121 has argument tags [0,60,56,32] and root tag 18
U131 has argument tags [0,1,34,32] and root tag 18
U141 has argument tags [0,34,0,0] and root tag 18
U151 has argument tags [0,56,0] and root tag 18
ISNAT has argument tags [0,32] and root tag 18
U111 has argument tags [0,0,0,0] and root tag 18
ISNATKIND has argument tags [32,0] and root tag 18
U311 has argument tags [0,48,0] and root tag 18
ACTIVATE has argument tags [33,0] and root tag 16
PLUS has argument tags [0,0,62] and root tag 16
U511 has argument tags [32,43,0] and root tag 18
U521 has argument tags [0,34,0] and root tag 16
U211 has argument tags [8,0,8] and root tag 2
U221 has argument tags [0,32,10] and root tag 24
U611 has argument tags [0,15,0,32] and root tag 16
U621 has argument tags [0,31,34,0] and root tag 16
U631 has argument tags [0,21,0,0] and root tag 14
U641 has argument tags [4,62,32,0] and root tag 16

Comparison: MIN
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(0) = 1   
POL(ACTIVATE(x1)) = 1 + x1   
POL(ISNAT(x1)) = x1   
POL(ISNATKIND(x1)) = 1   
POL(PLUS(x1, x2)) = x1 + x2   
POL(U11(x1, x2, x3)) = 1 + x1 + x2   
POL(U111(x1, x2, x3)) = x2 + x3   
POL(U12(x1, x2, x3)) = x3   
POL(U121(x1, x2, x3)) = x2 + x3   
POL(U13(x1, x2, x3)) = 0   
POL(U131(x1, x2, x3)) = x2 + x3   
POL(U14(x1, x2, x3)) = x2   
POL(U141(x1, x2, x3)) = x2 + x3   
POL(U15(x1, x2)) = 1 + x2   
POL(U151(x1, x2)) = 1   
POL(U16(x1)) = 1   
POL(U21(x1, x2)) = 1 + x1 + x2   
POL(U211(x1, x2)) = x2   
POL(U22(x1, x2)) = 0   
POL(U221(x1, x2)) = x2   
POL(U23(x1)) = 0   
POL(U31(x1, x2)) = 0   
POL(U311(x1, x2)) = x2   
POL(U32(x1)) = 0   
POL(U41(x1)) = 0   
POL(U51(x1, x2)) = x2   
POL(U511(x1, x2)) = 1   
POL(U52(x1, x2)) = x2   
POL(U521(x1, x2)) = 1 + x1   
POL(U61(x1, x2, x3)) = 1 + x2 + x3   
POL(U611(x1, x2, x3)) = 1 + x2 + x3   
POL(U62(x1, x2, x3)) = 1 + x2 + x3   
POL(U621(x1, x2, x3)) = 1 + x2 + x3   
POL(U63(x1, x2, x3)) = 1 + x2 + x3   
POL(U631(x1, x2, x3)) = 1 + x2 + x3   
POL(U64(x1, x2, x3)) = 1 + x2 + x3   
POL(U641(x1, x2, x3)) = x2 + x3   
POL(activate(x1)) = x1   
POL(isNat(x1)) = 0   
POL(isNatKind(x1)) = 1 + x1   
POL(n__0) = 1   
POL(n__plus(x1, x2)) = x1 + x2   
POL(n__s(x1)) = 1 + x1   
POL(plus(x1, x2)) = x1 + x2   
POL(s(x1)) = 1 + x1   
POL(tt) = 0   

The following usable rules [FROCOS05] were oriented:

activate(n__0) → 0
U52(tt, N) → activate(N)
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
plus(N, 0) → U51(isNat(N), N)
U51(tt, N) → U52(isNatKind(activate(N)), activate(N))
activate(n__s(X)) → s(activate(X))
activate(X) → X
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → U31(isNatKind(activate(V1)), activate(V2))
isNatKind(n__s(V1)) → U41(isNatKind(activate(V1)))
plus(N, s(M)) → U61(isNat(M), M, N)
U31(tt, V2) → U32(isNatKind(activate(V2)))
U61(tt, M, N) → U62(isNatKind(activate(M)), activate(M), activate(N))
U62(tt, M, N) → U63(isNat(activate(N)), activate(M), activate(N))
U63(tt, M, N) → U64(isNatKind(activate(N)), activate(M), activate(N))
U64(tt, M, N) → s(plus(activate(N), activate(M)))
s(X) → n__s(X)
plus(X1, X2) → n__plus(X1, X2)
U41(tt) → tt
U32(tt) → tt
0n__0

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(tt, V1, V2) → U131(isNatKind(activate(V2)), activate(V1), activate(V2))
U131(tt, V1, V2) → U141(isNatKind(activate(V2)), activate(V1), activate(V2))
U141(tt, V1, V2) → U151(isNat(activate(V1)), activate(V2))
U151(tt, V2) → ISNAT(activate(V2))
ISNAT(n__plus(V1, V2)) → U111(isNatKind(activate(V1)), activate(V1), activate(V2))
U111(tt, V1, V2) → U121(isNatKind(activate(V1)), activate(V1), activate(V2))
U121(tt, V1, V2) → ISNATKIND(activate(V2))
ISNATKIND(n__plus(V1, V2)) → U311(isNatKind(activate(V1)), activate(V2))
U311(tt, V2) → ISNATKIND(activate(V2))
ISNATKIND(n__plus(V1, V2)) → ISNATKIND(activate(V1))
ACTIVATE(n__plus(X1, X2)) → PLUS(activate(X1), activate(X2))
U521(tt, N) → ACTIVATE(N)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X2)
U511(tt, N) → ISNATKIND(activate(N))
ISNAT(n__plus(V1, V2)) → ISNATKIND(activate(V1))
PLUS(N, s(M)) → U611(isNat(M), M, N)
U611(tt, M, N) → U621(isNatKind(activate(M)), activate(M), activate(N))
U111(tt, V1, V2) → ISNATKIND(activate(V1))
U141(tt, V1, V2) → ISNAT(activate(V1))
U131(tt, V1, V2) → ISNATKIND(activate(V2))

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNatKind(activate(V1)), activate(V1), activate(V2))
U12(tt, V1, V2) → U13(isNatKind(activate(V2)), activate(V1), activate(V2))
U13(tt, V1, V2) → U14(isNatKind(activate(V2)), activate(V1), activate(V2))
U14(tt, V1, V2) → U15(isNat(activate(V1)), activate(V2))
U15(tt, V2) → U16(isNat(activate(V2)))
U16(tt) → tt
U21(tt, V1) → U22(isNatKind(activate(V1)), activate(V1))
U22(tt, V1) → U23(isNat(activate(V1)))
U23(tt) → tt
U31(tt, V2) → U32(isNatKind(activate(V2)))
U32(tt) → tt
U41(tt) → tt
U51(tt, N) → U52(isNatKind(activate(N)), activate(N))
U52(tt, N) → activate(N)
U61(tt, M, N) → U62(isNatKind(activate(M)), activate(M), activate(N))
U62(tt, M, N) → U63(isNat(activate(N)), activate(M), activate(N))
U63(tt, M, N) → U64(isNatKind(activate(N)), activate(M), activate(N))
U64(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNatKind(activate(V1)), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → U31(isNatKind(activate(V1)), activate(V2))
isNatKind(n__s(V1)) → U41(isNatKind(activate(V1)))
plus(N, 0) → U51(isNat(N), N)
plus(N, s(M)) → U61(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 9 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X1)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNatKind(activate(V1)), activate(V1), activate(V2))
U12(tt, V1, V2) → U13(isNatKind(activate(V2)), activate(V1), activate(V2))
U13(tt, V1, V2) → U14(isNatKind(activate(V2)), activate(V1), activate(V2))
U14(tt, V1, V2) → U15(isNat(activate(V1)), activate(V2))
U15(tt, V2) → U16(isNat(activate(V2)))
U16(tt) → tt
U21(tt, V1) → U22(isNatKind(activate(V1)), activate(V1))
U22(tt, V1) → U23(isNat(activate(V1)))
U23(tt) → tt
U31(tt, V2) → U32(isNatKind(activate(V2)))
U32(tt) → tt
U41(tt) → tt
U51(tt, N) → U52(isNatKind(activate(N)), activate(N))
U52(tt, N) → activate(N)
U61(tt, M, N) → U62(isNatKind(activate(M)), activate(M), activate(N))
U62(tt, M, N) → U63(isNat(activate(N)), activate(M), activate(N))
U63(tt, M, N) → U64(isNatKind(activate(N)), activate(M), activate(N))
U64(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNatKind(activate(V1)), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → U31(isNatKind(activate(V1)), activate(V2))
isNatKind(n__s(V1)) → U41(isNatKind(activate(V1)))
plus(N, 0) → U51(isNat(N), N)
plus(N, s(M)) → U61(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ACTIVATE(x0, x1)  =  ACTIVATE(x1)

Tags:
ACTIVATE has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(ACTIVATE(x1)) = 1   
POL(n__plus(x1, x2)) = 1 + x1 + x2   

The following usable rules [FROCOS05] were oriented: none

(11) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNatKind(activate(V1)), activate(V1), activate(V2))
U12(tt, V1, V2) → U13(isNatKind(activate(V2)), activate(V1), activate(V2))
U13(tt, V1, V2) → U14(isNatKind(activate(V2)), activate(V1), activate(V2))
U14(tt, V1, V2) → U15(isNat(activate(V1)), activate(V2))
U15(tt, V2) → U16(isNat(activate(V2)))
U16(tt) → tt
U21(tt, V1) → U22(isNatKind(activate(V1)), activate(V1))
U22(tt, V1) → U23(isNat(activate(V1)))
U23(tt) → tt
U31(tt, V2) → U32(isNatKind(activate(V2)))
U32(tt) → tt
U41(tt) → tt
U51(tt, N) → U52(isNatKind(activate(N)), activate(N))
U52(tt, N) → activate(N)
U61(tt, M, N) → U62(isNatKind(activate(M)), activate(M), activate(N))
U62(tt, M, N) → U63(isNat(activate(N)), activate(M), activate(N))
U63(tt, M, N) → U64(isNatKind(activate(N)), activate(M), activate(N))
U64(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNatKind(activate(V1)), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → U31(isNatKind(activate(V1)), activate(V2))
isNatKind(n__s(V1)) → U41(isNatKind(activate(V1)))
plus(N, 0) → U51(isNat(N), N)
plus(N, s(M)) → U61(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(13) TRUE

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U311(tt, V2) → ISNATKIND(activate(V2))
ISNATKIND(n__plus(V1, V2)) → U311(isNatKind(activate(V1)), activate(V2))
ISNATKIND(n__plus(V1, V2)) → ISNATKIND(activate(V1))

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNatKind(activate(V1)), activate(V1), activate(V2))
U12(tt, V1, V2) → U13(isNatKind(activate(V2)), activate(V1), activate(V2))
U13(tt, V1, V2) → U14(isNatKind(activate(V2)), activate(V1), activate(V2))
U14(tt, V1, V2) → U15(isNat(activate(V1)), activate(V2))
U15(tt, V2) → U16(isNat(activate(V2)))
U16(tt) → tt
U21(tt, V1) → U22(isNatKind(activate(V1)), activate(V1))
U22(tt, V1) → U23(isNat(activate(V1)))
U23(tt) → tt
U31(tt, V2) → U32(isNatKind(activate(V2)))
U32(tt) → tt
U41(tt) → tt
U51(tt, N) → U52(isNatKind(activate(N)), activate(N))
U52(tt, N) → activate(N)
U61(tt, M, N) → U62(isNatKind(activate(M)), activate(M), activate(N))
U62(tt, M, N) → U63(isNat(activate(N)), activate(M), activate(N))
U63(tt, M, N) → U64(isNatKind(activate(N)), activate(M), activate(N))
U64(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNatKind(activate(V1)), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → U31(isNatKind(activate(V1)), activate(V2))
isNatKind(n__s(V1)) → U41(isNatKind(activate(V1)))
plus(N, 0) → U51(isNat(N), N)
plus(N, s(M)) → U61(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U311(tt, V2) → ISNATKIND(activate(V2))
ISNATKIND(n__plus(V1, V2)) → U311(isNatKind(activate(V1)), activate(V2))
ISNATKIND(n__plus(V1, V2)) → ISNATKIND(activate(V1))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
U311(x0, x1, x2)  =  U311(x0, x1, x2)
ISNATKIND(x0, x1)  =  ISNATKIND(x0, x1)

Tags:
U311 has argument tags [0,6,6] and root tag 1
ISNATKIND has argument tags [6,0] and root tag 0

Comparison: DMS
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(0) = 0   
POL(ISNATKIND(x1)) = 0   
POL(U11(x1, x2, x3)) = x2   
POL(U12(x1, x2, x3)) = x3   
POL(U13(x1, x2, x3)) = x2   
POL(U14(x1, x2, x3)) = 0   
POL(U15(x1, x2)) = 0   
POL(U16(x1)) = 0   
POL(U21(x1, x2)) = 0   
POL(U22(x1, x2)) = x2   
POL(U23(x1)) = 1 + x1   
POL(U31(x1, x2)) = 0   
POL(U311(x1, x2)) = 1 + x2   
POL(U32(x1)) = 0   
POL(U41(x1)) = 0   
POL(U51(x1, x2)) = x2   
POL(U52(x1, x2)) = x2   
POL(U61(x1, x2, x3)) = 1 + x3   
POL(U62(x1, x2, x3)) = 1 + x3   
POL(U63(x1, x2, x3)) = 0   
POL(U64(x1, x2, x3)) = 0   
POL(activate(x1)) = x1   
POL(isNat(x1)) = 1   
POL(isNatKind(x1)) = 0   
POL(n__0) = 0   
POL(n__plus(x1, x2)) = 1 + x1 + x2   
POL(n__s(x1)) = 0   
POL(plus(x1, x2)) = 1 + x1 + x2   
POL(s(x1)) = 0   
POL(tt) = 0   

The following usable rules [FROCOS05] were oriented:

activate(n__0) → 0
U52(tt, N) → activate(N)
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
plus(N, 0) → U51(isNat(N), N)
U51(tt, N) → U52(isNatKind(activate(N)), activate(N))
activate(n__s(X)) → s(activate(X))
activate(X) → X
plus(N, s(M)) → U61(isNat(M), M, N)
U61(tt, M, N) → U62(isNatKind(activate(M)), activate(M), activate(N))
U62(tt, M, N) → U63(isNat(activate(N)), activate(M), activate(N))
U63(tt, M, N) → U64(isNatKind(activate(N)), activate(M), activate(N))
U64(tt, M, N) → s(plus(activate(N), activate(M)))
s(X) → n__s(X)
plus(X1, X2) → n__plus(X1, X2)
0n__0

(16) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNatKind(activate(V1)), activate(V1), activate(V2))
U12(tt, V1, V2) → U13(isNatKind(activate(V2)), activate(V1), activate(V2))
U13(tt, V1, V2) → U14(isNatKind(activate(V2)), activate(V1), activate(V2))
U14(tt, V1, V2) → U15(isNat(activate(V1)), activate(V2))
U15(tt, V2) → U16(isNat(activate(V2)))
U16(tt) → tt
U21(tt, V1) → U22(isNatKind(activate(V1)), activate(V1))
U22(tt, V1) → U23(isNat(activate(V1)))
U23(tt) → tt
U31(tt, V2) → U32(isNatKind(activate(V2)))
U32(tt) → tt
U41(tt) → tt
U51(tt, N) → U52(isNatKind(activate(N)), activate(N))
U52(tt, N) → activate(N)
U61(tt, M, N) → U62(isNatKind(activate(M)), activate(M), activate(N))
U62(tt, M, N) → U63(isNat(activate(N)), activate(M), activate(N))
U63(tt, M, N) → U64(isNatKind(activate(N)), activate(M), activate(N))
U64(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNatKind(activate(V1)), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → U31(isNatKind(activate(V1)), activate(V2))
isNatKind(n__s(V1)) → U41(isNatKind(activate(V1)))
plus(N, 0) → U51(isNat(N), N)
plus(N, s(M)) → U61(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(18) TRUE

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U131(tt, V1, V2) → U141(isNatKind(activate(V2)), activate(V1), activate(V2))
U141(tt, V1, V2) → U151(isNat(activate(V1)), activate(V2))
U151(tt, V2) → ISNAT(activate(V2))
ISNAT(n__plus(V1, V2)) → U111(isNatKind(activate(V1)), activate(V1), activate(V2))
U111(tt, V1, V2) → U121(isNatKind(activate(V1)), activate(V1), activate(V2))
U121(tt, V1, V2) → U131(isNatKind(activate(V2)), activate(V1), activate(V2))
U141(tt, V1, V2) → ISNAT(activate(V1))

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNatKind(activate(V1)), activate(V1), activate(V2))
U12(tt, V1, V2) → U13(isNatKind(activate(V2)), activate(V1), activate(V2))
U13(tt, V1, V2) → U14(isNatKind(activate(V2)), activate(V1), activate(V2))
U14(tt, V1, V2) → U15(isNat(activate(V1)), activate(V2))
U15(tt, V2) → U16(isNat(activate(V2)))
U16(tt) → tt
U21(tt, V1) → U22(isNatKind(activate(V1)), activate(V1))
U22(tt, V1) → U23(isNat(activate(V1)))
U23(tt) → tt
U31(tt, V2) → U32(isNatKind(activate(V2)))
U32(tt) → tt
U41(tt) → tt
U51(tt, N) → U52(isNatKind(activate(N)), activate(N))
U52(tt, N) → activate(N)
U61(tt, M, N) → U62(isNatKind(activate(M)), activate(M), activate(N))
U62(tt, M, N) → U63(isNat(activate(N)), activate(M), activate(N))
U63(tt, M, N) → U64(isNatKind(activate(N)), activate(M), activate(N))
U64(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNatKind(activate(V1)), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → U31(isNatKind(activate(V1)), activate(V2))
isNatKind(n__s(V1)) → U41(isNatKind(activate(V1)))
plus(N, 0) → U51(isNat(N), N)
plus(N, s(M)) → U61(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U131(tt, V1, V2) → U141(isNatKind(activate(V2)), activate(V1), activate(V2))
U141(tt, V1, V2) → U151(isNat(activate(V1)), activate(V2))
U151(tt, V2) → ISNAT(activate(V2))
ISNAT(n__plus(V1, V2)) → U111(isNatKind(activate(V1)), activate(V1), activate(V2))
U111(tt, V1, V2) → U121(isNatKind(activate(V1)), activate(V1), activate(V2))
U121(tt, V1, V2) → U131(isNatKind(activate(V2)), activate(V1), activate(V2))
U141(tt, V1, V2) → ISNAT(activate(V1))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
U131(x0, x1, x2, x3)  =  U131(x0, x1)
U141(x0, x1, x2, x3)  =  U141(x0, x1)
U151(x0, x1, x2)  =  U151(x0)
ISNAT(x0, x1)  =  ISNAT(x0)
U111(x0, x1, x2, x3)  =  U111(x0)
U121(x0, x1, x2, x3)  =  U121(x0, x3)

Tags:
U131 has argument tags [24,11,8,22] and root tag 0
U141 has argument tags [24,9,0,4] and root tag 1
U151 has argument tags [24,28,0] and root tag 6
ISNAT has argument tags [3,2] and root tag 4
U111 has argument tags [26,2,13,13] and root tag 3
U121 has argument tags [24,3,16,19] and root tag 4

Comparison: MS
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(0) = 0   
POL(ISNAT(x1)) = 1 + x1   
POL(U11(x1, x2, x3)) = 0   
POL(U111(x1, x2, x3)) = 1 + x2 + x3   
POL(U12(x1, x2, x3)) = 1 + x2 + x3   
POL(U121(x1, x2, x3)) = 1 + x2 + x3   
POL(U13(x1, x2, x3)) = 0   
POL(U131(x1, x2, x3)) = 1 + x2 + x3   
POL(U14(x1, x2, x3)) = 1   
POL(U141(x1, x2, x3)) = 1 + x2 + x3   
POL(U15(x1, x2)) = x2   
POL(U151(x1, x2)) = 1 + x2   
POL(U16(x1)) = 1   
POL(U21(x1, x2)) = 1   
POL(U22(x1, x2)) = x2   
POL(U23(x1)) = 1   
POL(U31(x1, x2)) = 0   
POL(U32(x1)) = 0   
POL(U41(x1)) = 0   
POL(U51(x1, x2)) = x2   
POL(U52(x1, x2)) = x2   
POL(U61(x1, x2, x3)) = 1 + x3   
POL(U62(x1, x2, x3)) = 1 + x3   
POL(U63(x1, x2, x3)) = 1 + x3   
POL(U64(x1, x2, x3)) = 1 + x3   
POL(activate(x1)) = x1   
POL(isNat(x1)) = 0   
POL(isNatKind(x1)) = 0   
POL(n__0) = 0   
POL(n__plus(x1, x2)) = 1 + x1 + x2   
POL(n__s(x1)) = 1   
POL(plus(x1, x2)) = 1 + x1 + x2   
POL(s(x1)) = 1   
POL(tt) = 0   

The following usable rules [FROCOS05] were oriented:

activate(n__0) → 0
U52(tt, N) → activate(N)
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
plus(N, 0) → U51(isNat(N), N)
U51(tt, N) → U52(isNatKind(activate(N)), activate(N))
activate(n__s(X)) → s(activate(X))
activate(X) → X
plus(N, s(M)) → U61(isNat(M), M, N)
U61(tt, M, N) → U62(isNatKind(activate(M)), activate(M), activate(N))
U62(tt, M, N) → U63(isNat(activate(N)), activate(M), activate(N))
U63(tt, M, N) → U64(isNatKind(activate(N)), activate(M), activate(N))
U64(tt, M, N) → s(plus(activate(N), activate(M)))
s(X) → n__s(X)
plus(X1, X2) → n__plus(X1, X2)
0n__0

(21) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNatKind(activate(V1)), activate(V1), activate(V2))
U12(tt, V1, V2) → U13(isNatKind(activate(V2)), activate(V1), activate(V2))
U13(tt, V1, V2) → U14(isNatKind(activate(V2)), activate(V1), activate(V2))
U14(tt, V1, V2) → U15(isNat(activate(V1)), activate(V2))
U15(tt, V2) → U16(isNat(activate(V2)))
U16(tt) → tt
U21(tt, V1) → U22(isNatKind(activate(V1)), activate(V1))
U22(tt, V1) → U23(isNat(activate(V1)))
U23(tt) → tt
U31(tt, V2) → U32(isNatKind(activate(V2)))
U32(tt) → tt
U41(tt) → tt
U51(tt, N) → U52(isNatKind(activate(N)), activate(N))
U52(tt, N) → activate(N)
U61(tt, M, N) → U62(isNatKind(activate(M)), activate(M), activate(N))
U62(tt, M, N) → U63(isNat(activate(N)), activate(M), activate(N))
U63(tt, M, N) → U64(isNatKind(activate(N)), activate(M), activate(N))
U64(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNatKind(activate(V1)), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → U31(isNatKind(activate(V1)), activate(V2))
isNatKind(n__s(V1)) → U41(isNatKind(activate(V1)))
plus(N, 0) → U51(isNat(N), N)
plus(N, s(M)) → U61(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(23) TRUE