(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNatKind(activate(V1)), activate(V1), activate(V2))
U12(tt, V1, V2) → U13(isNatKind(activate(V2)), activate(V1), activate(V2))
U13(tt, V1, V2) → U14(isNatKind(activate(V2)), activate(V1), activate(V2))
U14(tt, V1, V2) → U15(isNat(activate(V1)), activate(V2))
U15(tt, V2) → U16(isNat(activate(V2)))
U16(tt) → tt
U21(tt, V1) → U22(isNatKind(activate(V1)), activate(V1))
U22(tt, V1) → U23(isNat(activate(V1)))
U23(tt) → tt
U31(tt, V2) → U32(isNatKind(activate(V2)))
U32(tt) → tt
U41(tt) → tt
U51(tt, N) → U52(isNatKind(activate(N)), activate(N))
U52(tt, N) → activate(N)
U61(tt, M, N) → U62(isNatKind(activate(M)), activate(M), activate(N))
U62(tt, M, N) → U63(isNat(activate(N)), activate(M), activate(N))
U63(tt, M, N) → U64(isNatKind(activate(N)), activate(M), activate(N))
U64(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNatKind(activate(V1)), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → U31(isNatKind(activate(V1)), activate(V2))
isNatKind(n__s(V1)) → U41(isNatKind(activate(V1)))
plus(N, 0) → U51(isNat(N), N)
plus(N, s(M)) → U61(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(tt, V1, V2) → U121(isNatKind(activate(V1)), activate(V1), activate(V2))
U111(tt, V1, V2) → ISNATKIND(activate(V1))
U111(tt, V1, V2) → ACTIVATE(V1)
U111(tt, V1, V2) → ACTIVATE(V2)
U121(tt, V1, V2) → U131(isNatKind(activate(V2)), activate(V1), activate(V2))
U121(tt, V1, V2) → ISNATKIND(activate(V2))
U121(tt, V1, V2) → ACTIVATE(V2)
U121(tt, V1, V2) → ACTIVATE(V1)
U131(tt, V1, V2) → U141(isNatKind(activate(V2)), activate(V1), activate(V2))
U131(tt, V1, V2) → ISNATKIND(activate(V2))
U131(tt, V1, V2) → ACTIVATE(V2)
U131(tt, V1, V2) → ACTIVATE(V1)
U141(tt, V1, V2) → U151(isNat(activate(V1)), activate(V2))
U141(tt, V1, V2) → ISNAT(activate(V1))
U141(tt, V1, V2) → ACTIVATE(V1)
U141(tt, V1, V2) → ACTIVATE(V2)
U151(tt, V2) → U161(isNat(activate(V2)))
U151(tt, V2) → ISNAT(activate(V2))
U151(tt, V2) → ACTIVATE(V2)
U211(tt, V1) → U221(isNatKind(activate(V1)), activate(V1))
U211(tt, V1) → ISNATKIND(activate(V1))
U211(tt, V1) → ACTIVATE(V1)
U221(tt, V1) → U231(isNat(activate(V1)))
U221(tt, V1) → ISNAT(activate(V1))
U221(tt, V1) → ACTIVATE(V1)
U311(tt, V2) → U321(isNatKind(activate(V2)))
U311(tt, V2) → ISNATKIND(activate(V2))
U311(tt, V2) → ACTIVATE(V2)
U511(tt, N) → U521(isNatKind(activate(N)), activate(N))
U511(tt, N) → ISNATKIND(activate(N))
U511(tt, N) → ACTIVATE(N)
U521(tt, N) → ACTIVATE(N)
U611(tt, M, N) → U621(isNatKind(activate(M)), activate(M), activate(N))
U611(tt, M, N) → ISNATKIND(activate(M))
U611(tt, M, N) → ACTIVATE(M)
U611(tt, M, N) → ACTIVATE(N)
U621(tt, M, N) → U631(isNat(activate(N)), activate(M), activate(N))
U621(tt, M, N) → ISNAT(activate(N))
U621(tt, M, N) → ACTIVATE(N)
U621(tt, M, N) → ACTIVATE(M)
U631(tt, M, N) → U641(isNatKind(activate(N)), activate(M), activate(N))
U631(tt, M, N) → ISNATKIND(activate(N))
U631(tt, M, N) → ACTIVATE(N)
U631(tt, M, N) → ACTIVATE(M)
U641(tt, M, N) → S(plus(activate(N), activate(M)))
U641(tt, M, N) → PLUS(activate(N), activate(M))
U641(tt, M, N) → ACTIVATE(N)
U641(tt, M, N) → ACTIVATE(M)
ISNAT(n__plus(V1, V2)) → U111(isNatKind(activate(V1)), activate(V1), activate(V2))
ISNAT(n__plus(V1, V2)) → ISNATKIND(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
ISNAT(n__s(V1)) → ISNATKIND(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNATKIND(n__plus(V1, V2)) → U311(isNatKind(activate(V1)), activate(V2))
ISNATKIND(n__plus(V1, V2)) → ISNATKIND(activate(V1))
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V1)
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V2)
ISNATKIND(n__s(V1)) → U411(isNatKind(activate(V1)))
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
ISNATKIND(n__s(V1)) → ACTIVATE(V1)
PLUS(N, 0) → U511(isNat(N), N)
PLUS(N, 0) → ISNAT(N)
PLUS(N, s(M)) → U611(isNat(M), M, N)
PLUS(N, s(M)) → ISNAT(M)
ACTIVATE(n__0) → 01
ACTIVATE(n__plus(X1, X2)) → PLUS(activate(X1), activate(X2))
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__s(X)) → S(activate(X))
ACTIVATE(n__s(X)) → ACTIVATE(X)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNatKind(activate(V1)), activate(V1), activate(V2))
U12(tt, V1, V2) → U13(isNatKind(activate(V2)), activate(V1), activate(V2))
U13(tt, V1, V2) → U14(isNatKind(activate(V2)), activate(V1), activate(V2))
U14(tt, V1, V2) → U15(isNat(activate(V1)), activate(V2))
U15(tt, V2) → U16(isNat(activate(V2)))
U16(tt) → tt
U21(tt, V1) → U22(isNatKind(activate(V1)), activate(V1))
U22(tt, V1) → U23(isNat(activate(V1)))
U23(tt) → tt
U31(tt, V2) → U32(isNatKind(activate(V2)))
U32(tt) → tt
U41(tt) → tt
U51(tt, N) → U52(isNatKind(activate(N)), activate(N))
U52(tt, N) → activate(N)
U61(tt, M, N) → U62(isNatKind(activate(M)), activate(M), activate(N))
U62(tt, M, N) → U63(isNat(activate(N)), activate(M), activate(N))
U63(tt, M, N) → U64(isNatKind(activate(N)), activate(M), activate(N))
U64(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNatKind(activate(V1)), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → U31(isNatKind(activate(V1)), activate(V2))
isNatKind(n__s(V1)) → U41(isNatKind(activate(V1)))
plus(N, 0) → U51(isNat(N), N)
plus(N, s(M)) → U61(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 7 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(tt, V1, V2) → U131(isNatKind(activate(V2)), activate(V1), activate(V2))
U131(tt, V1, V2) → U141(isNatKind(activate(V2)), activate(V1), activate(V2))
U141(tt, V1, V2) → U151(isNat(activate(V1)), activate(V2))
U151(tt, V2) → ISNAT(activate(V2))
ISNAT(n__plus(V1, V2)) → U111(isNatKind(activate(V1)), activate(V1), activate(V2))
U111(tt, V1, V2) → U121(isNatKind(activate(V1)), activate(V1), activate(V2))
U121(tt, V1, V2) → ISNATKIND(activate(V2))
ISNATKIND(n__plus(V1, V2)) → U311(isNatKind(activate(V1)), activate(V2))
U311(tt, V2) → ISNATKIND(activate(V2))
ISNATKIND(n__plus(V1, V2)) → ISNATKIND(activate(V1))
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__plus(X1, X2)) → PLUS(activate(X1), activate(X2))
PLUS(N, 0) → U511(isNat(N), N)
U511(tt, N) → U521(isNatKind(activate(N)), activate(N))
U521(tt, N) → ACTIVATE(N)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__s(X)) → ACTIVATE(X)
U511(tt, N) → ISNATKIND(activate(N))
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V2)
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
ISNATKIND(n__s(V1)) → ACTIVATE(V1)
U511(tt, N) → ACTIVATE(N)
PLUS(N, 0) → ISNAT(N)
ISNAT(n__plus(V1, V2)) → ISNATKIND(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
U211(tt, V1) → U221(isNatKind(activate(V1)), activate(V1))
U221(tt, V1) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ISNATKIND(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
U221(tt, V1) → ACTIVATE(V1)
U211(tt, V1) → ISNATKIND(activate(V1))
U211(tt, V1) → ACTIVATE(V1)
PLUS(N, s(M)) → U611(isNat(M), M, N)
U611(tt, M, N) → U621(isNatKind(activate(M)), activate(M), activate(N))
U621(tt, M, N) → U631(isNat(activate(N)), activate(M), activate(N))
U631(tt, M, N) → U641(isNatKind(activate(N)), activate(M), activate(N))
U641(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → ISNAT(M)
U641(tt, M, N) → ACTIVATE(N)
U641(tt, M, N) → ACTIVATE(M)
U631(tt, M, N) → ISNATKIND(activate(N))
U631(tt, M, N) → ACTIVATE(N)
U631(tt, M, N) → ACTIVATE(M)
U621(tt, M, N) → ISNAT(activate(N))
U621(tt, M, N) → ACTIVATE(N)
U621(tt, M, N) → ACTIVATE(M)
U611(tt, M, N) → ISNATKIND(activate(M))
U611(tt, M, N) → ACTIVATE(M)
U611(tt, M, N) → ACTIVATE(N)
U311(tt, V2) → ACTIVATE(V2)
U121(tt, V1, V2) → ACTIVATE(V2)
U121(tt, V1, V2) → ACTIVATE(V1)
U111(tt, V1, V2) → ISNATKIND(activate(V1))
U111(tt, V1, V2) → ACTIVATE(V1)
U111(tt, V1, V2) → ACTIVATE(V2)
U151(tt, V2) → ACTIVATE(V2)
U141(tt, V1, V2) → ISNAT(activate(V1))
U141(tt, V1, V2) → ACTIVATE(V1)
U141(tt, V1, V2) → ACTIVATE(V2)
U131(tt, V1, V2) → ISNATKIND(activate(V2))
U131(tt, V1, V2) → ACTIVATE(V2)
U131(tt, V1, V2) → ACTIVATE(V1)

The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNatKind(activate(V1)), activate(V1), activate(V2))
U12(tt, V1, V2) → U13(isNatKind(activate(V2)), activate(V1), activate(V2))
U13(tt, V1, V2) → U14(isNatKind(activate(V2)), activate(V1), activate(V2))
U14(tt, V1, V2) → U15(isNat(activate(V1)), activate(V2))
U15(tt, V2) → U16(isNat(activate(V2)))
U16(tt) → tt
U21(tt, V1) → U22(isNatKind(activate(V1)), activate(V1))
U22(tt, V1) → U23(isNat(activate(V1)))
U23(tt) → tt
U31(tt, V2) → U32(isNatKind(activate(V2)))
U32(tt) → tt
U41(tt) → tt
U51(tt, N) → U52(isNatKind(activate(N)), activate(N))
U52(tt, N) → activate(N)
U61(tt, M, N) → U62(isNatKind(activate(M)), activate(M), activate(N))
U62(tt, M, N) → U63(isNat(activate(N)), activate(M), activate(N))
U63(tt, M, N) → U64(isNatKind(activate(N)), activate(M), activate(N))
U64(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNatKind(activate(V1)), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → U31(isNatKind(activate(V1)), activate(V2))
isNatKind(n__s(V1)) → U41(isNatKind(activate(V1)))
plus(N, 0) → U51(isNat(N), N)
plus(N, s(M)) → U61(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U121(tt, V1, V2) → U131(isNatKind(activate(V2)), activate(V1), activate(V2))
U131(tt, V1, V2) → U141(isNatKind(activate(V2)), activate(V1), activate(V2))
U141(tt, V1, V2) → U151(isNat(activate(V1)), activate(V2))
U151(tt, V2) → ISNAT(activate(V2))
ISNAT(n__plus(V1, V2)) → U111(isNatKind(activate(V1)), activate(V1), activate(V2))
U111(tt, V1, V2) → U121(isNatKind(activate(V1)), activate(V1), activate(V2))
U121(tt, V1, V2) → ISNATKIND(activate(V2))
ISNATKIND(n__plus(V1, V2)) → U311(isNatKind(activate(V1)), activate(V2))
U311(tt, V2) → ISNATKIND(activate(V2))
ISNATKIND(n__plus(V1, V2)) → ISNATKIND(activate(V1))
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V1)
ACTIVATE(n__plus(X1, X2)) → PLUS(activate(X1), activate(X2))
PLUS(N, 0) → U511(isNat(N), N)
U511(tt, N) → U521(isNatKind(activate(N)), activate(N))
U521(tt, N) → ACTIVATE(N)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__plus(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__s(X)) → ACTIVATE(X)
U511(tt, N) → ISNATKIND(activate(N))
ISNATKIND(n__plus(V1, V2)) → ACTIVATE(V2)
ISNATKIND(n__s(V1)) → ISNATKIND(activate(V1))
ISNATKIND(n__s(V1)) → ACTIVATE(V1)
U511(tt, N) → ACTIVATE(N)
PLUS(N, 0) → ISNAT(N)
ISNAT(n__plus(V1, V2)) → ISNATKIND(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → U211(isNatKind(activate(V1)), activate(V1))
U211(tt, V1) → U221(isNatKind(activate(V1)), activate(V1))
U221(tt, V1) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ISNATKIND(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
U221(tt, V1) → ACTIVATE(V1)
U211(tt, V1) → ISNATKIND(activate(V1))
U211(tt, V1) → ACTIVATE(V1)
PLUS(N, s(M)) → U611(isNat(M), M, N)
U611(tt, M, N) → U621(isNatKind(activate(M)), activate(M), activate(N))
U621(tt, M, N) → U631(isNat(activate(N)), activate(M), activate(N))
U631(tt, M, N) → U641(isNatKind(activate(N)), activate(M), activate(N))
U641(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → ISNAT(M)
U641(tt, M, N) → ACTIVATE(N)
U641(tt, M, N) → ACTIVATE(M)
U631(tt, M, N) → ISNATKIND(activate(N))
U631(tt, M, N) → ACTIVATE(N)
U631(tt, M, N) → ACTIVATE(M)
U621(tt, M, N) → ISNAT(activate(N))
U621(tt, M, N) → ACTIVATE(N)
U621(tt, M, N) → ACTIVATE(M)
U611(tt, M, N) → ISNATKIND(activate(M))
U611(tt, M, N) → ACTIVATE(M)
U611(tt, M, N) → ACTIVATE(N)
U311(tt, V2) → ACTIVATE(V2)
U121(tt, V1, V2) → ACTIVATE(V2)
U121(tt, V1, V2) → ACTIVATE(V1)
U111(tt, V1, V2) → ISNATKIND(activate(V1))
U111(tt, V1, V2) → ACTIVATE(V1)
U111(tt, V1, V2) → ACTIVATE(V2)
U151(tt, V2) → ACTIVATE(V2)
U141(tt, V1, V2) → ISNAT(activate(V1))
U141(tt, V1, V2) → ACTIVATE(V1)
U141(tt, V1, V2) → ACTIVATE(V2)
U131(tt, V1, V2) → ISNATKIND(activate(V2))
U131(tt, V1, V2) → ACTIVATE(V2)
U131(tt, V1, V2) → ACTIVATE(V1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
U121(x0, x1, x2, x3)  =  U121(x0)
U131(x0, x1, x2, x3)  =  U131(x0)
U141(x0, x1, x2, x3)  =  U141(x0)
U151(x0, x1, x2)  =  U151(x0, x2)
ISNAT(x0, x1)  =  ISNAT(x0)
U111(x0, x1, x2, x3)  =  U111(x0)
ISNATKIND(x0, x1)  =  ISNATKIND(x0)
U311(x0, x1, x2)  =  U311(x0)
ACTIVATE(x0, x1)  =  ACTIVATE(x1)
PLUS(x0, x1, x2)  =  PLUS(x0)
U511(x0, x1, x2)  =  U511(x2)
U521(x0, x1, x2)  =  U521(x0, x2)
U211(x0, x1, x2)  =  U211(x0)
U221(x0, x1, x2)  =  U221(x0, x2)
U611(x0, x1, x2, x3)  =  U611(x0)
U621(x0, x1, x2, x3)  =  U621(x0)
U631(x0, x1, x2, x3)  =  U631(x0)
U641(x0, x1, x2, x3)  =  U641(x0)

Tags:
U121 has argument tags [0,0,16,24] and root tag 7
U131 has argument tags [34,55,47,48] and root tag 25
U141 has argument tags [12,9,0,25] and root tag 6
U151 has argument tags [22,48,42] and root tag 31
ISNAT has argument tags [35,13] and root tag 0
U111 has argument tags [29,20,48,32] and root tag 31
ISNATKIND has argument tags [15,51] and root tag 8
U311 has argument tags [41,19,0] and root tag 31
ACTIVATE has argument tags [63,41] and root tag 16
PLUS has argument tags [9,0,32] and root tag 0
U511 has argument tags [0,2,45] and root tag 0
U521 has argument tags [45,22,50] and root tag 11
U211 has argument tags [42,8,38] and root tag 10
U221 has argument tags [0,10,42] and root tag 16
U611 has argument tags [42,0,2,2] and root tag 4
U621 has argument tags [29,62,6,0] and root tag 9
U631 has argument tags [26,58,22,40] and root tag 11
U641 has argument tags [21,6,1,22] and root tag 0

Comparison: DMS
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
U121(x1, x2, x3)  =  U121(x1, x2, x3)
tt  =  tt
U131(x1, x2, x3)  =  U131(x1, x2, x3)
isNatKind(x1)  =  isNatKind
activate(x1)  =  x1
U141(x1, x2, x3)  =  U141(x2, x3)
U151(x1, x2)  =  U151(x1, x2)
isNat(x1)  =  isNat
ISNAT(x1)  =  x1
n__plus(x1, x2)  =  n__plus(x1, x2)
U111(x1, x2, x3)  =  U111(x2, x3)
ISNATKIND(x1)  =  x1
U311(x1, x2)  =  x2
ACTIVATE(x1)  =  ACTIVATE(x1)
PLUS(x1, x2)  =  PLUS(x1, x2)
0  =  0
U511(x1, x2)  =  x1
U521(x1, x2)  =  x2
n__s(x1)  =  n__s(x1)
U211(x1, x2)  =  x2
U221(x1, x2)  =  U221(x2)
s(x1)  =  s(x1)
U611(x1, x2, x3)  =  U611(x2, x3)
U621(x1, x2, x3)  =  U621(x2, x3)
U631(x1, x2, x3)  =  U631(x2, x3)
U641(x1, x2, x3)  =  U641(x2, x3)
n__0  =  n__0
U52(x1, x2)  =  x2
plus(x1, x2)  =  plus(x1, x2)
U51(x1, x2)  =  x2
U31(x1, x2)  =  x1
U41(x1)  =  x1
U11(x1, x2, x3)  =  U11
U21(x1, x2)  =  U21
U61(x1, x2, x3)  =  U61(x1, x2, x3)
U12(x1, x2, x3)  =  U12
U32(x1)  =  U32
U22(x1, x2)  =  x1
U62(x1, x2, x3)  =  U62(x1, x2, x3)
U13(x1, x2, x3)  =  U13
U23(x1)  =  U23
U63(x1, x2, x3)  =  U63(x1, x2, x3)
U14(x1, x2, x3)  =  U14
U64(x1, x2, x3)  =  U64(x1, x2, x3)
U15(x1, x2)  =  U15
U16(x1)  =  U16

Lexicographic path order with status [LPO].
Quasi-Precedence:
[tt, isNatKind, isNat, nplus2, U11^12, plus2, U11, U21, U613, U12, U32, U623, U13, U23, U633, U14, U643, U15, U16] > U12^13 > U13^13 > [U14^12, U15^12, ns1, s1]
[tt, isNatKind, isNat, nplus2, U11^12, plus2, U11, U21, U613, U12, U32, U623, U13, U23, U633, U14, U643, U15, U16] > ACTIVATE1 > [PLUS2, U61^12, U62^12, U63^12, U64^12] > [U14^12, U15^12, ns1, s1]
[0, n0] > [U14^12, U15^12, ns1, s1]
U22^11 > ACTIVATE1 > [PLUS2, U61^12, U62^12, U63^12, U64^12] > [U14^12, U15^12, ns1, s1]

Status:
U12^13: [3,2,1]
tt: []
U13^13: [3,1,2]
isNatKind: []
U14^12: [1,2]
U15^12: [2,1]
isNat: []
nplus2: [1,2]
U11^12: [1,2]
ACTIVATE1: [1]
PLUS2: [2,1]
0: []
ns1: [1]
U22^11: [1]
s1: [1]
U61^12: [1,2]
U62^12: [1,2]
U63^12: [1,2]
U64^12: [1,2]
n0: []
plus2: [1,2]
U11: []
U21: []
U613: [3,2,1]
U12: []
U32: []
U623: [3,2,1]
U13: []
U23: []
U633: [3,2,1]
U14: []
U643: [3,2,1]
U15: []
U16: []


The following usable rules [FROCOS05] were oriented:

activate(n__0) → 0
U52(tt, N) → activate(N)
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
plus(N, 0) → U51(isNat(N), N)
U51(tt, N) → U52(isNatKind(activate(N)), activate(N))
activate(n__s(X)) → s(activate(X))
activate(X) → X
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → U31(isNatKind(activate(V1)), activate(V2))
isNatKind(n__s(V1)) → U41(isNatKind(activate(V1)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNatKind(activate(V1)), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
plus(N, s(M)) → U61(isNat(M), M, N)
U11(tt, V1, V2) → U12(isNatKind(activate(V1)), activate(V1), activate(V2))
U31(tt, V2) → U32(isNatKind(activate(V2)))
U21(tt, V1) → U22(isNatKind(activate(V1)), activate(V1))
U61(tt, M, N) → U62(isNatKind(activate(M)), activate(M), activate(N))
U12(tt, V1, V2) → U13(isNatKind(activate(V2)), activate(V1), activate(V2))
U22(tt, V1) → U23(isNat(activate(V1)))
U62(tt, M, N) → U63(isNat(activate(N)), activate(M), activate(N))
U13(tt, V1, V2) → U14(isNatKind(activate(V2)), activate(V1), activate(V2))
U63(tt, M, N) → U64(isNatKind(activate(N)), activate(M), activate(N))
U14(tt, V1, V2) → U15(isNat(activate(V1)), activate(V2))
U64(tt, M, N) → s(plus(activate(N), activate(M)))
U15(tt, V2) → U16(isNat(activate(V2)))
s(X) → n__s(X)
plus(X1, X2) → n__plus(X1, X2)
U41(tt) → tt
U32(tt) → tt
U23(tt) → tt
U16(tt) → tt
0n__0

(6) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

U11(tt, V1, V2) → U12(isNatKind(activate(V1)), activate(V1), activate(V2))
U12(tt, V1, V2) → U13(isNatKind(activate(V2)), activate(V1), activate(V2))
U13(tt, V1, V2) → U14(isNatKind(activate(V2)), activate(V1), activate(V2))
U14(tt, V1, V2) → U15(isNat(activate(V1)), activate(V2))
U15(tt, V2) → U16(isNat(activate(V2)))
U16(tt) → tt
U21(tt, V1) → U22(isNatKind(activate(V1)), activate(V1))
U22(tt, V1) → U23(isNat(activate(V1)))
U23(tt) → tt
U31(tt, V2) → U32(isNatKind(activate(V2)))
U32(tt) → tt
U41(tt) → tt
U51(tt, N) → U52(isNatKind(activate(N)), activate(N))
U52(tt, N) → activate(N)
U61(tt, M, N) → U62(isNatKind(activate(M)), activate(M), activate(N))
U62(tt, M, N) → U63(isNat(activate(N)), activate(M), activate(N))
U63(tt, M, N) → U64(isNatKind(activate(N)), activate(M), activate(N))
U64(tt, M, N) → s(plus(activate(N), activate(M)))
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → U11(isNatKind(activate(V1)), activate(V1), activate(V2))
isNat(n__s(V1)) → U21(isNatKind(activate(V1)), activate(V1))
isNatKind(n__0) → tt
isNatKind(n__plus(V1, V2)) → U31(isNatKind(activate(V1)), activate(V2))
isNatKind(n__s(V1)) → U41(isNatKind(activate(V1)))
plus(N, 0) → U51(isNat(N), N)
plus(N, s(M)) → U61(isNat(M), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(activate(X1), activate(X2))
activate(n__s(X)) → s(activate(X))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(8) TRUE