(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → activate(X)
isList(V) → isNeList(activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → and(isList(activate(V1)), n__isList(activate(V2)))
isNeList(V) → isQid(activate(V))
isNeList(n____(V1, V2)) → and(isList(activate(V1)), n__isNeList(activate(V2)))
isNeList(n____(V1, V2)) → and(isNeList(activate(V1)), n__isList(activate(V2)))
isNePal(V) → isQid(activate(V))
isNePal(n____(I, n____(P, I))) → and(isQid(activate(I)), n__isPal(activate(P)))
isPal(V) → isNePal(activate(V))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isList(X) → n__isList(X)
isNeList(X) → n__isNeList(X)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isList(X)) → isList(X)
activate(n__isNeList(X)) → isNeList(X)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

__1(__(X, Y), Z) → __1(X, __(Y, Z))
__1(__(X, Y), Z) → __1(Y, Z)
AND(tt, X) → ACTIVATE(X)
ISLIST(V) → ISNELIST(activate(V))
ISLIST(V) → ACTIVATE(V)
ISLIST(n____(V1, V2)) → AND(isList(activate(V1)), n__isList(activate(V2)))
ISLIST(n____(V1, V2)) → ISLIST(activate(V1))
ISLIST(n____(V1, V2)) → ACTIVATE(V1)
ISLIST(n____(V1, V2)) → ACTIVATE(V2)
ISNELIST(V) → ISQID(activate(V))
ISNELIST(V) → ACTIVATE(V)
ISNELIST(n____(V1, V2)) → AND(isList(activate(V1)), n__isNeList(activate(V2)))
ISNELIST(n____(V1, V2)) → ISLIST(activate(V1))
ISNELIST(n____(V1, V2)) → ACTIVATE(V1)
ISNELIST(n____(V1, V2)) → ACTIVATE(V2)
ISNELIST(n____(V1, V2)) → AND(isNeList(activate(V1)), n__isList(activate(V2)))
ISNELIST(n____(V1, V2)) → ISNELIST(activate(V1))
ISNEPAL(V) → ISQID(activate(V))
ISNEPAL(V) → ACTIVATE(V)
ISNEPAL(n____(I, n____(P, I))) → AND(isQid(activate(I)), n__isPal(activate(P)))
ISNEPAL(n____(I, n____(P, I))) → ISQID(activate(I))
ISNEPAL(n____(I, n____(P, I))) → ACTIVATE(I)
ISNEPAL(n____(I, n____(P, I))) → ACTIVATE(P)
ISPAL(V) → ISNEPAL(activate(V))
ISPAL(V) → ACTIVATE(V)
ACTIVATE(n__nil) → NIL
ACTIVATE(n____(X1, X2)) → __1(activate(X1), activate(X2))
ACTIVATE(n____(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n____(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__isList(X)) → ISLIST(X)
ACTIVATE(n__isNeList(X)) → ISNELIST(X)
ACTIVATE(n__isPal(X)) → ISPAL(X)
ACTIVATE(n__a) → A
ACTIVATE(n__e) → E
ACTIVATE(n__i) → I
ACTIVATE(n__o) → O
ACTIVATE(n__u) → U

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → activate(X)
isList(V) → isNeList(activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → and(isList(activate(V1)), n__isList(activate(V2)))
isNeList(V) → isQid(activate(V))
isNeList(n____(V1, V2)) → and(isList(activate(V1)), n__isNeList(activate(V2)))
isNeList(n____(V1, V2)) → and(isNeList(activate(V1)), n__isList(activate(V2)))
isNePal(V) → isQid(activate(V))
isNePal(n____(I, n____(P, I))) → and(isQid(activate(I)), n__isPal(activate(P)))
isPal(V) → isNePal(activate(V))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isList(X) → n__isList(X)
isNeList(X) → n__isNeList(X)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isList(X)) → isList(X)
activate(n__isNeList(X)) → isNeList(X)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 10 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

__1(__(X, Y), Z) → __1(Y, Z)
__1(__(X, Y), Z) → __1(X, __(Y, Z))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → activate(X)
isList(V) → isNeList(activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → and(isList(activate(V1)), n__isList(activate(V2)))
isNeList(V) → isQid(activate(V))
isNeList(n____(V1, V2)) → and(isList(activate(V1)), n__isNeList(activate(V2)))
isNeList(n____(V1, V2)) → and(isNeList(activate(V1)), n__isList(activate(V2)))
isNePal(V) → isQid(activate(V))
isNePal(n____(I, n____(P, I))) → and(isQid(activate(I)), n__isPal(activate(P)))
isPal(V) → isNePal(activate(V))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isList(X) → n__isList(X)
isNeList(X) → n__isNeList(X)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isList(X)) → isList(X)
activate(n__isNeList(X)) → isNeList(X)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


__1(__(X, Y), Z) → __1(Y, Z)
__1(__(X, Y), Z) → __1(X, __(Y, Z))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
__1(x0, x1, x2)  =  __1(x0)

Tags:
__1 has argument tags [2,3,3] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
__1(x1, x2)  =  __1(x1, x2)
__(x1, x2)  =  __(x1, x2)
nil  =  nil
n____(x1, x2)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
_^12 > _2
nil > _2

Status:
_^12: [1,2]
_2: [1,2]
nil: multiset


The following usable rules [FROCOS05] were oriented:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
__(X1, X2) → n____(X1, X2)

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → activate(X)
isList(V) → isNeList(activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → and(isList(activate(V1)), n__isList(activate(V2)))
isNeList(V) → isQid(activate(V))
isNeList(n____(V1, V2)) → and(isList(activate(V1)), n__isNeList(activate(V2)))
isNeList(n____(V1, V2)) → and(isNeList(activate(V1)), n__isList(activate(V2)))
isNePal(V) → isQid(activate(V))
isNePal(n____(I, n____(P, I))) → and(isQid(activate(I)), n__isPal(activate(P)))
isPal(V) → isNePal(activate(V))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isList(X) → n__isList(X)
isNeList(X) → n__isNeList(X)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isList(X)) → isList(X)
activate(n__isNeList(X)) → isNeList(X)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n____(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n____(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__isList(X)) → ISLIST(X)
ISLIST(V) → ISNELIST(activate(V))
ISNELIST(V) → ACTIVATE(V)
ACTIVATE(n__isNeList(X)) → ISNELIST(X)
ISNELIST(n____(V1, V2)) → AND(isList(activate(V1)), n__isNeList(activate(V2)))
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__isPal(X)) → ISPAL(X)
ISPAL(V) → ISNEPAL(activate(V))
ISNEPAL(V) → ACTIVATE(V)
ISNEPAL(n____(I, n____(P, I))) → AND(isQid(activate(I)), n__isPal(activate(P)))
ISNEPAL(n____(I, n____(P, I))) → ACTIVATE(I)
ISNEPAL(n____(I, n____(P, I))) → ACTIVATE(P)
ISPAL(V) → ACTIVATE(V)
ISNELIST(n____(V1, V2)) → ISLIST(activate(V1))
ISLIST(V) → ACTIVATE(V)
ISLIST(n____(V1, V2)) → AND(isList(activate(V1)), n__isList(activate(V2)))
ISLIST(n____(V1, V2)) → ISLIST(activate(V1))
ISLIST(n____(V1, V2)) → ACTIVATE(V1)
ISLIST(n____(V1, V2)) → ACTIVATE(V2)
ISNELIST(n____(V1, V2)) → ACTIVATE(V1)
ISNELIST(n____(V1, V2)) → ACTIVATE(V2)
ISNELIST(n____(V1, V2)) → AND(isNeList(activate(V1)), n__isList(activate(V2)))
ISNELIST(n____(V1, V2)) → ISNELIST(activate(V1))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → activate(X)
isList(V) → isNeList(activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → and(isList(activate(V1)), n__isList(activate(V2)))
isNeList(V) → isQid(activate(V))
isNeList(n____(V1, V2)) → and(isList(activate(V1)), n__isNeList(activate(V2)))
isNeList(n____(V1, V2)) → and(isNeList(activate(V1)), n__isList(activate(V2)))
isNePal(V) → isQid(activate(V))
isNePal(n____(I, n____(P, I))) → and(isQid(activate(I)), n__isPal(activate(P)))
isPal(V) → isNePal(activate(V))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isList(X) → n__isList(X)
isNeList(X) → n__isNeList(X)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isList(X)) → isList(X)
activate(n__isNeList(X)) → isNeList(X)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n____(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n____(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__isList(X)) → ISLIST(X)
ISLIST(V) → ISNELIST(activate(V))
ISNELIST(n____(V1, V2)) → AND(isList(activate(V1)), n__isNeList(activate(V2)))
AND(tt, X) → ACTIVATE(X)
ISNEPAL(n____(I, n____(P, I))) → AND(isQid(activate(I)), n__isPal(activate(P)))
ISNEPAL(n____(I, n____(P, I))) → ACTIVATE(I)
ISNEPAL(n____(I, n____(P, I))) → ACTIVATE(P)
ISNELIST(n____(V1, V2)) → ISLIST(activate(V1))
ISLIST(V) → ACTIVATE(V)
ISLIST(n____(V1, V2)) → AND(isList(activate(V1)), n__isList(activate(V2)))
ISLIST(n____(V1, V2)) → ISLIST(activate(V1))
ISLIST(n____(V1, V2)) → ACTIVATE(V1)
ISLIST(n____(V1, V2)) → ACTIVATE(V2)
ISNELIST(n____(V1, V2)) → ACTIVATE(V1)
ISNELIST(n____(V1, V2)) → ACTIVATE(V2)
ISNELIST(n____(V1, V2)) → AND(isNeList(activate(V1)), n__isList(activate(V2)))
ISNELIST(n____(V1, V2)) → ISNELIST(activate(V1))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ACTIVATE(x0, x1)  =  ACTIVATE(x1)
ISLIST(x0, x1)  =  ISLIST(x0)
ISNELIST(x0, x1)  =  ISNELIST(x1)
AND(x0, x1, x2)  =  AND(x0, x1)
ISPAL(x0, x1)  =  ISPAL(x0)
ISNEPAL(x0, x1)  =  ISNEPAL(x0)

Tags:
ACTIVATE has argument tags [5,8] and root tag 0
ISLIST has argument tags [7,1] and root tag 4
ISNELIST has argument tags [12,8] and root tag 0
AND has argument tags [8,15,2] and root tag 5
ISPAL has argument tags [8,0] and root tag 0
ISNEPAL has argument tags [8,2] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
ACTIVATE(x1)  =  ACTIVATE
n____(x1, x2)  =  n____(x1, x2)
n__isList(x1)  =  n__isList(x1)
ISLIST(x1)  =  ISLIST(x1)
ISNELIST(x1)  =  ISNELIST(x1)
activate(x1)  =  x1
n__isNeList(x1)  =  x1
AND(x1, x2)  =  x2
isList(x1)  =  isList(x1)
tt  =  tt
n__isPal(x1)  =  x1
ISPAL(x1)  =  x1
ISNEPAL(x1)  =  x1
isQid(x1)  =  x1
isNeList(x1)  =  x1
n__nil  =  n__nil
nil  =  nil
__(x1, x2)  =  __(x1, x2)
and(x1, x2)  =  and(x1, x2)
isPal(x1)  =  x1
isNePal(x1)  =  x1
n__a  =  n__a
a  =  a
n__e  =  n__e
e  =  e
n__i  =  n__i
i  =  i
n__o  =  n__o
o  =  o
n__u  =  n__u
u  =  u

Recursive path order with status [RPO].
Quasi-Precedence:
ACTIVATE > [nisList1, ISLIST1, isList1] > ISNELIST1
ACTIVATE > [nisList1, ISLIST1, isList1] > [tt, no, o, nu, u]
ACTIVATE > [nisList1, ISLIST1, isList1] > and2
[n2, 2] > [nisList1, ISLIST1, isList1] > ISNELIST1
[n2, 2] > [nisList1, ISLIST1, isList1] > [tt, no, o, nu, u]
[n2, 2] > [nisList1, ISLIST1, isList1] > and2
[nnil, nil] > [tt, no, o, nu, u]
[na, a] > [tt, no, o, nu, u]
[ne, e] > [tt, no, o, nu, u]
[ni, i] > [tt, no, o, nu, u]

Status:
ACTIVATE: []
n2: [1,2]
nisList1: multiset
ISLIST1: multiset
ISNELIST1: multiset
isList1: multiset
tt: multiset
nnil: multiset
nil: multiset
_2: [1,2]
and2: multiset
na: multiset
a: multiset
ne: multiset
e: multiset
ni: multiset
i: multiset
no: multiset
o: multiset
nu: multiset
u: multiset


The following usable rules [FROCOS05] were oriented:

activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isList(X)) → isList(X)
isList(V) → isNeList(activate(V))
isNeList(n____(V1, V2)) → and(isList(activate(V1)), n__isNeList(activate(V2)))
and(tt, X) → activate(X)
activate(n__isNeList(X)) → isNeList(X)
isNeList(n____(V1, V2)) → and(isNeList(activate(V1)), n__isList(activate(V2)))
activate(n__isPal(X)) → isPal(X)
isPal(V) → isNePal(activate(V))
isNePal(n____(I, n____(P, I))) → and(isQid(activate(I)), n__isPal(activate(P)))
isList(n____(V1, V2)) → and(isList(activate(V1)), n__isList(activate(V2)))
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X
isList(n__nil) → tt
isList(X) → n__isList(X)
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
isNeList(V) → isQid(activate(V))
isNeList(X) → n__isNeList(X)
isNePal(V) → isQid(activate(V))
isPal(n__nil) → tt
isPal(X) → n__isPal(X)
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
__(X1, X2) → n____(X1, X2)
niln__nil
an__a
en__e
in__i
on__o
un__u

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNELIST(V) → ACTIVATE(V)
ACTIVATE(n__isNeList(X)) → ISNELIST(X)
ACTIVATE(n__isPal(X)) → ISPAL(X)
ISPAL(V) → ISNEPAL(activate(V))
ISNEPAL(V) → ACTIVATE(V)
ISPAL(V) → ACTIVATE(V)

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → activate(X)
isList(V) → isNeList(activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → and(isList(activate(V1)), n__isList(activate(V2)))
isNeList(V) → isQid(activate(V))
isNeList(n____(V1, V2)) → and(isList(activate(V1)), n__isNeList(activate(V2)))
isNeList(n____(V1, V2)) → and(isNeList(activate(V1)), n__isList(activate(V2)))
isNePal(V) → isQid(activate(V))
isNePal(n____(I, n____(P, I))) → and(isQid(activate(I)), n__isPal(activate(P)))
isPal(V) → isNePal(activate(V))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isList(X) → n__isList(X)
isNeList(X) → n__isNeList(X)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isList(X)) → isList(X)
activate(n__isNeList(X)) → isNeList(X)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNELIST(V) → ACTIVATE(V)
ACTIVATE(n__isNeList(X)) → ISNELIST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ISNELIST(x0, x1)  =  ISNELIST(x0, x1)
ACTIVATE(x0, x1)  =  ACTIVATE(x0, x1)
ISPAL(x0, x1)  =  ISPAL(x0, x1)
ISNEPAL(x0, x1)  =  ISNEPAL(x0, x1)

Tags:
ISNELIST has argument tags [0,1] and root tag 2
ACTIVATE has argument tags [1,0] and root tag 0
ISPAL has argument tags [1,0] and root tag 0
ISNEPAL has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
ISNELIST(x1)  =  x1
ACTIVATE(x1)  =  ACTIVATE
n__isNeList(x1)  =  n__isNeList(x1)
n__isPal(x1)  =  x1
ISPAL(x1)  =  ISPAL
ISNEPAL(x1)  =  ISNEPAL
activate(x1)  =  x1
n__nil  =  n__nil
nil  =  nil
n____(x1, x2)  =  n____(x1, x2)
__(x1, x2)  =  __(x1, x2)
n__isList(x1)  =  n__isList(x1)
isList(x1)  =  isList(x1)
isNeList(x1)  =  isNeList(x1)
and(x1, x2)  =  and(x1, x2)
tt  =  tt
isPal(x1)  =  x1
isNePal(x1)  =  x1
isQid(x1)  =  isQid
n__a  =  n__a
a  =  a
n__e  =  n__e
e  =  e
n__i  =  n__i
i  =  i
n__o  =  n__o
o  =  o
n__u  =  n__u
u  =  u

Recursive path order with status [RPO].
Quasi-Precedence:
[nnil, nil] > [ACTIVATE, nisNeList1, ISPAL, ISNEPAL, isNeList1, tt, isQid, ni, i, no, o]
[n2, 2] > [nisList1, isList1] > and2 > [ACTIVATE, nisNeList1, ISPAL, ISNEPAL, isNeList1, tt, isQid, ni, i, no, o]
[na, a] > [ACTIVATE, nisNeList1, ISPAL, ISNEPAL, isNeList1, tt, isQid, ni, i, no, o]
[ne, e] > [ACTIVATE, nisNeList1, ISPAL, ISNEPAL, isNeList1, tt, isQid, ni, i, no, o]
[nu, u] > [ACTIVATE, nisNeList1, ISPAL, ISNEPAL, isNeList1, tt, isQid, ni, i, no, o]

Status:
ACTIVATE: []
nisNeList1: [1]
ISPAL: []
ISNEPAL: []
nnil: multiset
nil: multiset
n2: [1,2]
_2: [1,2]
nisList1: [1]
isList1: [1]
isNeList1: [1]
and2: multiset
tt: multiset
isQid: []
na: multiset
a: multiset
ne: multiset
e: multiset
ni: multiset
i: multiset
no: multiset
o: multiset
nu: multiset
u: multiset


The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__isPal(X)) → ISPAL(X)
ISPAL(V) → ISNEPAL(activate(V))
ISNEPAL(V) → ACTIVATE(V)
ISPAL(V) → ACTIVATE(V)

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → activate(X)
isList(V) → isNeList(activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → and(isList(activate(V1)), n__isList(activate(V2)))
isNeList(V) → isQid(activate(V))
isNeList(n____(V1, V2)) → and(isList(activate(V1)), n__isNeList(activate(V2)))
isNeList(n____(V1, V2)) → and(isNeList(activate(V1)), n__isList(activate(V2)))
isNePal(V) → isQid(activate(V))
isNePal(n____(I, n____(P, I))) → and(isQid(activate(I)), n__isPal(activate(P)))
isPal(V) → isNePal(activate(V))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isList(X) → n__isList(X)
isNeList(X) → n__isNeList(X)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isList(X)) → isList(X)
activate(n__isNeList(X)) → isNeList(X)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__isPal(X)) → ISPAL(X)
ISPAL(V) → ISNEPAL(activate(V))
ISPAL(V) → ACTIVATE(V)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ACTIVATE(x0, x1)  =  ACTIVATE(x0)
ISPAL(x0, x1)  =  ISPAL(x1)
ISNEPAL(x0, x1)  =  ISNEPAL(x0)

Tags:
ACTIVATE has argument tags [1,4] and root tag 0
ISPAL has argument tags [0,1] and root tag 1
ISNEPAL has argument tags [1,2] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
ACTIVATE(x1)  =  x1
n__isPal(x1)  =  n__isPal(x1)
ISPAL(x1)  =  ISPAL
ISNEPAL(x1)  =  x1
activate(x1)  =  x1
n__nil  =  n__nil
nil  =  nil
n____(x1, x2)  =  n____(x1, x2)
__(x1, x2)  =  __(x1, x2)
n__isList(x1)  =  n__isList(x1)
isList(x1)  =  isList(x1)
isNeList(x1)  =  isNeList(x1)
and(x1, x2)  =  and(x1, x2)
n__isNeList(x1)  =  n__isNeList(x1)
tt  =  tt
isPal(x1)  =  isPal(x1)
isNePal(x1)  =  isNePal(x1)
isQid(x1)  =  isQid(x1)
n__a  =  n__a
a  =  a
n__e  =  n__e
e  =  e
n__i  =  n__i
i  =  i
n__o  =  n__o
o  =  o
n__u  =  n__u
u  =  u

Recursive path order with status [RPO].
Quasi-Precedence:
[nnil, nil] > [tt, na, a, ne, e, nu, u]
[nisList1, isList1, isNeList1, nisNeList1] > [nisPal1, ISPAL, n2, 2, isPal1, isNePal1, isQid1] > and2
[nisList1, isList1, isNeList1, nisNeList1] > [tt, na, a, ne, e, nu, u]
[ni, i] > [tt, na, a, ne, e, nu, u]
[no, o] > [tt, na, a, ne, e, nu, u]

Status:
nisPal1: multiset
ISPAL: []
nnil: multiset
nil: multiset
n2: [1,2]
_2: [1,2]
nisList1: [1]
isList1: [1]
isNeList1: [1]
and2: multiset
nisNeList1: [1]
tt: multiset
isPal1: multiset
isNePal1: multiset
isQid1: multiset
na: multiset
a: multiset
ne: multiset
e: multiset
ni: multiset
i: multiset
no: multiset
o: multiset
nu: multiset
u: multiset


The following usable rules [FROCOS05] were oriented:

activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isList(X)) → isList(X)
isList(V) → isNeList(activate(V))
isNeList(n____(V1, V2)) → and(isList(activate(V1)), n__isNeList(activate(V2)))
and(tt, X) → activate(X)
activate(n__isNeList(X)) → isNeList(X)
isNeList(n____(V1, V2)) → and(isNeList(activate(V1)), n__isList(activate(V2)))
activate(n__isPal(X)) → isPal(X)
isPal(V) → isNePal(activate(V))
isNePal(n____(I, n____(P, I))) → and(isQid(activate(I)), n__isPal(activate(P)))
isList(n____(V1, V2)) → and(isList(activate(V1)), n__isList(activate(V2)))
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X
isNeList(V) → isQid(activate(V))
isNePal(V) → isQid(activate(V))
isList(n__nil) → tt
isList(X) → n__isList(X)
isNeList(X) → n__isNeList(X)
isPal(n__nil) → tt
isPal(X) → n__isPal(X)
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
__(X1, X2) → n____(X1, X2)
niln__nil
an__a
en__e
in__i
on__o
un__u

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNEPAL(V) → ACTIVATE(V)

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
and(tt, X) → activate(X)
isList(V) → isNeList(activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → and(isList(activate(V1)), n__isList(activate(V2)))
isNeList(V) → isQid(activate(V))
isNeList(n____(V1, V2)) → and(isList(activate(V1)), n__isNeList(activate(V2)))
isNeList(n____(V1, V2)) → and(isNeList(activate(V1)), n__isList(activate(V2)))
isNePal(V) → isQid(activate(V))
isNePal(n____(I, n____(P, I))) → and(isQid(activate(I)), n__isPal(activate(P)))
isPal(V) → isNePal(activate(V))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
isList(X) → n__isList(X)
isNeList(X) → n__isNeList(X)
isPal(X) → n__isPal(X)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__isList(X)) → isList(X)
activate(n__isNeList(X)) → isNeList(X)
activate(n__isPal(X)) → isPal(X)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(18) TRUE