(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(__(__(X, Y), Z)) → __1(X, __(Y, Z))
ACTIVE(__(__(X, Y), Z)) → __1(Y, Z)
ACTIVE(isList(V)) → ISNELIST(V)
ACTIVE(isList(__(V1, V2))) → AND(isList(V1), isList(V2))
ACTIVE(isList(__(V1, V2))) → ISLIST(V1)
ACTIVE(isList(__(V1, V2))) → ISLIST(V2)
ACTIVE(isNeList(V)) → ISQID(V)
ACTIVE(isNeList(__(V1, V2))) → AND(isList(V1), isNeList(V2))
ACTIVE(isNeList(__(V1, V2))) → ISLIST(V1)
ACTIVE(isNeList(__(V1, V2))) → ISNELIST(V2)
ACTIVE(isNeList(__(V1, V2))) → AND(isNeList(V1), isList(V2))
ACTIVE(isNeList(__(V1, V2))) → ISNELIST(V1)
ACTIVE(isNeList(__(V1, V2))) → ISLIST(V2)
ACTIVE(isNePal(V)) → ISQID(V)
ACTIVE(isNePal(__(I, __(P, I)))) → AND(isQid(I), isPal(P))
ACTIVE(isNePal(__(I, __(P, I)))) → ISQID(I)
ACTIVE(isNePal(__(I, __(P, I)))) → ISPAL(P)
ACTIVE(isPal(V)) → ISNEPAL(V)
ACTIVE(__(X1, X2)) → __1(active(X1), X2)
ACTIVE(__(X1, X2)) → ACTIVE(X1)
ACTIVE(__(X1, X2)) → __1(X1, active(X2))
ACTIVE(__(X1, X2)) → ACTIVE(X2)
ACTIVE(and(X1, X2)) → AND(active(X1), X2)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
__1(mark(X1), X2) → __1(X1, X2)
__1(X1, mark(X2)) → __1(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)
PROPER(__(X1, X2)) → __1(proper(X1), proper(X2))
PROPER(__(X1, X2)) → PROPER(X1)
PROPER(__(X1, X2)) → PROPER(X2)
PROPER(and(X1, X2)) → AND(proper(X1), proper(X2))
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X2)
PROPER(isList(X)) → ISLIST(proper(X))
PROPER(isList(X)) → PROPER(X)
PROPER(isNeList(X)) → ISNELIST(proper(X))
PROPER(isNeList(X)) → PROPER(X)
PROPER(isQid(X)) → ISQID(proper(X))
PROPER(isQid(X)) → PROPER(X)
PROPER(isNePal(X)) → ISNEPAL(proper(X))
PROPER(isNePal(X)) → PROPER(X)
PROPER(isPal(X)) → ISPAL(proper(X))
PROPER(isPal(X)) → PROPER(X)
__1(ok(X1), ok(X2)) → __1(X1, X2)
AND(ok(X1), ok(X2)) → AND(X1, X2)
ISLIST(ok(X)) → ISLIST(X)
ISNELIST(ok(X)) → ISNELIST(X)
ISQID(ok(X)) → ISQID(X)
ISNEPAL(ok(X)) → ISNEPAL(X)
ISPAL(ok(X)) → ISPAL(X)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 10 SCCs with 30 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISPAL(ok(X)) → ISPAL(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISPAL(ok(X)) → ISPAL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
ok1 > ISPAL1

Status:
ISPAL1: multiset
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNEPAL(ok(X)) → ISNEPAL(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNEPAL(ok(X)) → ISNEPAL(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
ok1 > ISNEPAL1

Status:
ISNEPAL1: multiset
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISQID(ok(X)) → ISQID(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISQID(ok(X)) → ISQID(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
ok1 > ISQID1

Status:
ISQID1: multiset
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(17) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(19) TRUE

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNELIST(ok(X)) → ISNELIST(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNELIST(ok(X)) → ISNELIST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
ok1 > ISNELIST1

Status:
ISNELIST1: multiset
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(22) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(24) TRUE

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISLIST(ok(X)) → ISLIST(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISLIST(ok(X)) → ISLIST(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
ok1 > ISLIST1

Status:
ISLIST1: multiset
ok1: multiset


The following usable rules [FROCOS05] were oriented: none

(27) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(29) TRUE

(30) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(ok(X1), ok(X2)) → AND(X1, X2)
AND(mark(X1), X2) → AND(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(ok(X1), ok(X2)) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
AND(x1, x2)  =  AND(x2)
ok(x1)  =  ok(x1)
mark(x1)  =  mark

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
AND1: multiset
ok1: [1]
mark: multiset


The following usable rules [FROCOS05] were oriented: none

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

AND(mark(X1), X2) → AND(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(33) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


AND(mark(X1), X2) → AND(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
AND2: [1,2]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(34) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(35) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(36) TRUE

(37) Obligation:

Q DP problem:
The TRS P consists of the following rules:

__1(X1, mark(X2)) → __1(X1, X2)
__1(mark(X1), X2) → __1(X1, X2)
__1(ok(X1), ok(X2)) → __1(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(38) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


__1(X1, mark(X2)) → __1(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
__1(x1, x2)  =  __1(x2)
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[^11, mark1]

Status:
_^11: multiset
mark1: multiset


The following usable rules [FROCOS05] were oriented: none

(39) Obligation:

Q DP problem:
The TRS P consists of the following rules:

__1(mark(X1), X2) → __1(X1, X2)
__1(ok(X1), ok(X2)) → __1(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(40) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


__1(mark(X1), X2) → __1(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
__1(x1, x2)  =  __1(x1, x2)
mark(x1)  =  mark(x1)
ok(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
_^12: [2,1]
mark1: [1]


The following usable rules [FROCOS05] were oriented: none

(41) Obligation:

Q DP problem:
The TRS P consists of the following rules:

__1(ok(X1), ok(X2)) → __1(X1, X2)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(42) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


__1(ok(X1), ok(X2)) → __1(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[^12, ok1]

Status:
_^12: [1,2]
ok1: [1]


The following usable rules [FROCOS05] were oriented: none

(43) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(44) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(45) TRUE

(46) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(__(X1, X2)) → PROPER(X2)
PROPER(__(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X2)
PROPER(isList(X)) → PROPER(X)
PROPER(isNeList(X)) → PROPER(X)
PROPER(isQid(X)) → PROPER(X)
PROPER(isNePal(X)) → PROPER(X)
PROPER(isPal(X)) → PROPER(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(47) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(__(X1, X2)) → PROPER(X2)
PROPER(__(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X1)
PROPER(and(X1, X2)) → PROPER(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
__(x1, x2)  =  __(x1, x2)
and(x1, x2)  =  and(x1, x2)
isList(x1)  =  x1
isNeList(x1)  =  x1
isQid(x1)  =  x1
isNePal(x1)  =  x1
isPal(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
_2 > [PROPER1, and2]

Status:
PROPER1: multiset
_2: multiset
and2: multiset


The following usable rules [FROCOS05] were oriented: none

(48) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(isList(X)) → PROPER(X)
PROPER(isNeList(X)) → PROPER(X)
PROPER(isQid(X)) → PROPER(X)
PROPER(isNePal(X)) → PROPER(X)
PROPER(isPal(X)) → PROPER(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(49) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(isList(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
isList(x1)  =  isList(x1)
isNeList(x1)  =  x1
isQid(x1)  =  x1
isNePal(x1)  =  x1
isPal(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
PROPER1: [1]
isList1: multiset


The following usable rules [FROCOS05] were oriented: none

(50) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(isNeList(X)) → PROPER(X)
PROPER(isQid(X)) → PROPER(X)
PROPER(isNePal(X)) → PROPER(X)
PROPER(isPal(X)) → PROPER(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(51) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(isNePal(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
isNeList(x1)  =  x1
isQid(x1)  =  x1
isNePal(x1)  =  isNePal(x1)
isPal(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
trivial

Status:
PROPER1: [1]
isNePal1: multiset


The following usable rules [FROCOS05] were oriented: none

(52) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(isNeList(X)) → PROPER(X)
PROPER(isQid(X)) → PROPER(X)
PROPER(isPal(X)) → PROPER(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(53) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(isPal(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
isNeList(x1)  =  x1
isQid(x1)  =  x1
isPal(x1)  =  isPal(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[PROPER1, isPal1]

Status:
PROPER1: multiset
isPal1: multiset


The following usable rules [FROCOS05] were oriented: none

(54) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(isNeList(X)) → PROPER(X)
PROPER(isQid(X)) → PROPER(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(55) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(isNeList(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
PROPER(x1)  =  PROPER(x1)
isNeList(x1)  =  isNeList(x1)
isQid(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[PROPER1, isNeList1]

Status:
PROPER1: [1]
isNeList1: multiset


The following usable rules [FROCOS05] were oriented: none

(56) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(isQid(X)) → PROPER(X)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(57) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(isQid(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
isQid1 > PROPER1

Status:
PROPER1: multiset
isQid1: multiset


The following usable rules [FROCOS05] were oriented: none

(58) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(59) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(60) TRUE

(61) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(__(X1, X2)) → ACTIVE(X2)
ACTIVE(__(X1, X2)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → ACTIVE(X1)

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(62) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(__(X1, X2)) → ACTIVE(X2)
ACTIVE(__(X1, X2)) → ACTIVE(X1)
ACTIVE(and(X1, X2)) → ACTIVE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Recursive path order with status [RPO].
Quasi-Precedence:
[ACTIVE1, 2, and2]

Status:
ACTIVE1: [1]
_2: multiset
and2: [2,1]


The following usable rules [FROCOS05] were oriented: none

(63) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(64) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(65) TRUE

(66) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(67) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TOP(mark(X)) → TOP(proper(X))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TOP(x1)  =  TOP(x1)
ok(x1)  =  x1
active(x1)  =  x1
mark(x1)  =  mark(x1)
proper(x1)  =  x1
__(x1, x2)  =  __(x1, x2)
nil  =  nil
and(x1, x2)  =  and(x1, x2)
tt  =  tt
isList(x1)  =  isList(x1)
isNeList(x1)  =  isNeList(x1)
isQid(x1)  =  isQid
isNePal(x1)  =  isNePal(x1)
isPal(x1)  =  isPal(x1)
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u

Recursive path order with status [RPO].
Quasi-Precedence:
_2 > and2 > mark1
_2 > isList1 > [isNeList1, isQid] > mark1
_2 > isList1 > [isNeList1, isQid] > tt
_2 > isPal1 > isNePal1 > [isNeList1, isQid] > mark1
_2 > isPal1 > isNePal1 > [isNeList1, isQid] > tt
nil > mark1
nil > tt
a > mark1
a > tt
e > mark1
e > tt
i > mark1
i > tt
o > mark1
o > tt
u > mark1
u > tt

Status:
TOP1: [1]
mark1: multiset
_2: [1,2]
nil: multiset
and2: multiset
tt: multiset
isList1: [1]
isNeList1: [1]
isQid: []
isNePal1: [1]
isPal1: multiset
a: multiset
e: multiset
i: multiset
o: multiset
u: multiset


The following usable rules [FROCOS05] were oriented:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isNeList(ok(X)) → ok(isNeList(X))
isList(ok(X)) → ok(isList(X))
isQid(ok(X)) → ok(isQid(X))
isPal(ok(X)) → ok(isPal(X))
isNePal(ok(X)) → ok(isNePal(X))

(68) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))

The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(69) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TOP(ok(X)) → TOP(active(X))
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
TOP(x1)  =  x1
ok(x1)  =  ok(x1)
active(x1)  =  x1
__(x1, x2)  =  x2
mark(x1)  =  mark
nil  =  nil
and(x1, x2)  =  and(x2)
tt  =  tt
isList(x1)  =  isList(x1)
isNeList(x1)  =  isNeList
isQid(x1)  =  isQid
isNePal(x1)  =  isNePal(x1)
isPal(x1)  =  isPal
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u

Recursive path order with status [RPO].
Quasi-Precedence:
isNeList > and1 > [ok1, mark, nil, isList1, isQid, isNePal1, isPal, a, e, o, u]
i > tt > [ok1, mark, nil, isList1, isQid, isNePal1, isPal, a, e, o, u]

Status:
ok1: multiset
mark: []
nil: multiset
and1: [1]
tt: multiset
isList1: multiset
isNeList: multiset
isQid: []
isNePal1: multiset
isPal: []
a: multiset
e: multiset
i: multiset
o: multiset
u: multiset


The following usable rules [FROCOS05] were oriented:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))

(70) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(isNeList(V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(and(isList(V1), isList(V2)))
active(isNeList(V)) → mark(isQid(V))
active(isNeList(__(V1, V2))) → mark(and(isList(V1), isNeList(V2)))
active(isNeList(__(V1, V2))) → mark(and(isNeList(V1), isList(V2)))
active(isNePal(V)) → mark(isQid(V))
active(isNePal(__(I, __(P, I)))) → mark(and(isQid(I), isPal(P)))
active(isPal(V)) → mark(isNePal(V))
active(isPal(nil)) → mark(tt)
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(isList(X)) → isList(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isList(ok(X)) → ok(isList(X))
isNeList(ok(X)) → ok(isNeList(X))
isQid(ok(X)) → ok(isQid(X))
isNePal(ok(X)) → ok(isNePal(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(71) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(72) TRUE