(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → tt
U21(tt, V2) → U22(isList(activate(V2)))
U22(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNeList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isList(activate(V2)))
U52(tt) → tt
U61(tt) → tt
U71(tt, P) → U72(isPal(activate(P)))
U72(tt) → tt
U81(tt) → tt
isList(V) → U11(isNeList(activate(V)))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isList(activate(V1)), activate(V2))
isNeList(V) → U31(isQid(activate(V)))
isNeList(n____(V1, V2)) → U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2)) → U51(isNeList(activate(V1)), activate(V2))
isNePal(V) → U61(isQid(activate(V)))
isNePal(n____(I, __(P, I))) → U71(isQid(activate(I)), activate(P))
isPal(V) → U81(isNePal(activate(V)))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

__1(__(X, Y), Z) → __1(X, __(Y, Z))
__1(__(X, Y), Z) → __1(Y, Z)
U211(tt, V2) → U221(isList(activate(V2)))
U211(tt, V2) → ISLIST(activate(V2))
U211(tt, V2) → ACTIVATE(V2)
U411(tt, V2) → U421(isNeList(activate(V2)))
U411(tt, V2) → ISNELIST(activate(V2))
U411(tt, V2) → ACTIVATE(V2)
U511(tt, V2) → U521(isList(activate(V2)))
U511(tt, V2) → ISLIST(activate(V2))
U511(tt, V2) → ACTIVATE(V2)
U711(tt, P) → U721(isPal(activate(P)))
U711(tt, P) → ISPAL(activate(P))
U711(tt, P) → ACTIVATE(P)
ISLIST(V) → U111(isNeList(activate(V)))
ISLIST(V) → ISNELIST(activate(V))
ISLIST(V) → ACTIVATE(V)
ISLIST(n____(V1, V2)) → U211(isList(activate(V1)), activate(V2))
ISLIST(n____(V1, V2)) → ISLIST(activate(V1))
ISLIST(n____(V1, V2)) → ACTIVATE(V1)
ISLIST(n____(V1, V2)) → ACTIVATE(V2)
ISNELIST(V) → U311(isQid(activate(V)))
ISNELIST(V) → ISQID(activate(V))
ISNELIST(V) → ACTIVATE(V)
ISNELIST(n____(V1, V2)) → U411(isList(activate(V1)), activate(V2))
ISNELIST(n____(V1, V2)) → ISLIST(activate(V1))
ISNELIST(n____(V1, V2)) → ACTIVATE(V1)
ISNELIST(n____(V1, V2)) → ACTIVATE(V2)
ISNELIST(n____(V1, V2)) → U511(isNeList(activate(V1)), activate(V2))
ISNELIST(n____(V1, V2)) → ISNELIST(activate(V1))
ISNEPAL(V) → U611(isQid(activate(V)))
ISNEPAL(V) → ISQID(activate(V))
ISNEPAL(V) → ACTIVATE(V)
ISNEPAL(n____(I, __(P, I))) → U711(isQid(activate(I)), activate(P))
ISNEPAL(n____(I, __(P, I))) → ISQID(activate(I))
ISNEPAL(n____(I, __(P, I))) → ACTIVATE(I)
ISNEPAL(n____(I, __(P, I))) → ACTIVATE(P)
ISPAL(V) → U811(isNePal(activate(V)))
ISPAL(V) → ISNEPAL(activate(V))
ISPAL(V) → ACTIVATE(V)
ACTIVATE(n__nil) → NIL
ACTIVATE(n____(X1, X2)) → __1(X1, X2)
ACTIVATE(n__a) → A
ACTIVATE(n__e) → E
ACTIVATE(n__i) → I
ACTIVATE(n__o) → O
ACTIVATE(n__u) → U

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → tt
U21(tt, V2) → U22(isList(activate(V2)))
U22(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNeList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isList(activate(V2)))
U52(tt) → tt
U61(tt) → tt
U71(tt, P) → U72(isPal(activate(P)))
U72(tt) → tt
U81(tt) → tt
isList(V) → U11(isNeList(activate(V)))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isList(activate(V1)), activate(V2))
isNeList(V) → U31(isQid(activate(V)))
isNeList(n____(V1, V2)) → U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2)) → U51(isNeList(activate(V1)), activate(V2))
isNePal(V) → U61(isQid(activate(V)))
isNePal(n____(I, __(P, I))) → U71(isQid(activate(I)), activate(P))
isPal(V) → U81(isNePal(activate(V)))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 32 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

__1(__(X, Y), Z) → __1(Y, Z)
__1(__(X, Y), Z) → __1(X, __(Y, Z))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → tt
U21(tt, V2) → U22(isList(activate(V2)))
U22(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNeList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isList(activate(V2)))
U52(tt) → tt
U61(tt) → tt
U71(tt, P) → U72(isPal(activate(P)))
U72(tt) → tt
U81(tt) → tt
isList(V) → U11(isNeList(activate(V)))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isList(activate(V1)), activate(V2))
isNeList(V) → U31(isQid(activate(V)))
isNeList(n____(V1, V2)) → U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2)) → U51(isNeList(activate(V1)), activate(V2))
isNePal(V) → U61(isQid(activate(V)))
isNePal(n____(I, __(P, I))) → U71(isQid(activate(I)), activate(P))
isPal(V) → U81(isNePal(activate(V)))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPSizeChangeProof (EQUIVALENT transformation)

We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.

Order:Homeomorphic Embedding Order

AFS:
__(x1, x2)  =  __(x1, x2)

From the DPs we obtained the following set of size-change graphs:

  • __1(__(X, Y), Z) → __1(Y, Z) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 1 > 1, 2 >= 2

  • __1(__(X, Y), Z) → __1(X, __(Y, Z)) (allowed arguments on rhs = {1})
    The graph contains the following edges 1 > 1

We oriented the following set of usable rules [AAECC05,FROCOS05]. none

(7) TRUE

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U711(tt, P) → ISPAL(activate(P))
ISPAL(V) → ISNEPAL(activate(V))
ISNEPAL(n____(I, __(P, I))) → U711(isQid(activate(I)), activate(P))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → tt
U21(tt, V2) → U22(isList(activate(V2)))
U22(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNeList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isList(activate(V2)))
U52(tt) → tt
U61(tt) → tt
U71(tt, P) → U72(isPal(activate(P)))
U72(tt) → tt
U81(tt) → tt
isList(V) → U11(isNeList(activate(V)))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isList(activate(V1)), activate(V2))
isNeList(V) → U31(isQid(activate(V)))
isNeList(n____(V1, V2)) → U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2)) → U51(isNeList(activate(V1)), activate(V2))
isNePal(V) → U61(isQid(activate(V)))
isNePal(n____(I, __(P, I))) → U71(isQid(activate(I)), activate(P))
isPal(V) → U81(isNePal(activate(V)))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) QDPSizeChangeProof (EQUIVALENT transformation)

We used the following order together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.

Order:Polynomial interpretation [POLO]:


POL(__(x1, x2)) = 1 + x1 + x2   
POL(a) = 0   
POL(activate(x1)) = x1   
POL(e) = 0   
POL(i) = 0   
POL(n____(x1, x2)) = 1 + x1 + x2   
POL(n__a) = 0   
POL(n__e) = 0   
POL(n__i) = 0   
POL(n__nil) = 0   
POL(n__o) = 0   
POL(n__u) = 0   
POL(nil) = 0   
POL(o) = 0   
POL(tt) = 1   
POL(u) = 0   

From the DPs we obtained the following set of size-change graphs:

  • ISPAL(V) → ISNEPAL(activate(V)) (allowed arguments on rhs = {1})
    The graph contains the following edges 1 >= 1

  • ISNEPAL(n____(I, __(P, I))) → U711(isQid(activate(I)), activate(P)) (allowed arguments on rhs = {2})
    The graph contains the following edges 1 > 2

  • U711(tt, P) → ISPAL(activate(P)) (allowed arguments on rhs = {1})
    The graph contains the following edges 2 >= 1

We oriented the following set of usable rules [AAECC05,FROCOS05].


un__u
on__o
niln__nil
in__i
en__e
activate(X) → X
activate(n__u) → u
activate(n__o) → o
activate(n__nil) → nil
activate(n__i) → i
activate(n__e) → e
activate(n__a) → a
activate(n____(X1, X2)) → __(X1, X2)
an__a
__(X1, X2) → n____(X1, X2)
__(X, nil) → X
__(nil, X) → X
__(__(X, Y), Z) → __(X, __(Y, Z))

(10) TRUE

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(tt, V2) → ISLIST(activate(V2))
ISLIST(V) → ISNELIST(activate(V))
ISNELIST(n____(V1, V2)) → U411(isList(activate(V1)), activate(V2))
U411(tt, V2) → ISNELIST(activate(V2))
ISNELIST(n____(V1, V2)) → ISLIST(activate(V1))
ISLIST(n____(V1, V2)) → U211(isList(activate(V1)), activate(V2))
ISLIST(n____(V1, V2)) → ISLIST(activate(V1))
ISNELIST(n____(V1, V2)) → U511(isNeList(activate(V1)), activate(V2))
U511(tt, V2) → ISLIST(activate(V2))
ISNELIST(n____(V1, V2)) → ISNELIST(activate(V1))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → tt
U21(tt, V2) → U22(isList(activate(V2)))
U22(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNeList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isList(activate(V2)))
U52(tt) → tt
U61(tt) → tt
U71(tt, P) → U72(isPal(activate(P)))
U72(tt) → tt
U81(tt) → tt
isList(V) → U11(isNeList(activate(V)))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isList(activate(V1)), activate(V2))
isNeList(V) → U31(isQid(activate(V)))
isNeList(n____(V1, V2)) → U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2)) → U51(isNeList(activate(V1)), activate(V2))
isNePal(V) → U61(isQid(activate(V)))
isNePal(n____(I, __(P, I))) → U71(isQid(activate(I)), activate(P))
isPal(V) → U81(isNePal(activate(V)))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(X1, X2)
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

We used the following order together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.

Order:Polynomial interpretation [POLO]:


POL(__(x1, x2)) = 1 + x1 + x2   
POL(a) = 0   
POL(activate(x1)) = x1   
POL(e) = 0   
POL(i) = 0   
POL(n____(x1, x2)) = 1 + x1 + x2   
POL(n__a) = 0   
POL(n__e) = 0   
POL(n__i) = 0   
POL(n__nil) = 0   
POL(n__o) = 0   
POL(n__u) = 0   
POL(nil) = 0   
POL(o) = 0   
POL(tt) = 1   
POL(u) = 0   

From the DPs we obtained the following set of size-change graphs:

  • ISLIST(n____(V1, V2)) → U211(isList(activate(V1)), activate(V2)) (allowed arguments on rhs = {2})
    The graph contains the following edges 1 > 2

  • ISLIST(n____(V1, V2)) → ISLIST(activate(V1)) (allowed arguments on rhs = {1})
    The graph contains the following edges 1 > 1

  • ISLIST(V) → ISNELIST(activate(V)) (allowed arguments on rhs = {1})
    The graph contains the following edges 1 >= 1

  • ISNELIST(n____(V1, V2)) → ISLIST(activate(V1)) (allowed arguments on rhs = {1})
    The graph contains the following edges 1 > 1

  • U411(tt, V2) → ISNELIST(activate(V2)) (allowed arguments on rhs = {1})
    The graph contains the following edges 2 >= 1

  • ISNELIST(n____(V1, V2)) → ISNELIST(activate(V1)) (allowed arguments on rhs = {1})
    The graph contains the following edges 1 > 1

  • ISNELIST(n____(V1, V2)) → U411(isList(activate(V1)), activate(V2)) (allowed arguments on rhs = {2})
    The graph contains the following edges 1 > 2

  • ISNELIST(n____(V1, V2)) → U511(isNeList(activate(V1)), activate(V2)) (allowed arguments on rhs = {2})
    The graph contains the following edges 1 > 2

  • U211(tt, V2) → ISLIST(activate(V2)) (allowed arguments on rhs = {1})
    The graph contains the following edges 2 >= 1

  • U511(tt, V2) → ISLIST(activate(V2)) (allowed arguments on rhs = {1})
    The graph contains the following edges 2 >= 1

We oriented the following set of usable rules [AAECC05,FROCOS05].


un__u
on__o
niln__nil
in__i
en__e
activate(X) → X
activate(n__u) → u
activate(n__o) → o
activate(n__nil) → nil
activate(n__i) → i
activate(n__e) → e
activate(n__a) → a
activate(n____(X1, X2)) → __(X1, X2)
an__a
__(X1, X2) → n____(X1, X2)
__(X, nil) → X
__(nil, X) → X
__(__(X, Y), Z) → __(X, __(Y, Z))

(13) TRUE