(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → tt
U21(tt, V2) → U22(isList(activate(V2)))
U22(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNeList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isList(activate(V2)))
U52(tt) → tt
U61(tt) → tt
U71(tt, P) → U72(isPal(activate(P)))
U72(tt) → tt
U81(tt) → tt
isList(V) → U11(isNeList(activate(V)))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isList(activate(V1)), activate(V2))
isNeList(V) → U31(isQid(activate(V)))
isNeList(n____(V1, V2)) → U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2)) → U51(isNeList(activate(V1)), activate(V2))
isNePal(V) → U61(isQid(activate(V)))
isNePal(n____(I, n____(P, I))) → U71(isQid(activate(I)), activate(P))
isPal(V) → U81(isNePal(activate(V)))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

__1(__(X, Y), Z) → __1(X, __(Y, Z))
__1(__(X, Y), Z) → __1(Y, Z)
U211(tt, V2) → U221(isList(activate(V2)))
U211(tt, V2) → ISLIST(activate(V2))
U211(tt, V2) → ACTIVATE(V2)
U411(tt, V2) → U421(isNeList(activate(V2)))
U411(tt, V2) → ISNELIST(activate(V2))
U411(tt, V2) → ACTIVATE(V2)
U511(tt, V2) → U521(isList(activate(V2)))
U511(tt, V2) → ISLIST(activate(V2))
U511(tt, V2) → ACTIVATE(V2)
U711(tt, P) → U721(isPal(activate(P)))
U711(tt, P) → ISPAL(activate(P))
U711(tt, P) → ACTIVATE(P)
ISLIST(V) → U111(isNeList(activate(V)))
ISLIST(V) → ISNELIST(activate(V))
ISLIST(V) → ACTIVATE(V)
ISLIST(n____(V1, V2)) → U211(isList(activate(V1)), activate(V2))
ISLIST(n____(V1, V2)) → ISLIST(activate(V1))
ISLIST(n____(V1, V2)) → ACTIVATE(V1)
ISLIST(n____(V1, V2)) → ACTIVATE(V2)
ISNELIST(V) → U311(isQid(activate(V)))
ISNELIST(V) → ISQID(activate(V))
ISNELIST(V) → ACTIVATE(V)
ISNELIST(n____(V1, V2)) → U411(isList(activate(V1)), activate(V2))
ISNELIST(n____(V1, V2)) → ISLIST(activate(V1))
ISNELIST(n____(V1, V2)) → ACTIVATE(V1)
ISNELIST(n____(V1, V2)) → ACTIVATE(V2)
ISNELIST(n____(V1, V2)) → U511(isNeList(activate(V1)), activate(V2))
ISNELIST(n____(V1, V2)) → ISNELIST(activate(V1))
ISNEPAL(V) → U611(isQid(activate(V)))
ISNEPAL(V) → ISQID(activate(V))
ISNEPAL(V) → ACTIVATE(V)
ISNEPAL(n____(I, n____(P, I))) → U711(isQid(activate(I)), activate(P))
ISNEPAL(n____(I, n____(P, I))) → ISQID(activate(I))
ISNEPAL(n____(I, n____(P, I))) → ACTIVATE(I)
ISNEPAL(n____(I, n____(P, I))) → ACTIVATE(P)
ISPAL(V) → U811(isNePal(activate(V)))
ISPAL(V) → ISNEPAL(activate(V))
ISPAL(V) → ACTIVATE(V)
ACTIVATE(n__nil) → NIL
ACTIVATE(n____(X1, X2)) → __1(activate(X1), activate(X2))
ACTIVATE(n____(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n____(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__a) → A
ACTIVATE(n__e) → E
ACTIVATE(n__i) → I
ACTIVATE(n__o) → O
ACTIVATE(n__u) → U

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → tt
U21(tt, V2) → U22(isList(activate(V2)))
U22(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNeList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isList(activate(V2)))
U52(tt) → tt
U61(tt) → tt
U71(tt, P) → U72(isPal(activate(P)))
U72(tt) → tt
U81(tt) → tt
isList(V) → U11(isNeList(activate(V)))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isList(activate(V1)), activate(V2))
isNeList(V) → U31(isQid(activate(V)))
isNeList(n____(V1, V2)) → U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2)) → U51(isNeList(activate(V1)), activate(V2))
isNePal(V) → U61(isQid(activate(V)))
isNePal(n____(I, n____(P, I))) → U71(isQid(activate(I)), activate(P))
isPal(V) → U81(isNePal(activate(V)))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 32 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

__1(__(X, Y), Z) → __1(Y, Z)
__1(__(X, Y), Z) → __1(X, __(Y, Z))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → tt
U21(tt, V2) → U22(isList(activate(V2)))
U22(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNeList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isList(activate(V2)))
U52(tt) → tt
U61(tt) → tt
U71(tt, P) → U72(isPal(activate(P)))
U72(tt) → tt
U81(tt) → tt
isList(V) → U11(isNeList(activate(V)))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isList(activate(V1)), activate(V2))
isNeList(V) → U31(isQid(activate(V)))
isNeList(n____(V1, V2)) → U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2)) → U51(isNeList(activate(V1)), activate(V2))
isNePal(V) → U61(isQid(activate(V)))
isNePal(n____(I, n____(P, I))) → U71(isQid(activate(I)), activate(P))
isPal(V) → U81(isNePal(activate(V)))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


__1(__(X, Y), Z) → __1(Y, Z)
__1(__(X, Y), Z) → __1(X, __(Y, Z))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
__1(x0, x1, x2)  =  __1(x0)

Tags:
__1 has argument tags [2,3,3] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
__1(x1, x2)  =  __1(x1, x2)
__(x1, x2)  =  __(x1, x2)
nil  =  nil
n____(x1, x2)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
_^12 > _2
nil > _2

Status:
_^12: [1,2]
_2: [1,2]
nil: multiset


The following usable rules [FROCOS05] were oriented:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
__(X1, X2) → n____(X1, X2)

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → tt
U21(tt, V2) → U22(isList(activate(V2)))
U22(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNeList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isList(activate(V2)))
U52(tt) → tt
U61(tt) → tt
U71(tt, P) → U72(isPal(activate(P)))
U72(tt) → tt
U81(tt) → tt
isList(V) → U11(isNeList(activate(V)))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isList(activate(V1)), activate(V2))
isNeList(V) → U31(isQid(activate(V)))
isNeList(n____(V1, V2)) → U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2)) → U51(isNeList(activate(V1)), activate(V2))
isNePal(V) → U61(isQid(activate(V)))
isNePal(n____(I, n____(P, I))) → U71(isQid(activate(I)), activate(P))
isPal(V) → U81(isNePal(activate(V)))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n____(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n____(X1, X2)) → ACTIVATE(X1)

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → tt
U21(tt, V2) → U22(isList(activate(V2)))
U22(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNeList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isList(activate(V2)))
U52(tt) → tt
U61(tt) → tt
U71(tt, P) → U72(isPal(activate(P)))
U72(tt) → tt
U81(tt) → tt
isList(V) → U11(isNeList(activate(V)))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isList(activate(V1)), activate(V2))
isNeList(V) → U31(isQid(activate(V)))
isNeList(n____(V1, V2)) → U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2)) → U51(isNeList(activate(V1)), activate(V2))
isNePal(V) → U61(isQid(activate(V)))
isNePal(n____(I, n____(P, I))) → U71(isQid(activate(I)), activate(P))
isPal(V) → U81(isNePal(activate(V)))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n____(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n____(X1, X2)) → ACTIVATE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ACTIVATE(x0, x1)  =  ACTIVATE(x0, x1)

Tags:
ACTIVATE has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
ACTIVATE(x1)  =  ACTIVATE
n____(x1, x2)  =  n____(x1, x2)

Recursive path order with status [RPO].
Quasi-Precedence:
[ACTIVATE, n2]

Status:
ACTIVATE: multiset
n2: multiset


The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → tt
U21(tt, V2) → U22(isList(activate(V2)))
U22(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNeList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isList(activate(V2)))
U52(tt) → tt
U61(tt) → tt
U71(tt, P) → U72(isPal(activate(P)))
U72(tt) → tt
U81(tt) → tt
isList(V) → U11(isNeList(activate(V)))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isList(activate(V1)), activate(V2))
isNeList(V) → U31(isQid(activate(V)))
isNeList(n____(V1, V2)) → U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2)) → U51(isNeList(activate(V1)), activate(V2))
isNePal(V) → U61(isQid(activate(V)))
isNePal(n____(I, n____(P, I))) → U71(isQid(activate(I)), activate(P))
isPal(V) → U81(isNePal(activate(V)))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U711(tt, P) → ISPAL(activate(P))
ISPAL(V) → ISNEPAL(activate(V))
ISNEPAL(n____(I, n____(P, I))) → U711(isQid(activate(I)), activate(P))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → tt
U21(tt, V2) → U22(isList(activate(V2)))
U22(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNeList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isList(activate(V2)))
U52(tt) → tt
U61(tt) → tt
U71(tt, P) → U72(isPal(activate(P)))
U72(tt) → tt
U81(tt) → tt
isList(V) → U11(isNeList(activate(V)))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isList(activate(V1)), activate(V2))
isNeList(V) → U31(isQid(activate(V)))
isNeList(n____(V1, V2)) → U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2)) → U51(isNeList(activate(V1)), activate(V2))
isNePal(V) → U61(isQid(activate(V)))
isNePal(n____(I, n____(P, I))) → U71(isQid(activate(I)), activate(P))
isPal(V) → U81(isNePal(activate(V)))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U711(tt, P) → ISPAL(activate(P))
ISNEPAL(n____(I, n____(P, I))) → U711(isQid(activate(I)), activate(P))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
U711(x0, x1, x2)  =  U711(x0)
ISPAL(x0, x1)  =  ISPAL(x0, x1)
ISNEPAL(x0, x1)  =  ISNEPAL(x0, x1)

Tags:
U711 has argument tags [4,0,5] and root tag 0
ISPAL has argument tags [3,4] and root tag 2
ISNEPAL has argument tags [4,3] and root tag 2

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
U711(x1, x2)  =  U711(x1, x2)
tt  =  tt
ISPAL(x1)  =  ISPAL
activate(x1)  =  x1
ISNEPAL(x1)  =  ISNEPAL
n____(x1, x2)  =  n____(x1, x2)
isQid(x1)  =  isQid(x1)
n__nil  =  n__nil
nil  =  nil
__(x1, x2)  =  __(x1, x2)
n__a  =  n__a
a  =  a
n__e  =  n__e
e  =  e
n__i  =  n__i
i  =  i
n__o  =  n__o
o  =  o
n__u  =  n__u
u  =  u

Recursive path order with status [RPO].
Quasi-Precedence:
[n2, 2] > U71^12 > [tt, ISPAL, ISNEPAL, na, a, ne, e]
[n2, 2] > isQid1 > [tt, ISPAL, ISNEPAL, na, a, ne, e]
[nnil, nil] > [tt, ISPAL, ISNEPAL, na, a, ne, e]
[ni, i] > [tt, ISPAL, ISNEPAL, na, a, ne, e]
[no, o] > [tt, ISPAL, ISNEPAL, na, a, ne, e]
[nu, u] > [tt, ISPAL, ISNEPAL, na, a, ne, e]

Status:
U71^12: multiset
tt: multiset
ISPAL: multiset
ISNEPAL: []
n2: [1,2]
isQid1: multiset
nnil: multiset
nil: multiset
_2: [1,2]
na: multiset
a: multiset
ne: multiset
e: multiset
ni: multiset
i: multiset
no: multiset
o: multiset
nu: multiset
u: multiset


The following usable rules [FROCOS05] were oriented:

activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
__(X1, X2) → n____(X1, X2)
niln__nil
an__a
en__e
in__i
on__o
un__u

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISPAL(V) → ISNEPAL(activate(V))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → tt
U21(tt, V2) → U22(isList(activate(V2)))
U22(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNeList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isList(activate(V2)))
U52(tt) → tt
U61(tt) → tt
U71(tt, P) → U72(isPal(activate(P)))
U72(tt) → tt
U81(tt) → tt
isList(V) → U11(isNeList(activate(V)))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isList(activate(V1)), activate(V2))
isNeList(V) → U31(isQid(activate(V)))
isNeList(n____(V1, V2)) → U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2)) → U51(isNeList(activate(V1)), activate(V2))
isNePal(V) → U61(isQid(activate(V)))
isNePal(n____(I, n____(P, I))) → U71(isQid(activate(I)), activate(P))
isPal(V) → U81(isNePal(activate(V)))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(19) TRUE

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U211(tt, V2) → ISLIST(activate(V2))
ISLIST(V) → ISNELIST(activate(V))
ISNELIST(n____(V1, V2)) → U411(isList(activate(V1)), activate(V2))
U411(tt, V2) → ISNELIST(activate(V2))
ISNELIST(n____(V1, V2)) → ISLIST(activate(V1))
ISLIST(n____(V1, V2)) → U211(isList(activate(V1)), activate(V2))
ISLIST(n____(V1, V2)) → ISLIST(activate(V1))
ISNELIST(n____(V1, V2)) → U511(isNeList(activate(V1)), activate(V2))
U511(tt, V2) → ISLIST(activate(V2))
ISNELIST(n____(V1, V2)) → ISNELIST(activate(V1))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → tt
U21(tt, V2) → U22(isList(activate(V2)))
U22(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNeList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isList(activate(V2)))
U52(tt) → tt
U61(tt) → tt
U71(tt, P) → U72(isPal(activate(P)))
U72(tt) → tt
U81(tt) → tt
isList(V) → U11(isNeList(activate(V)))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isList(activate(V1)), activate(V2))
isNeList(V) → U31(isQid(activate(V)))
isNeList(n____(V1, V2)) → U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2)) → U51(isNeList(activate(V1)), activate(V2))
isNePal(V) → U61(isQid(activate(V)))
isNePal(n____(I, n____(P, I))) → U71(isQid(activate(I)), activate(P))
isPal(V) → U81(isNePal(activate(V)))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U211(tt, V2) → ISLIST(activate(V2))
ISLIST(V) → ISNELIST(activate(V))
ISNELIST(n____(V1, V2)) → U411(isList(activate(V1)), activate(V2))
U411(tt, V2) → ISNELIST(activate(V2))
ISNELIST(n____(V1, V2)) → ISLIST(activate(V1))
ISLIST(n____(V1, V2)) → U211(isList(activate(V1)), activate(V2))
ISLIST(n____(V1, V2)) → ISLIST(activate(V1))
ISNELIST(n____(V1, V2)) → U511(isNeList(activate(V1)), activate(V2))
U511(tt, V2) → ISLIST(activate(V2))
ISNELIST(n____(V1, V2)) → ISNELIST(activate(V1))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
U211(x0, x1, x2)  =  U211(x0)
ISLIST(x0, x1)  =  ISLIST(x0, x1)
ISNELIST(x0, x1)  =  ISNELIST(x1)
U411(x0, x1, x2)  =  U411(x2)
U511(x0, x1, x2)  =  U511(x0, x1, x2)

Tags:
U211 has argument tags [14,4,0] and root tag 0
ISLIST has argument tags [11,9] and root tag 6
ISNELIST has argument tags [0,9] and root tag 2
U411 has argument tags [7,8,9] and root tag 3
U511 has argument tags [5,0,7] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
U211(x1, x2)  =  U211(x2)
tt  =  tt
ISLIST(x1)  =  ISLIST
activate(x1)  =  x1
ISNELIST(x1)  =  ISNELIST
n____(x1, x2)  =  n____(x1, x2)
U411(x1, x2)  =  U411
isList(x1)  =  x1
U511(x1, x2)  =  U511(x2)
isNeList(x1)  =  isNeList(x1)
n__nil  =  n__nil
nil  =  nil
__(x1, x2)  =  __(x1, x2)
n__a  =  n__a
a  =  a
n__e  =  n__e
e  =  e
n__i  =  n__i
i  =  i
n__o  =  n__o
o  =  o
n__u  =  n__u
u  =  u
U11(x1)  =  U11
U21(x1, x2)  =  U21(x1, x2)
U31(x1)  =  U31(x1)
isQid(x1)  =  isQid
U41(x1, x2)  =  U41(x2)
U51(x1, x2)  =  U51
U42(x1)  =  U42
U22(x1)  =  U22(x1)
U52(x1)  =  U52

Recursive path order with status [RPO].
Quasi-Precedence:
[n2, isNeList1, 2, U411, U51, U42] > U21^11 > ISLIST > ISNELIST > U51^11
[n2, isNeList1, 2, U411, U51, U42] > U311
[n2, isNeList1, 2, U411, U51, U42] > isQid > tt > ISLIST > ISNELIST > U51^11
[n2, isNeList1, 2, U411, U51, U42] > isQid > tt > [U212, U221]
[n2, isNeList1, 2, U411, U51, U42] > U52 > tt > ISLIST > ISNELIST > U51^11
[n2, isNeList1, 2, U411, U51, U42] > U52 > tt > [U212, U221]
U41^1 > ISNELIST > U51^11
[nnil, nil]
[na, a]
[ne, e] > tt > ISLIST > ISNELIST > U51^11
[ne, e] > tt > [U212, U221]
[ni, i]
[no, o] > tt > ISLIST > ISNELIST > U51^11
[no, o] > tt > [U212, U221]
[nu, u]
U11 > tt > ISLIST > ISNELIST > U51^11
U11 > tt > [U212, U221]

Status:
U21^11: multiset
tt: multiset
ISLIST: []
ISNELIST: multiset
n2: [1,2]
U41^1: multiset
U51^11: multiset
isNeList1: [1]
nnil: multiset
nil: multiset
_2: [1,2]
na: multiset
a: multiset
ne: multiset
e: multiset
ni: multiset
i: multiset
no: multiset
o: multiset
nu: multiset
u: multiset
U11: []
U212: multiset
U311: multiset
isQid: multiset
U411: [1]
U51: []
U42: []
U221: multiset
U52: multiset


The following usable rules [FROCOS05] were oriented:

activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
__(X1, X2) → n____(X1, X2)
niln__nil
an__a
en__e
in__i
on__o
un__u

(22) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → tt
U21(tt, V2) → U22(isList(activate(V2)))
U22(tt) → tt
U31(tt) → tt
U41(tt, V2) → U42(isNeList(activate(V2)))
U42(tt) → tt
U51(tt, V2) → U52(isList(activate(V2)))
U52(tt) → tt
U61(tt) → tt
U71(tt, P) → U72(isPal(activate(P)))
U72(tt) → tt
U81(tt) → tt
isList(V) → U11(isNeList(activate(V)))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isList(activate(V1)), activate(V2))
isNeList(V) → U31(isQid(activate(V)))
isNeList(n____(V1, V2)) → U41(isList(activate(V1)), activate(V2))
isNeList(n____(V1, V2)) → U51(isNeList(activate(V1)), activate(V2))
isNePal(V) → U61(isQid(activate(V)))
isNePal(n____(I, n____(P, I))) → U71(isQid(activate(I)), activate(P))
isPal(V) → U81(isNePal(activate(V)))
isPal(n__nil) → tt
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(24) TRUE