(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A____(__(X, Y), Z) → A____(mark(X), a____(mark(Y), mark(Z)))
A____(__(X, Y), Z) → MARK(X)
A____(__(X, Y), Z) → A____(mark(Y), mark(Z))
A____(__(X, Y), Z) → MARK(Y)
A____(__(X, Y), Z) → MARK(Z)
A____(X, nil) → MARK(X)
A____(nil, X) → MARK(X)
A__U11(tt, V) → A__U12(a__isNeList(V))
A__U11(tt, V) → A__ISNELIST(V)
A__U21(tt, V1, V2) → A__U22(a__isList(V1), V2)
A__U21(tt, V1, V2) → A__ISLIST(V1)
A__U22(tt, V2) → A__U23(a__isList(V2))
A__U22(tt, V2) → A__ISLIST(V2)
A__U31(tt, V) → A__U32(a__isQid(V))
A__U31(tt, V) → A__ISQID(V)
A__U41(tt, V1, V2) → A__U42(a__isList(V1), V2)
A__U41(tt, V1, V2) → A__ISLIST(V1)
A__U42(tt, V2) → A__U43(a__isNeList(V2))
A__U42(tt, V2) → A__ISNELIST(V2)
A__U51(tt, V1, V2) → A__U52(a__isNeList(V1), V2)
A__U51(tt, V1, V2) → A__ISNELIST(V1)
A__U52(tt, V2) → A__U53(a__isList(V2))
A__U52(tt, V2) → A__ISLIST(V2)
A__U61(tt, V) → A__U62(a__isQid(V))
A__U61(tt, V) → A__ISQID(V)
A__U71(tt, V) → A__U72(a__isNePal(V))
A__U71(tt, V) → A__ISNEPAL(V)
A__AND(tt, X) → MARK(X)
A__ISLIST(V) → A__U11(a__isPalListKind(V), V)
A__ISLIST(V) → A__ISPALLISTKIND(V)
A__ISLIST(__(V1, V2)) → A__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
A__ISLIST(__(V1, V2)) → A__AND(a__isPalListKind(V1), isPalListKind(V2))
A__ISLIST(__(V1, V2)) → A__ISPALLISTKIND(V1)
A__ISNELIST(V) → A__U31(a__isPalListKind(V), V)
A__ISNELIST(V) → A__ISPALLISTKIND(V)
A__ISNELIST(__(V1, V2)) → A__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
A__ISNELIST(__(V1, V2)) → A__AND(a__isPalListKind(V1), isPalListKind(V2))
A__ISNELIST(__(V1, V2)) → A__ISPALLISTKIND(V1)
A__ISNELIST(__(V1, V2)) → A__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
A__ISNEPAL(V) → A__U61(a__isPalListKind(V), V)
A__ISNEPAL(V) → A__ISPALLISTKIND(V)
A__ISNEPAL(__(I, __(P, I))) → A__AND(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
A__ISNEPAL(__(I, __(P, I))) → A__AND(a__isQid(I), isPalListKind(I))
A__ISNEPAL(__(I, __(P, I))) → A__ISQID(I)
A__ISPAL(V) → A__U71(a__isPalListKind(V), V)
A__ISPAL(V) → A__ISPALLISTKIND(V)
A__ISPALLISTKIND(__(V1, V2)) → A__AND(a__isPalListKind(V1), isPalListKind(V2))
A__ISPALLISTKIND(__(V1, V2)) → A__ISPALLISTKIND(V1)
MARK(__(X1, X2)) → A____(mark(X1), mark(X2))
MARK(__(X1, X2)) → MARK(X1)
MARK(__(X1, X2)) → MARK(X2)
MARK(U11(X1, X2)) → A__U11(mark(X1), X2)
MARK(U11(X1, X2)) → MARK(X1)
MARK(U12(X)) → A__U12(mark(X))
MARK(U12(X)) → MARK(X)
MARK(isNeList(X)) → A__ISNELIST(X)
MARK(U21(X1, X2, X3)) → A__U21(mark(X1), X2, X3)
MARK(U21(X1, X2, X3)) → MARK(X1)
MARK(U22(X1, X2)) → A__U22(mark(X1), X2)
MARK(U22(X1, X2)) → MARK(X1)
MARK(isList(X)) → A__ISLIST(X)
MARK(U23(X)) → A__U23(mark(X))
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → A__U31(mark(X1), X2)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → A__U32(mark(X))
MARK(U32(X)) → MARK(X)
MARK(isQid(X)) → A__ISQID(X)
MARK(U41(X1, X2, X3)) → A__U41(mark(X1), X2, X3)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(U42(X1, X2)) → A__U42(mark(X1), X2)
MARK(U42(X1, X2)) → MARK(X1)
MARK(U43(X)) → A__U43(mark(X))
MARK(U43(X)) → MARK(X)
MARK(U51(X1, X2, X3)) → A__U51(mark(X1), X2, X3)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U52(X1, X2)) → A__U52(mark(X1), X2)
MARK(U52(X1, X2)) → MARK(X1)
MARK(U53(X)) → A__U53(mark(X))
MARK(U53(X)) → MARK(X)
MARK(U61(X1, X2)) → A__U61(mark(X1), X2)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → A__U62(mark(X))
MARK(U62(X)) → MARK(X)
MARK(U71(X1, X2)) → A__U71(mark(X1), X2)
MARK(U71(X1, X2)) → MARK(X1)
MARK(U72(X)) → A__U72(mark(X))
MARK(U72(X)) → MARK(X)
MARK(isNePal(X)) → A__ISNEPAL(X)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isPalListKind(X)) → A__ISPALLISTKIND(X)
MARK(isPal(X)) → A__ISPAL(X)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 22 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A____(__(X, Y), Z) → MARK(X)
MARK(__(X1, X2)) → A____(mark(X1), mark(X2))
A____(__(X, Y), Z) → A____(mark(X), a____(mark(Y), mark(Z)))
A____(__(X, Y), Z) → A____(mark(Y), mark(Z))
A____(__(X, Y), Z) → MARK(Y)
MARK(__(X1, X2)) → MARK(X1)
MARK(__(X1, X2)) → MARK(X2)
MARK(U11(X1, X2)) → A__U11(mark(X1), X2)
A__U11(tt, V) → A__ISNELIST(V)
A__ISNELIST(V) → A__ISPALLISTKIND(V)
A__ISPALLISTKIND(__(V1, V2)) → A__AND(a__isPalListKind(V1), isPalListKind(V2))
A__AND(tt, X) → MARK(X)
MARK(U11(X1, X2)) → MARK(X1)
MARK(U12(X)) → MARK(X)
MARK(isNeList(X)) → A__ISNELIST(X)
A__ISNELIST(__(V1, V2)) → A__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
A__U41(tt, V1, V2) → A__U42(a__isList(V1), V2)
A__U42(tt, V2) → A__ISNELIST(V2)
A__ISNELIST(__(V1, V2)) → A__AND(a__isPalListKind(V1), isPalListKind(V2))
A__ISNELIST(__(V1, V2)) → A__ISPALLISTKIND(V1)
A__ISPALLISTKIND(__(V1, V2)) → A__ISPALLISTKIND(V1)
A__ISNELIST(__(V1, V2)) → A__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
A__U51(tt, V1, V2) → A__U52(a__isNeList(V1), V2)
A__U52(tt, V2) → A__ISLIST(V2)
A__ISLIST(V) → A__U11(a__isPalListKind(V), V)
A__ISLIST(V) → A__ISPALLISTKIND(V)
A__ISLIST(__(V1, V2)) → A__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
A__U21(tt, V1, V2) → A__U22(a__isList(V1), V2)
A__U22(tt, V2) → A__ISLIST(V2)
A__ISLIST(__(V1, V2)) → A__AND(a__isPalListKind(V1), isPalListKind(V2))
A__ISLIST(__(V1, V2)) → A__ISPALLISTKIND(V1)
A__U21(tt, V1, V2) → A__ISLIST(V1)
A__U51(tt, V1, V2) → A__ISNELIST(V1)
A__U41(tt, V1, V2) → A__ISLIST(V1)
MARK(U21(X1, X2, X3)) → A__U21(mark(X1), X2, X3)
MARK(U21(X1, X2, X3)) → MARK(X1)
MARK(U22(X1, X2)) → A__U22(mark(X1), X2)
MARK(U22(X1, X2)) → MARK(X1)
MARK(isList(X)) → A__ISLIST(X)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → MARK(X)
MARK(U41(X1, X2, X3)) → A__U41(mark(X1), X2, X3)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(U42(X1, X2)) → A__U42(mark(X1), X2)
MARK(U42(X1, X2)) → MARK(X1)
MARK(U43(X)) → MARK(X)
MARK(U51(X1, X2, X3)) → A__U51(mark(X1), X2, X3)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U52(X1, X2)) → A__U52(mark(X1), X2)
MARK(U52(X1, X2)) → MARK(X1)
MARK(U53(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
MARK(U71(X1, X2)) → A__U71(mark(X1), X2)
A__U71(tt, V) → A__ISNEPAL(V)
A__ISNEPAL(V) → A__ISPALLISTKIND(V)
A__ISNEPAL(__(I, __(P, I))) → A__AND(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
A__ISNEPAL(__(I, __(P, I))) → A__AND(a__isQid(I), isPalListKind(I))
MARK(U71(X1, X2)) → MARK(X1)
MARK(U72(X)) → MARK(X)
MARK(isNePal(X)) → A__ISNEPAL(X)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isPalListKind(X)) → A__ISPALLISTKIND(X)
MARK(isPal(X)) → A__ISPAL(X)
A__ISPAL(V) → A__U71(a__isPalListKind(V), V)
A__ISPAL(V) → A__ISPALLISTKIND(V)
A____(__(X, Y), Z) → MARK(Z)
A____(X, nil) → MARK(X)
A____(nil, X) → MARK(X)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U11(X1, X2)) → A__U11(mark(X1), X2)
A__ISNELIST(V) → A__ISPALLISTKIND(V)
MARK(isNeList(X)) → A__ISNELIST(X)
A__ISNELIST(__(V1, V2)) → A__AND(a__isPalListKind(V1), isPalListKind(V2))
A__ISNELIST(__(V1, V2)) → A__ISPALLISTKIND(V1)
A__ISLIST(V) → A__ISPALLISTKIND(V)
A__ISLIST(__(V1, V2)) → A__AND(a__isPalListKind(V1), isPalListKind(V2))
A__ISLIST(__(V1, V2)) → A__ISPALLISTKIND(V1)
MARK(U21(X1, X2, X3)) → A__U21(mark(X1), X2, X3)
MARK(U22(X1, X2)) → A__U22(mark(X1), X2)
MARK(isList(X)) → A__ISLIST(X)
MARK(U41(X1, X2, X3)) → A__U41(mark(X1), X2, X3)
MARK(U42(X1, X2)) → A__U42(mark(X1), X2)
MARK(U51(X1, X2, X3)) → A__U51(mark(X1), X2, X3)
MARK(U52(X1, X2)) → A__U52(mark(X1), X2)
A__ISNEPAL(__(I, __(P, I))) → A__AND(a__isQid(I), isPalListKind(I))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
A____(x0, x1, x2)  =  A____(x0, x1)
MARK(x0, x1)  =  MARK(x0, x1)
A__U11(x0, x1, x2)  =  A__U11(x0, x1)
A__ISNELIST(x0, x1)  =  A__ISNELIST(x0, x1)
A__ISPALLISTKIND(x0, x1)  =  A__ISPALLISTKIND(x0, x1)
A__AND(x0, x1, x2)  =  A__AND(x0, x1, x2)
A__U41(x0, x1, x2, x3)  =  A__U41(x0, x3)
A__U42(x0, x1, x2)  =  A__U42(x0, x1)
A__U51(x0, x1, x2, x3)  =  A__U51(x0, x2)
A__U52(x0, x1, x2)  =  A__U52(x0, x1)
A__ISLIST(x0, x1)  =  A__ISLIST(x0, x1)
A__U21(x0, x1, x2, x3)  =  A__U21(x0, x3)
A__U22(x0, x1, x2)  =  A__U22(x0, x1)
A__U71(x0, x1, x2)  =  A__U71(x0, x1, x2)
A__ISNEPAL(x0, x1)  =  A__ISNEPAL(x0, x1)
A__ISPAL(x0, x1)  =  A__ISPAL(x0, x1)

Tags:
A____ has argument tags [1,0,0] and root tag 0
MARK has argument tags [1,0] and root tag 0
A__U11 has argument tags [0,2,0] and root tag 1
A__ISNELIST has argument tags [0,4] and root tag 1
A__ISPALLISTKIND has argument tags [0,61] and root tag 0
A__AND has argument tags [1,62,0] and root tag 0
A__U41 has argument tags [0,0,1,62] and root tag 1
A__U42 has argument tags [0,0,0] and root tag 1
A__U51 has argument tags [0,48,0,0] and root tag 1
A__U52 has argument tags [0,0,0] and root tag 1
A__ISLIST has argument tags [0,60] and root tag 1
A__U21 has argument tags [0,0,59,0] and root tag 1
A__U22 has argument tags [0,22,32] and root tag 1
A__U71 has argument tags [1,1,0] and root tag 0
A__ISNEPAL has argument tags [1,0] and root tag 0
A__ISPAL has argument tags [1,0] and root tag 0

Comparison: MIN
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(A__AND(x1, x2)) = 0   
POL(A__ISLIST(x1)) = 0   
POL(A__ISNELIST(x1)) = 0   
POL(A__ISNEPAL(x1)) = 0   
POL(A__ISPAL(x1)) = 0   
POL(A__ISPALLISTKIND(x1)) = 0   
POL(A__U11(x1, x2)) = 0   
POL(A__U21(x1, x2, x3)) = 0   
POL(A__U22(x1, x2)) = 0   
POL(A__U41(x1, x2, x3)) = 0   
POL(A__U42(x1, x2)) = 0   
POL(A__U51(x1, x2, x3)) = 0   
POL(A__U52(x1, x2)) = 0   
POL(A__U71(x1, x2)) = 0   
POL(A____(x1, x2)) = 0   
POL(MARK(x1)) = 0   
POL(U11(x1, x2)) = 1   
POL(U12(x1)) = x1   
POL(U21(x1, x2, x3)) = 1   
POL(U22(x1, x2)) = 1   
POL(U23(x1)) = 1   
POL(U31(x1, x2)) = 1   
POL(U32(x1)) = x1   
POL(U41(x1, x2, x3)) = 1   
POL(U42(x1, x2)) = 1   
POL(U43(x1)) = x1   
POL(U51(x1, x2, x3)) = 1   
POL(U52(x1, x2)) = 1   
POL(U53(x1)) = x1   
POL(U61(x1, x2)) = 1   
POL(U62(x1)) = x1   
POL(U71(x1, x2)) = 1   
POL(U72(x1)) = x1   
POL(__(x1, x2)) = 1   
POL(a) = 0   
POL(a__U11(x1, x2)) = 1   
POL(a__U12(x1)) = x1   
POL(a__U21(x1, x2, x3)) = 1   
POL(a__U22(x1, x2)) = 1   
POL(a__U23(x1)) = 1   
POL(a__U31(x1, x2)) = 1   
POL(a__U32(x1)) = x1   
POL(a__U41(x1, x2, x3)) = 1   
POL(a__U42(x1, x2)) = 1   
POL(a__U43(x1)) = x1   
POL(a__U51(x1, x2, x3)) = 1   
POL(a__U52(x1, x2)) = 1   
POL(a__U53(x1)) = x1   
POL(a__U61(x1, x2)) = 1   
POL(a__U62(x1)) = x1   
POL(a__U71(x1, x2)) = 1   
POL(a__U72(x1)) = x1   
POL(a____(x1, x2)) = 1   
POL(a__and(x1, x2)) = 1   
POL(a__isList(x1)) = 1   
POL(a__isNeList(x1)) = 1   
POL(a__isNePal(x1)) = 1   
POL(a__isPal(x1)) = 1   
POL(a__isPalListKind(x1)) = 1   
POL(a__isQid(x1)) = 1   
POL(and(x1, x2)) = 1   
POL(e) = 1   
POL(i) = 0   
POL(isList(x1)) = 1   
POL(isNeList(x1)) = 1   
POL(isNePal(x1)) = 1   
POL(isPal(x1)) = 1   
POL(isPalListKind(x1)) = 0   
POL(isQid(x1)) = 1   
POL(mark(x1)) = 1   
POL(nil) = 1   
POL(o) = 0   
POL(tt) = 0   
POL(u) = 0   

The following usable rules [FROCOS05] were oriented: none

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A____(__(X, Y), Z) → MARK(X)
MARK(__(X1, X2)) → A____(mark(X1), mark(X2))
A____(__(X, Y), Z) → A____(mark(X), a____(mark(Y), mark(Z)))
A____(__(X, Y), Z) → A____(mark(Y), mark(Z))
A____(__(X, Y), Z) → MARK(Y)
MARK(__(X1, X2)) → MARK(X1)
MARK(__(X1, X2)) → MARK(X2)
A__U11(tt, V) → A__ISNELIST(V)
A__ISPALLISTKIND(__(V1, V2)) → A__AND(a__isPalListKind(V1), isPalListKind(V2))
A__AND(tt, X) → MARK(X)
MARK(U11(X1, X2)) → MARK(X1)
MARK(U12(X)) → MARK(X)
A__ISNELIST(__(V1, V2)) → A__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
A__U41(tt, V1, V2) → A__U42(a__isList(V1), V2)
A__U42(tt, V2) → A__ISNELIST(V2)
A__ISPALLISTKIND(__(V1, V2)) → A__ISPALLISTKIND(V1)
A__ISNELIST(__(V1, V2)) → A__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
A__U51(tt, V1, V2) → A__U52(a__isNeList(V1), V2)
A__U52(tt, V2) → A__ISLIST(V2)
A__ISLIST(V) → A__U11(a__isPalListKind(V), V)
A__ISLIST(__(V1, V2)) → A__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
A__U21(tt, V1, V2) → A__U22(a__isList(V1), V2)
A__U22(tt, V2) → A__ISLIST(V2)
A__U21(tt, V1, V2) → A__ISLIST(V1)
A__U51(tt, V1, V2) → A__ISNELIST(V1)
A__U41(tt, V1, V2) → A__ISLIST(V1)
MARK(U21(X1, X2, X3)) → MARK(X1)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → MARK(X)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(U42(X1, X2)) → MARK(X1)
MARK(U43(X)) → MARK(X)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U52(X1, X2)) → MARK(X1)
MARK(U53(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
MARK(U71(X1, X2)) → A__U71(mark(X1), X2)
A__U71(tt, V) → A__ISNEPAL(V)
A__ISNEPAL(V) → A__ISPALLISTKIND(V)
A__ISNEPAL(__(I, __(P, I))) → A__AND(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
MARK(U71(X1, X2)) → MARK(X1)
MARK(U72(X)) → MARK(X)
MARK(isNePal(X)) → A__ISNEPAL(X)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isPalListKind(X)) → A__ISPALLISTKIND(X)
MARK(isPal(X)) → A__ISPAL(X)
A__ISPAL(V) → A__U71(a__isPalListKind(V), V)
A__ISPAL(V) → A__ISPALLISTKIND(V)
A____(__(X, Y), Z) → MARK(Z)
A____(X, nil) → MARK(X)
A____(nil, X) → MARK(X)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.

(8) Complex Obligation (AND)

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__ISNELIST(__(V1, V2)) → A__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
A__U41(tt, V1, V2) → A__U42(a__isList(V1), V2)
A__U42(tt, V2) → A__ISNELIST(V2)
A__ISNELIST(__(V1, V2)) → A__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
A__U51(tt, V1, V2) → A__U52(a__isNeList(V1), V2)
A__U52(tt, V2) → A__ISLIST(V2)
A__ISLIST(V) → A__U11(a__isPalListKind(V), V)
A__U11(tt, V) → A__ISNELIST(V)
A__ISLIST(__(V1, V2)) → A__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
A__U21(tt, V1, V2) → A__U22(a__isList(V1), V2)
A__U22(tt, V2) → A__ISLIST(V2)
A__U21(tt, V1, V2) → A__ISLIST(V1)
A__U51(tt, V1, V2) → A__ISNELIST(V1)
A__U41(tt, V1, V2) → A__ISLIST(V1)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U41(tt, V1, V2) → A__U42(a__isList(V1), V2)
A__U42(tt, V2) → A__ISNELIST(V2)
A__U51(tt, V1, V2) → A__U52(a__isNeList(V1), V2)
A__U52(tt, V2) → A__ISLIST(V2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
A__ISNELIST(x0, x1)  =  A__ISNELIST(x0)
A__U41(x0, x1, x2, x3)  =  A__U41(x0)
A__U42(x0, x1, x2)  =  A__U42(x0)
A__U51(x0, x1, x2, x3)  =  A__U51(x0)
A__U52(x0, x1, x2)  =  A__U52(x0, x2)
A__ISLIST(x0, x1)  =  A__ISLIST(x0)
A__U11(x0, x1, x2)  =  A__U11(x2)
A__U21(x0, x1, x2, x3)  =  A__U21(x0)
A__U22(x0, x1, x2)  =  A__U22(x2)

Tags:
A__ISNELIST has argument tags [0,16] and root tag 4
A__U41 has argument tags [0,8,31,16] and root tag 4
A__U42 has argument tags [0,15,2] and root tag 2
A__U51 has argument tags [0,0,27,12] and root tag 4
A__U52 has argument tags [0,31,18] and root tag 8
A__ISLIST has argument tags [0,0] and root tag 4
A__U11 has argument tags [8,4,0] and root tag 4
A__U21 has argument tags [0,4,16,0] and root tag 4
A__U22 has argument tags [31,8,0] and root tag 4

Comparison: DMS
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(A__ISLIST(x1)) = x1   
POL(A__ISNELIST(x1)) = x1   
POL(A__U11(x1, x2)) = 0   
POL(A__U21(x1, x2, x3)) = x2 + x3   
POL(A__U22(x1, x2)) = 0   
POL(A__U41(x1, x2, x3)) = x2 + x3   
POL(A__U42(x1, x2)) = x1 + x2   
POL(A__U51(x1, x2, x3)) = x2 + x3   
POL(A__U52(x1, x2)) = x1 + x2   
POL(U11(x1, x2)) = 0   
POL(U12(x1)) = x1   
POL(U21(x1, x2, x3)) = x2   
POL(U22(x1, x2)) = 0   
POL(U23(x1)) = 1   
POL(U31(x1, x2)) = 0   
POL(U32(x1)) = 0   
POL(U41(x1, x2, x3)) = x2   
POL(U42(x1, x2)) = 0   
POL(U43(x1)) = 0   
POL(U51(x1, x2, x3)) = x2   
POL(U52(x1, x2)) = 0   
POL(U53(x1)) = 0   
POL(U61(x1, x2)) = 1 + x1 + x2   
POL(U62(x1)) = 1   
POL(U71(x1, x2)) = x2   
POL(U72(x1)) = x1   
POL(__(x1, x2)) = x1 + x2   
POL(a) = 1   
POL(a__U11(x1, x2)) = x2   
POL(a__U12(x1)) = x1   
POL(a__U21(x1, x2, x3)) = x2   
POL(a__U22(x1, x2)) = x1   
POL(a__U23(x1)) = 1   
POL(a__U31(x1, x2)) = x2   
POL(a__U32(x1)) = x1   
POL(a__U41(x1, x2, x3)) = x2 + x3   
POL(a__U42(x1, x2)) = x1 + x2   
POL(a__U43(x1)) = 1   
POL(a__U51(x1, x2, x3)) = x2   
POL(a__U52(x1, x2)) = x1   
POL(a__U53(x1)) = 1   
POL(a__U61(x1, x2)) = 0   
POL(a__U62(x1)) = 0   
POL(a__U71(x1, x2)) = 1   
POL(a__U72(x1)) = 1   
POL(a____(x1, x2)) = 1   
POL(a__and(x1, x2)) = 1   
POL(a__isList(x1)) = x1   
POL(a__isNeList(x1)) = x1   
POL(a__isNePal(x1)) = x1   
POL(a__isPal(x1)) = 0   
POL(a__isPalListKind(x1)) = 0   
POL(a__isQid(x1)) = x1   
POL(and(x1, x2)) = 1   
POL(e) = 1   
POL(i) = 1   
POL(isList(x1)) = x1   
POL(isNeList(x1)) = x1   
POL(isNePal(x1)) = 1 + x1   
POL(isPal(x1)) = 1   
POL(isPalListKind(x1)) = 0   
POL(isQid(x1)) = 0   
POL(mark(x1)) = 0   
POL(nil) = 1   
POL(o) = 1   
POL(tt) = 1   
POL(u) = 1   

The following usable rules [FROCOS05] were oriented:

a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isList(X) → isList(X)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(X) → isNeList(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U11(X1, X2) → U11(X1, X2)
a__U12(tt) → tt
a__U12(X) → U12(X)
a__U31(tt, V) → a__U32(a__isQid(V))
a__U31(X1, X2) → U31(X1, X2)
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
a__isQid(X) → isQid(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U23(tt) → tt
a__U23(X) → U23(X)
a__U43(tt) → tt
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(tt) → tt
a__U53(X) → U53(X)
a__U32(tt) → tt
a__U32(X) → U32(X)

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__ISNELIST(__(V1, V2)) → A__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
A__ISNELIST(__(V1, V2)) → A__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
A__ISLIST(V) → A__U11(a__isPalListKind(V), V)
A__U11(tt, V) → A__ISNELIST(V)
A__ISLIST(__(V1, V2)) → A__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
A__U21(tt, V1, V2) → A__U22(a__isList(V1), V2)
A__U22(tt, V2) → A__ISLIST(V2)
A__U21(tt, V1, V2) → A__ISLIST(V1)
A__U51(tt, V1, V2) → A__ISNELIST(V1)
A__U41(tt, V1, V2) → A__ISLIST(V1)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U21(tt, V1, V2) → A__U22(a__isList(V1), V2)
A__U22(tt, V2) → A__ISLIST(V2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
A__ISNELIST(x0, x1)  =  A__ISNELIST(x0, x1)
A__U41(x0, x1, x2, x3)  =  A__U41(x0, x2)
A__U51(x0, x1, x2, x3)  =  A__U51(x2)
A__ISLIST(x0, x1)  =  A__ISLIST(x0, x1)
A__U11(x0, x1, x2)  =  A__U11(x2)
A__U21(x0, x1, x2, x3)  =  A__U21(x0)
A__U22(x0, x1, x2)  =  A__U22(x0, x2)

Tags:
A__ISNELIST has argument tags [4,0] and root tag 1
A__U41 has argument tags [0,20,0,15] and root tag 1
A__U51 has argument tags [0,6,0,3] and root tag 1
A__ISLIST has argument tags [0,1] and root tag 1
A__U11 has argument tags [2,18,0] and root tag 1
A__U21 has argument tags [0,14,0,0] and root tag 1
A__U22 has argument tags [0,0,1] and root tag 0

Comparison: MIN
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(A__ISLIST(x1)) = x1   
POL(A__ISNELIST(x1)) = x1   
POL(A__U11(x1, x2)) = 0   
POL(A__U21(x1, x2, x3)) = x2 + x3   
POL(A__U22(x1, x2)) = x1 + x2   
POL(A__U41(x1, x2, x3)) = x2   
POL(A__U51(x1, x2, x3)) = x3   
POL(U11(x1, x2)) = x2   
POL(U12(x1)) = x1   
POL(U21(x1, x2, x3)) = 0   
POL(U22(x1, x2)) = x2   
POL(U23(x1)) = 0   
POL(U31(x1, x2)) = 0   
POL(U32(x1)) = 0   
POL(U41(x1, x2, x3)) = x2   
POL(U42(x1, x2)) = 0   
POL(U43(x1)) = 0   
POL(U51(x1, x2, x3)) = x2   
POL(U52(x1, x2)) = x1   
POL(U53(x1)) = 0   
POL(U61(x1, x2)) = 0   
POL(U62(x1)) = 0   
POL(U71(x1, x2)) = 1 + x2   
POL(U72(x1)) = 0   
POL(__(x1, x2)) = x1 + x2   
POL(a) = 1   
POL(a__U11(x1, x2)) = x2   
POL(a__U12(x1)) = x1   
POL(a__U21(x1, x2, x3)) = x2 + x3   
POL(a__U22(x1, x2)) = x2   
POL(a__U23(x1)) = x1   
POL(a__U31(x1, x2)) = x2   
POL(a__U32(x1)) = x1   
POL(a__U41(x1, x2, x3)) = x2 + x3   
POL(a__U42(x1, x2)) = x2   
POL(a__U43(x1)) = x1   
POL(a__U51(x1, x2, x3)) = x2 + x3   
POL(a__U52(x1, x2)) = x1   
POL(a__U53(x1)) = 1   
POL(a__U61(x1, x2)) = x1   
POL(a__U62(x1)) = x1   
POL(a__U71(x1, x2)) = 1 + x1   
POL(a__U72(x1)) = 1 + x1   
POL(a____(x1, x2)) = 0   
POL(a__and(x1, x2)) = 0   
POL(a__isList(x1)) = x1   
POL(a__isNeList(x1)) = x1   
POL(a__isNePal(x1)) = x1   
POL(a__isPal(x1)) = x1   
POL(a__isPalListKind(x1)) = x1   
POL(a__isQid(x1)) = x1   
POL(and(x1, x2)) = 0   
POL(e) = 1   
POL(i) = 1   
POL(isList(x1)) = 0   
POL(isNeList(x1)) = x1   
POL(isNePal(x1)) = 1 + x1   
POL(isPal(x1)) = 0   
POL(isPalListKind(x1)) = 0   
POL(isQid(x1)) = x1   
POL(mark(x1)) = 0   
POL(nil) = 1   
POL(o) = 1   
POL(tt) = 1   
POL(u) = 1   

The following usable rules [FROCOS05] were oriented:

a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isList(X) → isList(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U11(X1, X2) → U11(X1, X2)
a__U12(tt) → tt
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U31(tt, V) → a__U32(a__isQid(V))
a__U31(X1, X2) → U31(X1, X2)
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
a__isQid(X) → isQid(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U23(tt) → tt
a__U23(X) → U23(X)
a__U43(tt) → tt
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(tt) → tt
a__U53(X) → U53(X)
a__U32(tt) → tt
a__U32(X) → U32(X)

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__ISNELIST(__(V1, V2)) → A__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
A__ISNELIST(__(V1, V2)) → A__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
A__ISLIST(V) → A__U11(a__isPalListKind(V), V)
A__U11(tt, V) → A__ISNELIST(V)
A__ISLIST(__(V1, V2)) → A__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
A__U21(tt, V1, V2) → A__ISLIST(V1)
A__U51(tt, V1, V2) → A__ISNELIST(V1)
A__U41(tt, V1, V2) → A__ISLIST(V1)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(14) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__ISNELIST(__(V1, V2)) → A__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
A__ISLIST(V) → A__U11(a__isPalListKind(V), V)
A__U11(tt, V) → A__ISNELIST(V)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
A__ISNELIST(x0, x1)  =  A__ISNELIST(x1)
A__U41(x0, x1, x2, x3)  =  A__U41(x0, x1, x3)
A__U51(x0, x1, x2, x3)  =  A__U51(x1, x2, x3)
A__ISLIST(x0, x1)  =  A__ISLIST(x1)
A__U11(x0, x1, x2)  =  A__U11(x2)
A__U21(x0, x1, x2, x3)  =  A__U21(x0, x2, x3)

Tags:
A__ISNELIST has argument tags [3,11] and root tag 6
A__U41 has argument tags [22,11,8,23] and root tag 5
A__U51 has argument tags [7,11,11,23] and root tag 6
A__ISLIST has argument tags [17,22] and root tag 5
A__U11 has argument tags [2,30,22] and root tag 0
A__U21 has argument tags [22,23,5,20] and root tag 5

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(A__ISLIST(x1)) = 1   
POL(A__ISNELIST(x1)) = 1   
POL(A__U11(x1, x2)) = 1   
POL(A__U21(x1, x2, x3)) = x1 + x2 + x3   
POL(A__U41(x1, x2, x3)) = x2 + x3   
POL(A__U51(x1, x2, x3)) = 0   
POL(U11(x1, x2)) = 0   
POL(U12(x1)) = 0   
POL(U21(x1, x2, x3)) = 0   
POL(U22(x1, x2)) = 0   
POL(U23(x1)) = 0   
POL(U31(x1, x2)) = 0   
POL(U32(x1)) = 0   
POL(U41(x1, x2, x3)) = 0   
POL(U42(x1, x2)) = 0   
POL(U43(x1)) = 0   
POL(U51(x1, x2, x3)) = 0   
POL(U52(x1, x2)) = 0   
POL(U53(x1)) = 0   
POL(U61(x1, x2)) = 0   
POL(U62(x1)) = x1   
POL(U71(x1, x2)) = 0   
POL(U72(x1)) = 0   
POL(__(x1, x2)) = 1 + x1 + x2   
POL(a) = 0   
POL(a__U11(x1, x2)) = 0   
POL(a__U12(x1)) = 0   
POL(a__U21(x1, x2, x3)) = 0   
POL(a__U22(x1, x2)) = 0   
POL(a__U23(x1)) = 0   
POL(a__U31(x1, x2)) = 0   
POL(a__U32(x1)) = 0   
POL(a__U41(x1, x2, x3)) = 0   
POL(a__U42(x1, x2)) = 0   
POL(a__U43(x1)) = 0   
POL(a__U51(x1, x2, x3)) = 0   
POL(a__U52(x1, x2)) = 0   
POL(a__U53(x1)) = 0   
POL(a__U61(x1, x2)) = 0   
POL(a__U62(x1)) = x1   
POL(a__U71(x1, x2)) = 0   
POL(a__U72(x1)) = 0   
POL(a____(x1, x2)) = 1 + x1 + x2   
POL(a__and(x1, x2)) = x2   
POL(a__isList(x1)) = 0   
POL(a__isNeList(x1)) = 0   
POL(a__isNePal(x1)) = x1   
POL(a__isPal(x1)) = 0   
POL(a__isPalListKind(x1)) = 1   
POL(a__isQid(x1)) = 0   
POL(and(x1, x2)) = x2   
POL(e) = 0   
POL(i) = 0   
POL(isList(x1)) = 0   
POL(isNeList(x1)) = 0   
POL(isNePal(x1)) = x1   
POL(isPal(x1)) = 0   
POL(isPalListKind(x1)) = 1   
POL(isQid(x1)) = 0   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(o) = 0   
POL(tt) = 0   
POL(u) = 0   

The following usable rules [FROCOS05] were oriented:

a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a____(X, nil) → mark(X)
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(nil, X) → mark(X)
mark(isNePal(X)) → a__isNePal(X)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__and(tt, X) → mark(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isPalListKind(X) → isPalListKind(X)
a__and(X1, X2) → and(X1, X2)
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U71(tt, V) → a__U72(a__isNePal(V))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
mark(isQid(X)) → a__isQid(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a__U11(X1, X2) → U11(X1, X2)
a__U12(tt) → tt
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U31(tt, V) → a__U32(a__isQid(V))
a__U31(X1, X2) → U31(X1, X2)
a____(X1, X2) → __(X1, X2)
a__isNePal(X) → isNePal(X)
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
a__isQid(X) → isQid(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(nil) → tt
a__isList(X) → isList(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U23(tt) → tt
a__U23(X) → U23(X)
a__U43(tt) → tt
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(tt) → tt
a__U53(X) → U53(X)
a__U32(tt) → tt
a__U32(X) → U32(X)
a__U61(tt, V) → a__U62(a__isQid(V))
a__U61(X1, X2) → U61(X1, X2)
a__U62(tt) → tt
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(tt) → tt
a__U72(X) → U72(X)
a__isPal(nil) → tt
a__isPal(X) → isPal(X)

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__ISNELIST(__(V1, V2)) → A__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
A__ISLIST(__(V1, V2)) → A__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
A__U21(tt, V1, V2) → A__ISLIST(V1)
A__U51(tt, V1, V2) → A__ISNELIST(V1)
A__U41(tt, V1, V2) → A__ISLIST(V1)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.

(17) Complex Obligation (AND)

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U21(tt, V1, V2) → A__ISLIST(V1)
A__ISLIST(__(V1, V2)) → A__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U21(tt, V1, V2) → A__ISLIST(V1)
A__ISLIST(__(V1, V2)) → A__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
A__U21(x0, x1, x2, x3)  =  A__U21(x2)
A__ISLIST(x0, x1)  =  A__ISLIST(x0, x1)

Tags:
A__U21 has argument tags [7,5,2,1] and root tag 1
A__ISLIST has argument tags [2,2] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(A__ISLIST(x1)) = 0   
POL(A__U21(x1, x2, x3)) = 1 + x3   
POL(U11(x1, x2)) = 1 + x1 + x2   
POL(U12(x1)) = 1 + x1   
POL(U21(x1, x2, x3)) = 1 + x1 + x2 + x3   
POL(U22(x1, x2)) = 1 + x1 + x2   
POL(U23(x1)) = 1 + x1   
POL(U31(x1, x2)) = 1 + x1 + x2   
POL(U32(x1)) = 1 + x1   
POL(U41(x1, x2, x3)) = 1 + x1 + x2 + x3   
POL(U42(x1, x2)) = 1 + x1 + x2   
POL(U43(x1)) = 1 + x1   
POL(U51(x1, x2, x3)) = 1 + x1 + x2 + x3   
POL(U52(x1, x2)) = 1 + x1 + x2   
POL(U53(x1)) = 1 + x1   
POL(U61(x1, x2)) = 1 + x1 + x2   
POL(U62(x1)) = 1 + x1   
POL(U71(x1, x2)) = 1 + x1 + x2   
POL(U72(x1)) = 1 + x1   
POL(__(x1, x2)) = 1 + x1 + x2   
POL(a) = 1   
POL(a__U11(x1, x2)) = 0   
POL(a__U12(x1)) = 0   
POL(a__U21(x1, x2, x3)) = 0   
POL(a__U22(x1, x2)) = 0   
POL(a__U23(x1)) = 0   
POL(a__U31(x1, x2)) = 0   
POL(a__U32(x1)) = 0   
POL(a__U41(x1, x2, x3)) = 0   
POL(a__U42(x1, x2)) = 0   
POL(a__U43(x1)) = 0   
POL(a__U51(x1, x2, x3)) = 0   
POL(a__U52(x1, x2)) = 0   
POL(a__U53(x1)) = 0   
POL(a__U61(x1, x2)) = 0   
POL(a__U62(x1)) = 0   
POL(a__U71(x1, x2)) = 0   
POL(a__U72(x1)) = 0   
POL(a____(x1, x2)) = 0   
POL(a__and(x1, x2)) = 0   
POL(a__isList(x1)) = 0   
POL(a__isNeList(x1)) = 0   
POL(a__isNePal(x1)) = 0   
POL(a__isPal(x1)) = 0   
POL(a__isPalListKind(x1)) = 0   
POL(a__isQid(x1)) = 0   
POL(and(x1, x2)) = 1 + x1 + x2   
POL(e) = 1   
POL(i) = 1   
POL(isList(x1)) = 1 + x1   
POL(isNeList(x1)) = 1 + x1   
POL(isNePal(x1)) = 1 + x1   
POL(isPal(x1)) = 1 + x1   
POL(isPalListKind(x1)) = 1 + x1   
POL(isQid(x1)) = 1 + x1   
POL(mark(x1)) = 1 + x1   
POL(nil) = 1   
POL(o) = 1   
POL(tt) = 1   
POL(u) = 1   

The following usable rules [FROCOS05] were oriented: none

(20) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(22) TRUE

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U51(tt, V1, V2) → A__ISNELIST(V1)
A__ISNELIST(__(V1, V2)) → A__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U51(tt, V1, V2) → A__ISNELIST(V1)
A__ISNELIST(__(V1, V2)) → A__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
A__U51(x0, x1, x2, x3)  =  A__U51(x2)
A__ISNELIST(x0, x1)  =  A__ISNELIST(x0, x1)

Tags:
A__U51 has argument tags [7,5,2,1] and root tag 1
A__ISNELIST has argument tags [2,2] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(A__ISNELIST(x1)) = 0   
POL(A__U51(x1, x2, x3)) = 1 + x3   
POL(U11(x1, x2)) = 1 + x1 + x2   
POL(U12(x1)) = 1 + x1   
POL(U21(x1, x2, x3)) = 1 + x1 + x2 + x3   
POL(U22(x1, x2)) = 1 + x1 + x2   
POL(U23(x1)) = 1 + x1   
POL(U31(x1, x2)) = 1 + x1 + x2   
POL(U32(x1)) = 1 + x1   
POL(U41(x1, x2, x3)) = 1 + x1 + x2 + x3   
POL(U42(x1, x2)) = 1 + x1 + x2   
POL(U43(x1)) = 1 + x1   
POL(U51(x1, x2, x3)) = 1 + x1 + x2 + x3   
POL(U52(x1, x2)) = 1 + x1 + x2   
POL(U53(x1)) = 1 + x1   
POL(U61(x1, x2)) = 1 + x1 + x2   
POL(U62(x1)) = 1 + x1   
POL(U71(x1, x2)) = 1 + x1 + x2   
POL(U72(x1)) = 1 + x1   
POL(__(x1, x2)) = 1 + x1 + x2   
POL(a) = 1   
POL(a__U11(x1, x2)) = 0   
POL(a__U12(x1)) = 0   
POL(a__U21(x1, x2, x3)) = 0   
POL(a__U22(x1, x2)) = 0   
POL(a__U23(x1)) = 0   
POL(a__U31(x1, x2)) = 0   
POL(a__U32(x1)) = 0   
POL(a__U41(x1, x2, x3)) = 0   
POL(a__U42(x1, x2)) = 0   
POL(a__U43(x1)) = 0   
POL(a__U51(x1, x2, x3)) = 0   
POL(a__U52(x1, x2)) = 0   
POL(a__U53(x1)) = 0   
POL(a__U61(x1, x2)) = 0   
POL(a__U62(x1)) = 0   
POL(a__U71(x1, x2)) = 0   
POL(a__U72(x1)) = 0   
POL(a____(x1, x2)) = 0   
POL(a__and(x1, x2)) = 0   
POL(a__isList(x1)) = 0   
POL(a__isNeList(x1)) = 0   
POL(a__isNePal(x1)) = 0   
POL(a__isPal(x1)) = 0   
POL(a__isPalListKind(x1)) = 0   
POL(a__isQid(x1)) = 0   
POL(and(x1, x2)) = 1 + x1 + x2   
POL(e) = 1   
POL(i) = 1   
POL(isList(x1)) = 1 + x1   
POL(isNeList(x1)) = 1 + x1   
POL(isNePal(x1)) = 1 + x1   
POL(isPal(x1)) = 1 + x1   
POL(isPalListKind(x1)) = 1 + x1   
POL(isQid(x1)) = 1 + x1   
POL(mark(x1)) = 1 + x1   
POL(nil) = 1   
POL(o) = 1   
POL(tt) = 1   
POL(u) = 1   

The following usable rules [FROCOS05] were oriented: none

(25) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(27) TRUE

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(__(X1, X2)) → A____(mark(X1), mark(X2))
A____(__(X, Y), Z) → A____(mark(X), a____(mark(Y), mark(Z)))
A____(__(X, Y), Z) → MARK(X)
MARK(__(X1, X2)) → MARK(X1)
MARK(__(X1, X2)) → MARK(X2)
MARK(U11(X1, X2)) → MARK(X1)
MARK(U12(X)) → MARK(X)
MARK(U21(X1, X2, X3)) → MARK(X1)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → MARK(X)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(U42(X1, X2)) → MARK(X1)
MARK(U43(X)) → MARK(X)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U52(X1, X2)) → MARK(X1)
MARK(U53(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
MARK(U71(X1, X2)) → A__U71(mark(X1), X2)
A__U71(tt, V) → A__ISNEPAL(V)
A__ISNEPAL(V) → A__ISPALLISTKIND(V)
A__ISPALLISTKIND(__(V1, V2)) → A__AND(a__isPalListKind(V1), isPalListKind(V2))
A__AND(tt, X) → MARK(X)
MARK(U71(X1, X2)) → MARK(X1)
MARK(U72(X)) → MARK(X)
MARK(isNePal(X)) → A__ISNEPAL(X)
A__ISNEPAL(__(I, __(P, I))) → A__AND(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isPalListKind(X)) → A__ISPALLISTKIND(X)
A__ISPALLISTKIND(__(V1, V2)) → A__ISPALLISTKIND(V1)
MARK(isPal(X)) → A__ISPAL(X)
A__ISPAL(V) → A__U71(a__isPalListKind(V), V)
A__ISPAL(V) → A__ISPALLISTKIND(V)
A____(__(X, Y), Z) → A____(mark(Y), mark(Z))
A____(__(X, Y), Z) → MARK(Y)
A____(__(X, Y), Z) → MARK(Z)
A____(X, nil) → MARK(X)
A____(nil, X) → MARK(X)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A____(X, nil) → MARK(X)
A____(nil, X) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x0, x1)
A____(x0, x1, x2)  =  A____(x0, x1)
A__U71(x0, x1, x2)  =  A__U71(x0, x1)
A__ISNEPAL(x0, x1)  =  A__ISNEPAL(x0)
A__ISPALLISTKIND(x0, x1)  =  A__ISPALLISTKIND(x0)
A__AND(x0, x1, x2)  =  A__AND(x0)
A__ISPAL(x0, x1)  =  A__ISPAL(x0)

Tags:
MARK has argument tags [0,16] and root tag 0
A____ has argument tags [0,0,0] and root tag 0
A__U71 has argument tags [0,0,19] and root tag 0
A__ISNEPAL has argument tags [0,0] and root tag 0
A__ISPALLISTKIND has argument tags [0,25] and root tag 0
A__AND has argument tags [0,0,31] and root tag 0
A__ISPAL has argument tags [0,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(A__AND(x1, x2)) = 1 + x2   
POL(A__ISNEPAL(x1)) = 1   
POL(A__ISPAL(x1)) = 1   
POL(A__ISPALLISTKIND(x1)) = 1   
POL(A__U71(x1, x2)) = 1 + x1   
POL(A____(x1, x2)) = 1 + x1 + x2   
POL(MARK(x1)) = 1 + x1   
POL(U11(x1, x2)) = x1   
POL(U12(x1)) = x1   
POL(U21(x1, x2, x3)) = x1   
POL(U22(x1, x2)) = x1   
POL(U23(x1)) = x1   
POL(U31(x1, x2)) = x1   
POL(U32(x1)) = x1   
POL(U41(x1, x2, x3)) = x1   
POL(U42(x1, x2)) = x1   
POL(U43(x1)) = x1   
POL(U51(x1, x2, x3)) = x1   
POL(U52(x1, x2)) = x1   
POL(U53(x1)) = x1   
POL(U61(x1, x2)) = x1   
POL(U62(x1)) = x1   
POL(U71(x1, x2)) = x1   
POL(U72(x1)) = x1   
POL(__(x1, x2)) = x1 + x2   
POL(a) = 0   
POL(a__U11(x1, x2)) = x1   
POL(a__U12(x1)) = x1   
POL(a__U21(x1, x2, x3)) = x1   
POL(a__U22(x1, x2)) = x1   
POL(a__U23(x1)) = x1   
POL(a__U31(x1, x2)) = x1   
POL(a__U32(x1)) = x1   
POL(a__U41(x1, x2, x3)) = x1   
POL(a__U42(x1, x2)) = x1   
POL(a__U43(x1)) = x1   
POL(a__U51(x1, x2, x3)) = x1   
POL(a__U52(x1, x2)) = x1   
POL(a__U53(x1)) = x1   
POL(a__U61(x1, x2)) = x1   
POL(a__U62(x1)) = x1   
POL(a__U71(x1, x2)) = x1   
POL(a__U72(x1)) = x1   
POL(a____(x1, x2)) = x1 + x2   
POL(a__and(x1, x2)) = x1 + x2   
POL(a__isList(x1)) = 0   
POL(a__isNeList(x1)) = 0   
POL(a__isNePal(x1)) = 0   
POL(a__isPal(x1)) = 0   
POL(a__isPalListKind(x1)) = 0   
POL(a__isQid(x1)) = 0   
POL(and(x1, x2)) = x1 + x2   
POL(e) = 0   
POL(i) = 0   
POL(isList(x1)) = 0   
POL(isNeList(x1)) = 0   
POL(isNePal(x1)) = 0   
POL(isPal(x1)) = 0   
POL(isPalListKind(x1)) = 0   
POL(isQid(x1)) = 0   
POL(mark(x1)) = x1   
POL(nil) = 1   
POL(o) = 0   
POL(tt) = 0   
POL(u) = 0   

The following usable rules [FROCOS05] were oriented:

a____(X, nil) → mark(X)
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(nil, X) → mark(X)
mark(isNePal(X)) → a__isNePal(X)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__and(tt, X) → mark(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(X) → isPalListKind(X)
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
a__isQid(X) → isQid(X)
a__and(X1, X2) → and(X1, X2)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U71(tt, V) → a__U72(a__isNePal(V))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__U11(X1, X2) → U11(X1, X2)
a__U12(tt) → tt
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U31(tt, V) → a__U32(a__isQid(V))
a__U31(X1, X2) → U31(X1, X2)
a__isNePal(X) → isNePal(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(nil) → tt
a__isList(X) → isList(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U23(tt) → tt
a__U23(X) → U23(X)
a__U43(tt) → tt
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(tt) → tt
a__U53(X) → U53(X)
a__U32(tt) → tt
a__U32(X) → U32(X)
a__U61(tt, V) → a__U62(a__isQid(V))
a__U61(X1, X2) → U61(X1, X2)
a__U62(tt) → tt
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(tt) → tt
a__U72(X) → U72(X)
a__isPal(nil) → tt
a__isPal(X) → isPal(X)

(30) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(__(X1, X2)) → A____(mark(X1), mark(X2))
A____(__(X, Y), Z) → A____(mark(X), a____(mark(Y), mark(Z)))
A____(__(X, Y), Z) → MARK(X)
MARK(__(X1, X2)) → MARK(X1)
MARK(__(X1, X2)) → MARK(X2)
MARK(U11(X1, X2)) → MARK(X1)
MARK(U12(X)) → MARK(X)
MARK(U21(X1, X2, X3)) → MARK(X1)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → MARK(X)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(U42(X1, X2)) → MARK(X1)
MARK(U43(X)) → MARK(X)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U52(X1, X2)) → MARK(X1)
MARK(U53(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
MARK(U71(X1, X2)) → A__U71(mark(X1), X2)
A__U71(tt, V) → A__ISNEPAL(V)
A__ISNEPAL(V) → A__ISPALLISTKIND(V)
A__ISPALLISTKIND(__(V1, V2)) → A__AND(a__isPalListKind(V1), isPalListKind(V2))
A__AND(tt, X) → MARK(X)
MARK(U71(X1, X2)) → MARK(X1)
MARK(U72(X)) → MARK(X)
MARK(isNePal(X)) → A__ISNEPAL(X)
A__ISNEPAL(__(I, __(P, I))) → A__AND(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isPalListKind(X)) → A__ISPALLISTKIND(X)
A__ISPALLISTKIND(__(V1, V2)) → A__ISPALLISTKIND(V1)
MARK(isPal(X)) → A__ISPAL(X)
A__ISPAL(V) → A__U71(a__isPalListKind(V), V)
A__ISPAL(V) → A__ISPALLISTKIND(V)
A____(__(X, Y), Z) → A____(mark(Y), mark(Z))
A____(__(X, Y), Z) → MARK(Y)
A____(__(X, Y), Z) → MARK(Z)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(__(X1, X2)) → A____(mark(X1), mark(X2))
A____(__(X, Y), Z) → MARK(X)
MARK(__(X1, X2)) → MARK(X1)
MARK(__(X1, X2)) → MARK(X2)
MARK(U21(X1, X2, X3)) → MARK(X1)
A__ISNEPAL(__(I, __(P, I))) → A__AND(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
A____(__(X, Y), Z) → A____(mark(Y), mark(Z))
A____(__(X, Y), Z) → MARK(Y)
A____(__(X, Y), Z) → MARK(Z)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x1)
A____(x0, x1, x2)  =  A____(x0)
A__U71(x0, x1, x2)  =  A__U71(x0, x2)
A__ISNEPAL(x0, x1)  =  A__ISNEPAL(x0, x1)
A__ISPALLISTKIND(x0, x1)  =  A__ISPALLISTKIND(x0, x1)
A__AND(x0, x1, x2)  =  A__AND(x0, x2)
A__ISPAL(x0, x1)  =  A__ISPAL(x0, x1)

Tags:
MARK has argument tags [0,0] and root tag 1
A____ has argument tags [0,30,16] and root tag 0
A__U71 has argument tags [0,16,8] and root tag 1
A__ISNEPAL has argument tags [0,16] and root tag 1
A__ISPALLISTKIND has argument tags [0,20] and root tag 1
A__AND has argument tags [0,31,17] and root tag 1
A__ISPAL has argument tags [7,0] and root tag 1

Comparison: MIN
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(A__AND(x1, x2)) = x2   
POL(A__ISNEPAL(x1)) = x1   
POL(A__ISPAL(x1)) = x1   
POL(A__ISPALLISTKIND(x1)) = 0   
POL(A__U71(x1, x2)) = x2   
POL(A____(x1, x2)) = 1 + x1 + x2   
POL(MARK(x1)) = 1   
POL(U11(x1, x2)) = x1 + x2   
POL(U12(x1)) = x1   
POL(U21(x1, x2, x3)) = 1 + x1 + x2 + x3   
POL(U22(x1, x2)) = x1 + x2   
POL(U23(x1)) = x1   
POL(U31(x1, x2)) = x1 + x2   
POL(U32(x1)) = x1   
POL(U41(x1, x2, x3)) = x1 + x2 + x3   
POL(U42(x1, x2)) = x1 + x2   
POL(U43(x1)) = x1   
POL(U51(x1, x2, x3)) = x1 + x2 + x3   
POL(U52(x1, x2)) = x1 + x2   
POL(U53(x1)) = x1   
POL(U61(x1, x2)) = x1 + x2   
POL(U62(x1)) = x1   
POL(U71(x1, x2)) = x1 + x2   
POL(U72(x1)) = x1   
POL(__(x1, x2)) = 1 + x1 + x2   
POL(a) = 0   
POL(a__U11(x1, x2)) = x1 + x2   
POL(a__U12(x1)) = x1   
POL(a__U21(x1, x2, x3)) = 1 + x1 + x2 + x3   
POL(a__U22(x1, x2)) = x1 + x2   
POL(a__U23(x1)) = x1   
POL(a__U31(x1, x2)) = x1 + x2   
POL(a__U32(x1)) = x1   
POL(a__U41(x1, x2, x3)) = x1 + x2 + x3   
POL(a__U42(x1, x2)) = x1 + x2   
POL(a__U43(x1)) = x1   
POL(a__U51(x1, x2, x3)) = x1 + x2 + x3   
POL(a__U52(x1, x2)) = x1 + x2   
POL(a__U53(x1)) = x1   
POL(a__U61(x1, x2)) = x1 + x2   
POL(a__U62(x1)) = x1   
POL(a__U71(x1, x2)) = x1 + x2   
POL(a__U72(x1)) = x1   
POL(a____(x1, x2)) = 1 + x1 + x2   
POL(a__and(x1, x2)) = x1 + x2   
POL(a__isList(x1)) = x1   
POL(a__isNeList(x1)) = x1   
POL(a__isNePal(x1)) = x1   
POL(a__isPal(x1)) = x1   
POL(a__isPalListKind(x1)) = 0   
POL(a__isQid(x1)) = x1   
POL(and(x1, x2)) = x1 + x2   
POL(e) = 1   
POL(i) = 1   
POL(isList(x1)) = x1   
POL(isNeList(x1)) = x1   
POL(isNePal(x1)) = x1   
POL(isPal(x1)) = x1   
POL(isPalListKind(x1)) = 0   
POL(isQid(x1)) = x1   
POL(mark(x1)) = x1   
POL(nil) = 1   
POL(o) = 0   
POL(tt) = 0   
POL(u) = 1   

The following usable rules [FROCOS05] were oriented:

a____(X, nil) → mark(X)
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(nil, X) → mark(X)
mark(isNePal(X)) → a__isNePal(X)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__and(tt, X) → mark(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(X) → isPalListKind(X)
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
a__isQid(X) → isQid(X)
a__and(X1, X2) → and(X1, X2)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U71(tt, V) → a__U72(a__isNePal(V))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__U11(X1, X2) → U11(X1, X2)
a__U12(tt) → tt
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U31(tt, V) → a__U32(a__isQid(V))
a__U31(X1, X2) → U31(X1, X2)
a__isNePal(X) → isNePal(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(nil) → tt
a__isList(X) → isList(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U23(tt) → tt
a__U23(X) → U23(X)
a__U43(tt) → tt
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(tt) → tt
a__U53(X) → U53(X)
a__U32(tt) → tt
a__U32(X) → U32(X)
a__U61(tt, V) → a__U62(a__isQid(V))
a__U61(X1, X2) → U61(X1, X2)
a__U62(tt) → tt
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(tt) → tt
a__U72(X) → U72(X)
a__isPal(nil) → tt
a__isPal(X) → isPal(X)

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A____(__(X, Y), Z) → A____(mark(X), a____(mark(Y), mark(Z)))
MARK(U11(X1, X2)) → MARK(X1)
MARK(U12(X)) → MARK(X)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → MARK(X)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(U42(X1, X2)) → MARK(X1)
MARK(U43(X)) → MARK(X)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U52(X1, X2)) → MARK(X1)
MARK(U53(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
MARK(U71(X1, X2)) → A__U71(mark(X1), X2)
A__U71(tt, V) → A__ISNEPAL(V)
A__ISNEPAL(V) → A__ISPALLISTKIND(V)
A__ISPALLISTKIND(__(V1, V2)) → A__AND(a__isPalListKind(V1), isPalListKind(V2))
A__AND(tt, X) → MARK(X)
MARK(U71(X1, X2)) → MARK(X1)
MARK(U72(X)) → MARK(X)
MARK(isNePal(X)) → A__ISNEPAL(X)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isPalListKind(X)) → A__ISPALLISTKIND(X)
A__ISPALLISTKIND(__(V1, V2)) → A__ISPALLISTKIND(V1)
MARK(isPal(X)) → A__ISPAL(X)
A__ISPAL(V) → A__U71(a__isPalListKind(V), V)
A__ISPAL(V) → A__ISPALLISTKIND(V)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(33) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.

(34) Complex Obligation (AND)

(35) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U12(X)) → MARK(X)
MARK(U11(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → MARK(X)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(U42(X1, X2)) → MARK(X1)
MARK(U43(X)) → MARK(X)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U52(X1, X2)) → MARK(X1)
MARK(U53(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
MARK(U71(X1, X2)) → A__U71(mark(X1), X2)
A__U71(tt, V) → A__ISNEPAL(V)
A__ISNEPAL(V) → A__ISPALLISTKIND(V)
A__ISPALLISTKIND(__(V1, V2)) → A__AND(a__isPalListKind(V1), isPalListKind(V2))
A__AND(tt, X) → MARK(X)
MARK(U71(X1, X2)) → MARK(X1)
MARK(U72(X)) → MARK(X)
MARK(isNePal(X)) → A__ISNEPAL(X)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isPalListKind(X)) → A__ISPALLISTKIND(X)
A__ISPALLISTKIND(__(V1, V2)) → A__ISPALLISTKIND(V1)
MARK(isPal(X)) → A__ISPAL(X)
A__ISPAL(V) → A__U71(a__isPalListKind(V), V)
A__ISPAL(V) → A__ISPALLISTKIND(V)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U71(X1, X2)) → A__U71(mark(X1), X2)
A__U71(tt, V) → A__ISNEPAL(V)
A__ISNEPAL(V) → A__ISPALLISTKIND(V)
A__ISPALLISTKIND(__(V1, V2)) → A__AND(a__isPalListKind(V1), isPalListKind(V2))
MARK(U71(X1, X2)) → MARK(X1)
MARK(isNePal(X)) → A__ISNEPAL(X)
MARK(isPalListKind(X)) → A__ISPALLISTKIND(X)
A__ISPALLISTKIND(__(V1, V2)) → A__ISPALLISTKIND(V1)
MARK(isPal(X)) → A__ISPAL(X)
A__ISPAL(V) → A__ISPALLISTKIND(V)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x1)
A__U71(x0, x1, x2)  =  A__U71(x0, x2)
A__ISNEPAL(x0, x1)  =  A__ISNEPAL(x0, x1)
A__ISPALLISTKIND(x0, x1)  =  A__ISPALLISTKIND(x0)
A__AND(x0, x1, x2)  =  A__AND(x0, x2)
A__ISPAL(x0, x1)  =  A__ISPAL(x1)

Tags:
MARK has argument tags [7,0] and root tag 5
A__U71 has argument tags [8,0,0] and root tag 0
A__ISNEPAL has argument tags [2,0] and root tag 2
A__ISPALLISTKIND has argument tags [0,2] and root tag 4
A__AND has argument tags [0,8,0] and root tag 5
A__ISPAL has argument tags [8,8] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(A__AND(x1, x2)) = 0   
POL(A__ISNEPAL(x1)) = x1   
POL(A__ISPAL(x1)) = 1   
POL(A__ISPALLISTKIND(x1)) = x1   
POL(A__U71(x1, x2)) = x2   
POL(MARK(x1)) = 0   
POL(U11(x1, x2)) = x1 + x2   
POL(U12(x1)) = x1   
POL(U21(x1, x2, x3)) = x1 + x2   
POL(U22(x1, x2)) = x1   
POL(U23(x1)) = x1   
POL(U31(x1, x2)) = x1 + x2   
POL(U32(x1)) = x1   
POL(U41(x1, x2, x3)) = x1 + x2 + x3   
POL(U42(x1, x2)) = x1 + x2   
POL(U43(x1)) = x1   
POL(U51(x1, x2, x3)) = x1 + x3   
POL(U52(x1, x2)) = x1 + x2   
POL(U53(x1)) = x1   
POL(U61(x1, x2)) = x1 + x2   
POL(U62(x1)) = x1   
POL(U71(x1, x2)) = 1 + x1 + x2   
POL(U72(x1)) = x1   
POL(__(x1, x2)) = 1 + x1 + x2   
POL(a) = 0   
POL(a__U11(x1, x2)) = 0   
POL(a__U12(x1)) = 0   
POL(a__U21(x1, x2, x3)) = 1 + x2   
POL(a__U22(x1, x2)) = 1 + x2   
POL(a__U23(x1)) = 1   
POL(a__U31(x1, x2)) = 1   
POL(a__U32(x1)) = 1 + x1   
POL(a__U41(x1, x2, x3)) = 0   
POL(a__U42(x1, x2)) = x2   
POL(a__U43(x1)) = 1   
POL(a__U51(x1, x2, x3)) = 1   
POL(a__U52(x1, x2)) = 0   
POL(a__U53(x1)) = 1   
POL(a__U61(x1, x2)) = 0   
POL(a__U62(x1)) = x1   
POL(a__U71(x1, x2)) = 1   
POL(a__U72(x1)) = 0   
POL(a____(x1, x2)) = 0   
POL(a__and(x1, x2)) = 1   
POL(a__isList(x1)) = 0   
POL(a__isNeList(x1)) = 0   
POL(a__isNePal(x1)) = 0   
POL(a__isPal(x1)) = 0   
POL(a__isPalListKind(x1)) = 0   
POL(a__isQid(x1)) = 1 + x1   
POL(and(x1, x2)) = x1 + x2   
POL(e) = 0   
POL(i) = 1   
POL(isList(x1)) = 1 + x1   
POL(isNeList(x1)) = 1   
POL(isNePal(x1)) = 1 + x1   
POL(isPal(x1)) = 1 + x1   
POL(isPalListKind(x1)) = x1   
POL(isQid(x1)) = 1   
POL(mark(x1)) = 0   
POL(nil) = 0   
POL(o) = 1   
POL(tt) = 0   
POL(u) = 1   

The following usable rules [FROCOS05] were oriented: none

(37) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U12(X)) → MARK(X)
MARK(U11(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → MARK(X)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(U42(X1, X2)) → MARK(X1)
MARK(U43(X)) → MARK(X)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U52(X1, X2)) → MARK(X1)
MARK(U53(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
A__AND(tt, X) → MARK(X)
MARK(U72(X)) → MARK(X)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
A__ISPAL(V) → A__U71(a__isPalListKind(V), V)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(38) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(39) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U11(X1, X2)) → MARK(X1)
MARK(U12(X)) → MARK(X)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → MARK(X)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(U42(X1, X2)) → MARK(X1)
MARK(U43(X)) → MARK(X)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U52(X1, X2)) → MARK(X1)
MARK(U53(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
MARK(U72(X)) → MARK(X)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
A__AND(tt, X) → MARK(X)
MARK(and(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(40) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U11(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x1)
A__AND(x0, x1, x2)  =  A__AND(x2)

Tags:
MARK has argument tags [2,0] and root tag 0
A__AND has argument tags [3,7,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(A__AND(x1, x2)) = 0   
POL(MARK(x1)) = 0   
POL(U11(x1, x2)) = 1 + x1   
POL(U12(x1)) = x1   
POL(U21(x1, x2, x3)) = 1 + x2   
POL(U22(x1, x2)) = x1   
POL(U23(x1)) = x1   
POL(U31(x1, x2)) = x1   
POL(U32(x1)) = x1   
POL(U41(x1, x2, x3)) = x1 + x2   
POL(U42(x1, x2)) = x1   
POL(U43(x1)) = x1   
POL(U51(x1, x2, x3)) = x1   
POL(U52(x1, x2)) = x1   
POL(U53(x1)) = x1   
POL(U61(x1, x2)) = x1 + x2   
POL(U62(x1)) = x1   
POL(U71(x1, x2)) = 1   
POL(U72(x1)) = x1   
POL(__(x1, x2)) = 0   
POL(a) = 1   
POL(a__U11(x1, x2)) = x1 + x2   
POL(a__U12(x1)) = 1   
POL(a__U21(x1, x2, x3)) = x3   
POL(a__U22(x1, x2)) = 0   
POL(a__U23(x1)) = 1 + x1   
POL(a__U31(x1, x2)) = 1 + x2   
POL(a__U32(x1)) = 1 + x1   
POL(a__U41(x1, x2, x3)) = 1 + x1   
POL(a__U42(x1, x2)) = 0   
POL(a__U43(x1)) = 0   
POL(a__U51(x1, x2, x3)) = x1 + x2   
POL(a__U52(x1, x2)) = 0   
POL(a__U53(x1)) = 0   
POL(a__U61(x1, x2)) = 1 + x1   
POL(a__U62(x1)) = 1   
POL(a__U71(x1, x2)) = 0   
POL(a__U72(x1)) = 1 + x1   
POL(a____(x1, x2)) = x1   
POL(a__and(x1, x2)) = x2   
POL(a__isList(x1)) = 0   
POL(a__isNeList(x1)) = 0   
POL(a__isNePal(x1)) = x1   
POL(a__isPal(x1)) = 0   
POL(a__isPalListKind(x1)) = x1   
POL(a__isQid(x1)) = 0   
POL(and(x1, x2)) = x1 + x2   
POL(e) = 1   
POL(i) = 1   
POL(isList(x1)) = 1 + x1   
POL(isNeList(x1)) = 1   
POL(isNePal(x1)) = 1   
POL(isPal(x1)) = 1 + x1   
POL(isPalListKind(x1)) = 1   
POL(isQid(x1)) = 0   
POL(mark(x1)) = 1   
POL(nil) = 0   
POL(o) = 0   
POL(tt) = 0   
POL(u) = 0   

The following usable rules [FROCOS05] were oriented: none

(41) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U12(X)) → MARK(X)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → MARK(X)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(U42(X1, X2)) → MARK(X1)
MARK(U43(X)) → MARK(X)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U52(X1, X2)) → MARK(X1)
MARK(U53(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
MARK(U72(X)) → MARK(X)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
A__AND(tt, X) → MARK(X)
MARK(and(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(42) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U22(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x0, x1)
A__AND(x0, x1, x2)  =  A__AND(x0, x2)

Tags:
MARK has argument tags [1,2] and root tag 0
A__AND has argument tags [0,0,2] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(A__AND(x1, x2)) = x1 + x2   
POL(MARK(x1)) = 0   
POL(U11(x1, x2)) = x2   
POL(U12(x1)) = x1   
POL(U21(x1, x2, x3)) = 1 + x2 + x3   
POL(U22(x1, x2)) = 1 + x1 + x2   
POL(U23(x1)) = x1   
POL(U31(x1, x2)) = x1 + x2   
POL(U32(x1)) = x1   
POL(U41(x1, x2, x3)) = x1 + x2 + x3   
POL(U42(x1, x2)) = x1 + x2   
POL(U43(x1)) = x1   
POL(U51(x1, x2, x3)) = x1 + x2 + x3   
POL(U52(x1, x2)) = x1 + x2   
POL(U53(x1)) = x1   
POL(U61(x1, x2)) = x1   
POL(U62(x1)) = x1   
POL(U71(x1, x2)) = x2   
POL(U72(x1)) = x1   
POL(__(x1, x2)) = 1 + x1 + x2   
POL(a) = 0   
POL(a__U11(x1, x2)) = x2   
POL(a__U12(x1)) = x1   
POL(a__U21(x1, x2, x3)) = 1 + x2 + x3   
POL(a__U22(x1, x2)) = 1 + x1 + x2   
POL(a__U23(x1)) = x1   
POL(a__U31(x1, x2)) = x1 + x2   
POL(a__U32(x1)) = x1   
POL(a__U41(x1, x2, x3)) = x1 + x2 + x3   
POL(a__U42(x1, x2)) = x1 + x2   
POL(a__U43(x1)) = x1   
POL(a__U51(x1, x2, x3)) = x1 + x2 + x3   
POL(a__U52(x1, x2)) = x1 + x2   
POL(a__U53(x1)) = x1   
POL(a__U61(x1, x2)) = x1   
POL(a__U62(x1)) = x1   
POL(a__U71(x1, x2)) = x2   
POL(a__U72(x1)) = x1   
POL(a____(x1, x2)) = 1 + x1 + x2   
POL(a__and(x1, x2)) = x1 + x2   
POL(a__isList(x1)) = x1   
POL(a__isNeList(x1)) = x1   
POL(a__isNePal(x1)) = x1   
POL(a__isPal(x1)) = x1   
POL(a__isPalListKind(x1)) = 0   
POL(a__isQid(x1)) = 0   
POL(and(x1, x2)) = x1 + x2   
POL(e) = 1   
POL(i) = 1   
POL(isList(x1)) = x1   
POL(isNeList(x1)) = x1   
POL(isNePal(x1)) = x1   
POL(isPal(x1)) = x1   
POL(isPalListKind(x1)) = 0   
POL(isQid(x1)) = 0   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(o) = 1   
POL(tt) = 0   
POL(u) = 0   

The following usable rules [FROCOS05] were oriented:

a____(X, nil) → mark(X)
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(nil, X) → mark(X)
mark(isNePal(X)) → a__isNePal(X)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__and(tt, X) → mark(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a__U11(tt, V) → a__U12(a__isNeList(V))
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U71(tt, V) → a__U72(a__isNePal(V))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__U11(X1, X2) → U11(X1, X2)
a__U12(tt) → tt
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(X) → isPalListKind(X)
a__U31(tt, V) → a__U32(a__isQid(V))
a__U31(X1, X2) → U31(X1, X2)
a____(X1, X2) → __(X1, X2)
a__isNePal(X) → isNePal(X)
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
a__isQid(X) → isQid(X)
a__and(X1, X2) → and(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(nil) → tt
a__isList(X) → isList(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U23(tt) → tt
a__U23(X) → U23(X)
a__U43(tt) → tt
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(tt) → tt
a__U53(X) → U53(X)
a__U32(tt) → tt
a__U32(X) → U32(X)
a__U61(tt, V) → a__U62(a__isQid(V))
a__U61(X1, X2) → U61(X1, X2)
a__U62(tt) → tt
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(tt) → tt
a__U72(X) → U72(X)
a__isPal(nil) → tt
a__isPal(X) → isPal(X)

(43) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U12(X)) → MARK(X)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → MARK(X)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(U42(X1, X2)) → MARK(X1)
MARK(U43(X)) → MARK(X)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U52(X1, X2)) → MARK(X1)
MARK(U53(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
MARK(U72(X)) → MARK(X)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
A__AND(tt, X) → MARK(X)
MARK(and(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(44) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U61(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x0, x1)
A__AND(x0, x1, x2)  =  A__AND(x0, x1, x2)

Tags:
MARK has argument tags [4,3] and root tag 0
A__AND has argument tags [4,3,3] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(A__AND(x1, x2)) = 0   
POL(MARK(x1)) = 0   
POL(U11(x1, x2)) = 0   
POL(U12(x1)) = x1   
POL(U21(x1, x2, x3)) = x1   
POL(U22(x1, x2)) = 0   
POL(U23(x1)) = x1   
POL(U31(x1, x2)) = x1   
POL(U32(x1)) = x1   
POL(U41(x1, x2, x3)) = x1   
POL(U42(x1, x2)) = x1   
POL(U43(x1)) = x1   
POL(U51(x1, x2, x3)) = x1   
POL(U52(x1, x2)) = x1   
POL(U53(x1)) = x1   
POL(U61(x1, x2)) = 1 + x1   
POL(U62(x1)) = x1   
POL(U71(x1, x2)) = 1 + x2   
POL(U72(x1)) = x1   
POL(__(x1, x2)) = 1 + x1 + x2   
POL(a) = 0   
POL(a__U11(x1, x2)) = 0   
POL(a__U12(x1)) = x1   
POL(a__U21(x1, x2, x3)) = x1   
POL(a__U22(x1, x2)) = 0   
POL(a__U23(x1)) = x1   
POL(a__U31(x1, x2)) = x1   
POL(a__U32(x1)) = x1   
POL(a__U41(x1, x2, x3)) = x1   
POL(a__U42(x1, x2)) = x1   
POL(a__U43(x1)) = x1   
POL(a__U51(x1, x2, x3)) = x1   
POL(a__U52(x1, x2)) = x1   
POL(a__U53(x1)) = x1   
POL(a__U61(x1, x2)) = 1 + x1   
POL(a__U62(x1)) = x1   
POL(a__U71(x1, x2)) = 1 + x2   
POL(a__U72(x1)) = x1   
POL(a____(x1, x2)) = 1 + x1 + x2   
POL(a__and(x1, x2)) = x1 + x2   
POL(a__isList(x1)) = 0   
POL(a__isNeList(x1)) = 0   
POL(a__isNePal(x1)) = 1 + x1   
POL(a__isPal(x1)) = 1 + x1   
POL(a__isPalListKind(x1)) = 0   
POL(a__isQid(x1)) = 0   
POL(and(x1, x2)) = x1 + x2   
POL(e) = 0   
POL(i) = 0   
POL(isList(x1)) = 0   
POL(isNeList(x1)) = 0   
POL(isNePal(x1)) = 1 + x1   
POL(isPal(x1)) = 1 + x1   
POL(isPalListKind(x1)) = 0   
POL(isQid(x1)) = 0   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(o) = 1   
POL(tt) = 0   
POL(u) = 0   

The following usable rules [FROCOS05] were oriented: none

(45) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U12(X)) → MARK(X)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → MARK(X)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(U42(X1, X2)) → MARK(X1)
MARK(U43(X)) → MARK(X)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U52(X1, X2)) → MARK(X1)
MARK(U53(X)) → MARK(X)
MARK(U62(X)) → MARK(X)
MARK(U72(X)) → MARK(X)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
A__AND(tt, X) → MARK(X)
MARK(and(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(46) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U41(X1, X2, X3)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x0, x1)
A__AND(x0, x1, x2)  =  A__AND(x2)

Tags:
MARK has argument tags [0,0] and root tag 0
A__AND has argument tags [7,1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(A__AND(x1, x2)) = x2   
POL(MARK(x1)) = 0   
POL(U11(x1, x2)) = x1   
POL(U12(x1)) = x1   
POL(U21(x1, x2, x3)) = x2   
POL(U22(x1, x2)) = x2   
POL(U23(x1)) = x1   
POL(U31(x1, x2)) = x1   
POL(U32(x1)) = x1   
POL(U41(x1, x2, x3)) = 1 + x1 + x2   
POL(U42(x1, x2)) = x1   
POL(U43(x1)) = x1   
POL(U51(x1, x2, x3)) = x1   
POL(U52(x1, x2)) = x1 + x2   
POL(U53(x1)) = x1   
POL(U61(x1, x2)) = x2   
POL(U62(x1)) = x1   
POL(U71(x1, x2)) = x1 + x2   
POL(U72(x1)) = x1   
POL(__(x1, x2)) = 1 + x2   
POL(a) = 0   
POL(a__U11(x1, x2)) = 1   
POL(a__U12(x1)) = 1 + x1   
POL(a__U21(x1, x2, x3)) = 1 + x3   
POL(a__U22(x1, x2)) = 0   
POL(a__U23(x1)) = 1   
POL(a__U31(x1, x2)) = x2   
POL(a__U32(x1)) = 0   
POL(a__U41(x1, x2, x3)) = x3   
POL(a__U42(x1, x2)) = x2   
POL(a__U43(x1)) = 0   
POL(a__U51(x1, x2, x3)) = 1 + x2   
POL(a__U52(x1, x2)) = 0   
POL(a__U53(x1)) = 0   
POL(a__U61(x1, x2)) = x1   
POL(a__U62(x1)) = 1 + x1   
POL(a__U71(x1, x2)) = 0   
POL(a__U72(x1)) = x1   
POL(a____(x1, x2)) = 0   
POL(a__and(x1, x2)) = 1   
POL(a__isList(x1)) = 0   
POL(a__isNeList(x1)) = x1   
POL(a__isNePal(x1)) = x1   
POL(a__isPal(x1)) = 1 + x1   
POL(a__isPalListKind(x1)) = 0   
POL(a__isQid(x1)) = 1   
POL(and(x1, x2)) = x1 + x2   
POL(e) = 0   
POL(i) = 0   
POL(isList(x1)) = 0   
POL(isNeList(x1)) = 1   
POL(isNePal(x1)) = 1   
POL(isPal(x1)) = 0   
POL(isPalListKind(x1)) = 1   
POL(isQid(x1)) = 0   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(o) = 0   
POL(tt) = 0   
POL(u) = 0   

The following usable rules [FROCOS05] were oriented: none

(47) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U12(X)) → MARK(X)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → MARK(X)
MARK(U42(X1, X2)) → MARK(X1)
MARK(U43(X)) → MARK(X)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U52(X1, X2)) → MARK(X1)
MARK(U53(X)) → MARK(X)
MARK(U62(X)) → MARK(X)
MARK(U72(X)) → MARK(X)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
A__AND(tt, X) → MARK(X)
MARK(and(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(48) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U52(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x0, x1)
A__AND(x0, x1, x2)  =  A__AND(x2)

Tags:
MARK has argument tags [1,0] and root tag 0
A__AND has argument tags [6,5,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(A__AND(x1, x2)) = 0   
POL(MARK(x1)) = x1   
POL(U11(x1, x2)) = x1 + x2   
POL(U12(x1)) = x1   
POL(U21(x1, x2, x3)) = 0   
POL(U22(x1, x2)) = 1 + x2   
POL(U23(x1)) = x1   
POL(U31(x1, x2)) = x1 + x2   
POL(U32(x1)) = x1   
POL(U41(x1, x2, x3)) = x1 + x3   
POL(U42(x1, x2)) = x1   
POL(U43(x1)) = x1   
POL(U51(x1, x2, x3)) = x1 + x3   
POL(U52(x1, x2)) = 1 + x1 + x2   
POL(U53(x1)) = x1   
POL(U61(x1, x2)) = 1 + x1 + x2   
POL(U62(x1)) = x1   
POL(U71(x1, x2)) = 0   
POL(U72(x1)) = x1   
POL(__(x1, x2)) = 1   
POL(a) = 0   
POL(a__U11(x1, x2)) = 0   
POL(a__U12(x1)) = 0   
POL(a__U21(x1, x2, x3)) = 1 + x3   
POL(a__U22(x1, x2)) = 0   
POL(a__U23(x1)) = x1   
POL(a__U31(x1, x2)) = x2   
POL(a__U32(x1)) = 0   
POL(a__U41(x1, x2, x3)) = x2   
POL(a__U42(x1, x2)) = x1 + x2   
POL(a__U43(x1)) = 0   
POL(a__U51(x1, x2, x3)) = x1   
POL(a__U52(x1, x2)) = x2   
POL(a__U53(x1)) = 1   
POL(a__U61(x1, x2)) = 0   
POL(a__U62(x1)) = 1   
POL(a__U71(x1, x2)) = x2   
POL(a__U72(x1)) = 0   
POL(a____(x1, x2)) = 0   
POL(a__and(x1, x2)) = 1 + x1   
POL(a__isList(x1)) = 1   
POL(a__isNeList(x1)) = 0   
POL(a__isNePal(x1)) = 0   
POL(a__isPal(x1)) = x1   
POL(a__isPalListKind(x1)) = x1   
POL(a__isQid(x1)) = 0   
POL(and(x1, x2)) = x1 + x2   
POL(e) = 1   
POL(i) = 1   
POL(isList(x1)) = x1   
POL(isNeList(x1)) = 1   
POL(isNePal(x1)) = 1   
POL(isPal(x1)) = 0   
POL(isPalListKind(x1)) = 0   
POL(isQid(x1)) = x1   
POL(mark(x1)) = 0   
POL(nil) = 0   
POL(o) = 1   
POL(tt) = 0   
POL(u) = 1   

The following usable rules [FROCOS05] were oriented: none

(49) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U12(X)) → MARK(X)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → MARK(X)
MARK(U42(X1, X2)) → MARK(X1)
MARK(U43(X)) → MARK(X)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U53(X)) → MARK(X)
MARK(U62(X)) → MARK(X)
MARK(U72(X)) → MARK(X)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
A__AND(tt, X) → MARK(X)
MARK(and(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(50) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U43(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x1)
A__AND(x0, x1, x2)  =  A__AND(x2)

Tags:
MARK has argument tags [5,0] and root tag 0
A__AND has argument tags [0,0,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(A__AND(x1, x2)) = 1   
POL(MARK(x1)) = 1   
POL(U11(x1, x2)) = 0   
POL(U12(x1)) = x1   
POL(U21(x1, x2, x3)) = 0   
POL(U22(x1, x2)) = 1   
POL(U23(x1)) = x1   
POL(U31(x1, x2)) = x1   
POL(U32(x1)) = x1   
POL(U41(x1, x2, x3)) = x1   
POL(U42(x1, x2)) = x1   
POL(U43(x1)) = 1 + x1   
POL(U51(x1, x2, x3)) = x1   
POL(U52(x1, x2)) = x1   
POL(U53(x1)) = x1   
POL(U61(x1, x2)) = x1   
POL(U62(x1)) = x1   
POL(U71(x1, x2)) = 0   
POL(U72(x1)) = x1   
POL(__(x1, x2)) = 0   
POL(a) = 0   
POL(a__U11(x1, x2)) = 0   
POL(a__U12(x1)) = 0   
POL(a__U21(x1, x2, x3)) = 1 + x1 + x2 + x3   
POL(a__U22(x1, x2)) = x1   
POL(a__U23(x1)) = x1   
POL(a__U31(x1, x2)) = 1 + x2   
POL(a__U32(x1)) = 0   
POL(a__U41(x1, x2, x3)) = 1 + x1 + x2 + x3   
POL(a__U42(x1, x2)) = 1 + x1   
POL(a__U43(x1)) = 1   
POL(a__U51(x1, x2, x3)) = 1 + x2 + x3   
POL(a__U52(x1, x2)) = 1 + x1 + x2   
POL(a__U53(x1)) = 0   
POL(a__U61(x1, x2)) = x2   
POL(a__U62(x1)) = 1   
POL(a__U71(x1, x2)) = 1 + x1   
POL(a__U72(x1)) = 1 + x1   
POL(a____(x1, x2)) = x1 + x2   
POL(a__and(x1, x2)) = 1 + x1   
POL(a__isList(x1)) = 0   
POL(a__isNeList(x1)) = x1   
POL(a__isNePal(x1)) = x1   
POL(a__isPal(x1)) = 0   
POL(a__isPalListKind(x1)) = 0   
POL(a__isQid(x1)) = 0   
POL(and(x1, x2)) = x1 + x2   
POL(e) = 0   
POL(i) = 0   
POL(isList(x1)) = 1 + x1   
POL(isNeList(x1)) = 1   
POL(isNePal(x1)) = 1   
POL(isPal(x1)) = 1 + x1   
POL(isPalListKind(x1)) = 1   
POL(isQid(x1)) = 1 + x1   
POL(mark(x1)) = 1 + x1   
POL(nil) = 0   
POL(o) = 0   
POL(tt) = 1   
POL(u) = 0   

The following usable rules [FROCOS05] were oriented: none

(51) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U12(X)) → MARK(X)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → MARK(X)
MARK(U42(X1, X2)) → MARK(X1)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U53(X)) → MARK(X)
MARK(U62(X)) → MARK(X)
MARK(U72(X)) → MARK(X)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
A__AND(tt, X) → MARK(X)
MARK(and(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(52) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U12(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x1)
A__AND(x0, x1, x2)  =  A__AND(x0, x2)

Tags:
MARK has argument tags [1,4] and root tag 0
A__AND has argument tags [4,6,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(A__AND(x1, x2)) = x2   
POL(MARK(x1)) = 1   
POL(U11(x1, x2)) = 1 + x1 + x2   
POL(U12(x1)) = 1 + x1   
POL(U21(x1, x2, x3)) = x1 + x2 + x3   
POL(U22(x1, x2)) = 1   
POL(U23(x1)) = x1   
POL(U31(x1, x2)) = x1 + x2   
POL(U32(x1)) = x1   
POL(U41(x1, x2, x3)) = 1 + x1 + x2   
POL(U42(x1, x2)) = x1 + x2   
POL(U43(x1)) = 1   
POL(U51(x1, x2, x3)) = x1 + x2 + x3   
POL(U52(x1, x2)) = x1 + x2   
POL(U53(x1)) = x1   
POL(U61(x1, x2)) = 1 + x1 + x2   
POL(U62(x1)) = x1   
POL(U71(x1, x2)) = x1 + x2   
POL(U72(x1)) = x1   
POL(__(x1, x2)) = 0   
POL(a) = 0   
POL(a__U11(x1, x2)) = 0   
POL(a__U12(x1)) = x1   
POL(a__U21(x1, x2, x3)) = 0   
POL(a__U22(x1, x2)) = x2   
POL(a__U23(x1)) = 1 + x1   
POL(a__U31(x1, x2)) = 0   
POL(a__U32(x1)) = 1 + x1   
POL(a__U41(x1, x2, x3)) = x3   
POL(a__U42(x1, x2)) = x1   
POL(a__U43(x1)) = 0   
POL(a__U51(x1, x2, x3)) = 1 + x1   
POL(a__U52(x1, x2)) = 1 + x1   
POL(a__U53(x1)) = 1 + x1   
POL(a__U61(x1, x2)) = 0   
POL(a__U62(x1)) = 1 + x1   
POL(a__U71(x1, x2)) = 0   
POL(a__U72(x1)) = 1 + x1   
POL(a____(x1, x2)) = 0   
POL(a__and(x1, x2)) = 0   
POL(a__isList(x1)) = 1 + x1   
POL(a__isNeList(x1)) = 1   
POL(a__isNePal(x1)) = 0   
POL(a__isPal(x1)) = x1   
POL(a__isPalListKind(x1)) = 0   
POL(a__isQid(x1)) = 0   
POL(and(x1, x2)) = x1 + x2   
POL(e) = 0   
POL(i) = 0   
POL(isList(x1)) = 1   
POL(isNeList(x1)) = 1 + x1   
POL(isNePal(x1)) = 1 + x1   
POL(isPal(x1)) = 1   
POL(isPalListKind(x1)) = 0   
POL(isQid(x1)) = 1 + x1   
POL(mark(x1)) = 1   
POL(nil) = 1   
POL(o) = 0   
POL(tt) = 0   
POL(u) = 1   

The following usable rules [FROCOS05] were oriented: none

(53) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → MARK(X)
MARK(U42(X1, X2)) → MARK(X1)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U53(X)) → MARK(X)
MARK(U62(X)) → MARK(X)
MARK(U72(X)) → MARK(X)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
A__AND(tt, X) → MARK(X)
MARK(and(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(54) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U42(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x0)
A__AND(x0, x1, x2)  =  A__AND(x0, x1, x2)

Tags:
MARK has argument tags [2,1] and root tag 1
A__AND has argument tags [2,2,2] and root tag 1

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(A__AND(x1, x2)) = x2   
POL(MARK(x1)) = x1   
POL(U11(x1, x2)) = 0   
POL(U12(x1)) = 0   
POL(U21(x1, x2, x3)) = 0   
POL(U22(x1, x2)) = 0   
POL(U23(x1)) = x1   
POL(U31(x1, x2)) = x1   
POL(U32(x1)) = x1   
POL(U41(x1, x2, x3)) = 1 + x2   
POL(U42(x1, x2)) = 1 + x1   
POL(U43(x1)) = 0   
POL(U51(x1, x2, x3)) = x1 + x2   
POL(U52(x1, x2)) = 0   
POL(U53(x1)) = x1   
POL(U61(x1, x2)) = 0   
POL(U62(x1)) = x1   
POL(U71(x1, x2)) = 0   
POL(U72(x1)) = x1   
POL(__(x1, x2)) = 1 + x1 + x2   
POL(a) = 0   
POL(a__U11(x1, x2)) = 0   
POL(a__U12(x1)) = 0   
POL(a__U21(x1, x2, x3)) = 0   
POL(a__U22(x1, x2)) = 0   
POL(a__U23(x1)) = x1   
POL(a__U31(x1, x2)) = x1   
POL(a__U32(x1)) = x1   
POL(a__U41(x1, x2, x3)) = 1 + x2   
POL(a__U42(x1, x2)) = 1 + x1   
POL(a__U43(x1)) = 0   
POL(a__U51(x1, x2, x3)) = x1 + x2   
POL(a__U52(x1, x2)) = 0   
POL(a__U53(x1)) = x1   
POL(a__U61(x1, x2)) = 0   
POL(a__U62(x1)) = x1   
POL(a__U71(x1, x2)) = 0   
POL(a__U72(x1)) = x1   
POL(a____(x1, x2)) = 1 + x1 + x2   
POL(a__and(x1, x2)) = x1 + x2   
POL(a__isList(x1)) = 0   
POL(a__isNeList(x1)) = x1   
POL(a__isNePal(x1)) = 0   
POL(a__isPal(x1)) = 0   
POL(a__isPalListKind(x1)) = 0   
POL(a__isQid(x1)) = 0   
POL(and(x1, x2)) = x1 + x2   
POL(e) = 0   
POL(i) = 0   
POL(isList(x1)) = 0   
POL(isNeList(x1)) = x1   
POL(isNePal(x1)) = 0   
POL(isPal(x1)) = 0   
POL(isPalListKind(x1)) = 0   
POL(isQid(x1)) = 0   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(o) = 0   
POL(tt) = 0   
POL(u) = 1   

The following usable rules [FROCOS05] were oriented: none

(55) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → MARK(X)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U53(X)) → MARK(X)
MARK(U62(X)) → MARK(X)
MARK(U72(X)) → MARK(X)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
A__AND(tt, X) → MARK(X)
MARK(and(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(56) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U32(X)) → MARK(X)
MARK(U53(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x1)
A__AND(x0, x1, x2)  =  A__AND(x0, x2)

Tags:
MARK has argument tags [4,4] and root tag 1
A__AND has argument tags [4,2,0] and root tag 1

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(A__AND(x1, x2)) = x2   
POL(MARK(x1)) = 1   
POL(U11(x1, x2)) = 1 + x1 + x2   
POL(U12(x1)) = 1 + x1   
POL(U21(x1, x2, x3)) = x2 + x3   
POL(U22(x1, x2)) = 1 + x1 + x2   
POL(U23(x1)) = x1   
POL(U31(x1, x2)) = x1 + x2   
POL(U32(x1)) = 1 + x1   
POL(U41(x1, x2, x3)) = 1 + x1 + x2 + x3   
POL(U42(x1, x2)) = 1 + x1 + x2   
POL(U43(x1)) = 1 + x1   
POL(U51(x1, x2, x3)) = x1 + x2 + x3   
POL(U52(x1, x2)) = 1 + x1 + x2   
POL(U53(x1)) = 1 + x1   
POL(U61(x1, x2)) = 1   
POL(U62(x1)) = x1   
POL(U71(x1, x2)) = 1 + x2   
POL(U72(x1)) = x1   
POL(__(x1, x2)) = 0   
POL(a) = 0   
POL(a__U11(x1, x2)) = 0   
POL(a__U12(x1)) = 0   
POL(a__U21(x1, x2, x3)) = 1   
POL(a__U22(x1, x2)) = 1 + x1   
POL(a__U23(x1)) = 0   
POL(a__U31(x1, x2)) = 0   
POL(a__U32(x1)) = 0   
POL(a__U41(x1, x2, x3)) = 0   
POL(a__U42(x1, x2)) = 0   
POL(a__U43(x1)) = 0   
POL(a__U51(x1, x2, x3)) = 0   
POL(a__U52(x1, x2)) = 0   
POL(a__U53(x1)) = 1   
POL(a__U61(x1, x2)) = 1 + x2   
POL(a__U62(x1)) = 1   
POL(a__U71(x1, x2)) = 1   
POL(a__U72(x1)) = 1   
POL(a____(x1, x2)) = 1 + x2   
POL(a__and(x1, x2)) = 1 + x1   
POL(a__isList(x1)) = 1   
POL(a__isNeList(x1)) = 0   
POL(a__isNePal(x1)) = 0   
POL(a__isPal(x1)) = 0   
POL(a__isPalListKind(x1)) = 1   
POL(a__isQid(x1)) = x1   
POL(and(x1, x2)) = x1 + x2   
POL(e) = 0   
POL(i) = 0   
POL(isList(x1)) = 0   
POL(isNeList(x1)) = x1   
POL(isNePal(x1)) = 1 + x1   
POL(isPal(x1)) = x1   
POL(isPalListKind(x1)) = 0   
POL(isQid(x1)) = 1   
POL(mark(x1)) = 0   
POL(nil) = 1   
POL(o) = 1   
POL(tt) = 0   
POL(u) = 0   

The following usable rules [FROCOS05] were oriented: none

(57) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U62(X)) → MARK(X)
MARK(U72(X)) → MARK(X)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
A__AND(tt, X) → MARK(X)
MARK(and(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(58) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U51(X1, X2, X3)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x1)
A__AND(x0, x1, x2)  =  A__AND(x0, x2)

Tags:
MARK has argument tags [5,4] and root tag 0
A__AND has argument tags [3,4,4] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(A__AND(x1, x2)) = 0   
POL(MARK(x1)) = 1   
POL(U11(x1, x2)) = x1 + x2   
POL(U12(x1)) = 1 + x1   
POL(U21(x1, x2, x3)) = 1 + x1 + x2 + x3   
POL(U22(x1, x2)) = 1 + x1 + x2   
POL(U23(x1)) = x1   
POL(U31(x1, x2)) = x1 + x2   
POL(U32(x1)) = x1   
POL(U41(x1, x2, x3)) = 1 + x2 + x3   
POL(U42(x1, x2)) = 1 + x1 + x2   
POL(U43(x1)) = 1 + x1   
POL(U51(x1, x2, x3)) = 1 + x1 + x2   
POL(U52(x1, x2)) = x1 + x2   
POL(U53(x1)) = 1 + x1   
POL(U61(x1, x2)) = x1 + x2   
POL(U62(x1)) = x1   
POL(U71(x1, x2)) = 1 + x1 + x2   
POL(U72(x1)) = x1   
POL(__(x1, x2)) = x1   
POL(a) = 0   
POL(a__U11(x1, x2)) = 1   
POL(a__U12(x1)) = 1   
POL(a__U21(x1, x2, x3)) = x1   
POL(a__U22(x1, x2)) = x1   
POL(a__U23(x1)) = 0   
POL(a__U31(x1, x2)) = 1   
POL(a__U32(x1)) = 0   
POL(a__U41(x1, x2, x3)) = 0   
POL(a__U42(x1, x2)) = x2   
POL(a__U43(x1)) = 0   
POL(a__U51(x1, x2, x3)) = x3   
POL(a__U52(x1, x2)) = 1 + x1   
POL(a__U53(x1)) = 0   
POL(a__U61(x1, x2)) = 1 + x2   
POL(a__U62(x1)) = 1   
POL(a__U71(x1, x2)) = 0   
POL(a__U72(x1)) = 1 + x1   
POL(a____(x1, x2)) = 1 + x2   
POL(a__and(x1, x2)) = 1 + x1   
POL(a__isList(x1)) = x1   
POL(a__isNeList(x1)) = 1   
POL(a__isNePal(x1)) = 0   
POL(a__isPal(x1)) = 0   
POL(a__isPalListKind(x1)) = 0   
POL(a__isQid(x1)) = 0   
POL(and(x1, x2)) = x1 + x2   
POL(e) = 0   
POL(i) = 0   
POL(isList(x1)) = x1   
POL(isNeList(x1)) = 1 + x1   
POL(isNePal(x1)) = 1 + x1   
POL(isPal(x1)) = 1 + x1   
POL(isPalListKind(x1)) = x1   
POL(isQid(x1)) = 1   
POL(mark(x1)) = 0   
POL(nil) = 1   
POL(o) = 0   
POL(tt) = 1   
POL(u) = 0   

The following usable rules [FROCOS05] were oriented: none

(59) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
MARK(U72(X)) → MARK(X)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
A__AND(tt, X) → MARK(X)
MARK(and(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(60) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(and(X1, X2)) → A__AND(mark(X1), X2)
A__AND(tt, X) → MARK(X)
MARK(and(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x0)
A__AND(x0, x1, x2)  =  A__AND(x0)

Tags:
MARK has argument tags [6,0] and root tag 0
A__AND has argument tags [6,2,0] and root tag 1

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(A__AND(x1, x2)) = 1 + x2   
POL(MARK(x1)) = 1 + x1   
POL(U11(x1, x2)) = 1 + x1   
POL(U12(x1)) = 1 + x1   
POL(U21(x1, x2, x3)) = 1 + x2   
POL(U22(x1, x2)) = 1 + x1 + x2   
POL(U23(x1)) = x1   
POL(U31(x1, x2)) = x1   
POL(U32(x1)) = 1   
POL(U41(x1, x2, x3)) = x1 + x2   
POL(U42(x1, x2)) = 1 + x1 + x2   
POL(U43(x1)) = 0   
POL(U51(x1, x2, x3)) = 1   
POL(U52(x1, x2)) = 1 + x1 + x2   
POL(U53(x1)) = 1   
POL(U61(x1, x2)) = 0   
POL(U62(x1)) = x1   
POL(U71(x1, x2)) = 1 + x1 + x2   
POL(U72(x1)) = x1   
POL(__(x1, x2)) = 1   
POL(a) = 1   
POL(a__U11(x1, x2)) = x2   
POL(a__U12(x1)) = 0   
POL(a__U21(x1, x2, x3)) = x3   
POL(a__U22(x1, x2)) = 0   
POL(a__U23(x1)) = 0   
POL(a__U31(x1, x2)) = 0   
POL(a__U32(x1)) = x1   
POL(a__U41(x1, x2, x3)) = 1   
POL(a__U42(x1, x2)) = 0   
POL(a__U43(x1)) = 0   
POL(a__U51(x1, x2, x3)) = x3   
POL(a__U52(x1, x2)) = x1   
POL(a__U53(x1)) = x1   
POL(a__U61(x1, x2)) = 1 + x1 + x2   
POL(a__U62(x1)) = 0   
POL(a__U71(x1, x2)) = 1 + x1   
POL(a__U72(x1)) = 0   
POL(a____(x1, x2)) = 0   
POL(a__and(x1, x2)) = 1 + x2   
POL(a__isList(x1)) = 0   
POL(a__isNeList(x1)) = x1   
POL(a__isNePal(x1)) = 0   
POL(a__isPal(x1)) = 0   
POL(a__isPalListKind(x1)) = 1   
POL(a__isQid(x1)) = 0   
POL(and(x1, x2)) = 1 + x1 + x2   
POL(e) = 1   
POL(i) = 1   
POL(isList(x1)) = 1 + x1   
POL(isNeList(x1)) = 1 + x1   
POL(isNePal(x1)) = x1   
POL(isPal(x1)) = 1 + x1   
POL(isPalListKind(x1)) = 1 + x1   
POL(isQid(x1)) = 1 + x1   
POL(mark(x1)) = 0   
POL(nil) = 0   
POL(o) = 1   
POL(tt) = 0   
POL(u) = 1   

The following usable rules [FROCOS05] were oriented: none

(61) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
MARK(U72(X)) → MARK(X)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(62) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U31(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x0, x1)

Tags:
MARK has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(MARK(x1)) = 0   
POL(U23(x1)) = x1   
POL(U31(x1, x2)) = 1 + x1   
POL(U62(x1)) = x1   
POL(U72(x1)) = x1   

The following usable rules [FROCOS05] were oriented: none

(63) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U23(X)) → MARK(X)
MARK(U62(X)) → MARK(X)
MARK(U72(X)) → MARK(X)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(64) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U72(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x0, x1)

Tags:
MARK has argument tags [0,0] and root tag 0

Comparison: MS
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(MARK(x1)) = 1   
POL(U23(x1)) = x1   
POL(U62(x1)) = x1   
POL(U72(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(65) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U23(X)) → MARK(X)
MARK(U62(X)) → MARK(X)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(66) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U62(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x1)

Tags:
MARK has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(MARK(x1)) = 1   
POL(U23(x1)) = x1   
POL(U62(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(67) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U23(X)) → MARK(X)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(68) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U23(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x1)

Tags:
MARK has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(MARK(x1)) = 1   
POL(U23(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(69) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(70) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(71) TRUE

(72) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A____(__(X, Y), Z) → A____(mark(X), a____(mark(Y), mark(Z)))

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(73) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A____(__(X, Y), Z) → A____(mark(X), a____(mark(Y), mark(Z)))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
A____(x0, x1, x2)  =  A____(x0)

Tags:
A____ has argument tags [0,1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(A____(x1, x2)) = 1 + x1   
POL(U11(x1, x2)) = 0   
POL(U12(x1)) = 0   
POL(U21(x1, x2, x3)) = 0   
POL(U22(x1, x2)) = 0   
POL(U23(x1)) = 0   
POL(U31(x1, x2)) = 0   
POL(U32(x1)) = 0   
POL(U41(x1, x2, x3)) = 0   
POL(U42(x1, x2)) = 0   
POL(U43(x1)) = 0   
POL(U51(x1, x2, x3)) = 0   
POL(U52(x1, x2)) = 0   
POL(U53(x1)) = 0   
POL(U61(x1, x2)) = x1   
POL(U62(x1)) = 0   
POL(U71(x1, x2)) = 0   
POL(U72(x1)) = 0   
POL(__(x1, x2)) = 1 + x1 + x2   
POL(a) = 1   
POL(a__U11(x1, x2)) = 0   
POL(a__U12(x1)) = 0   
POL(a__U21(x1, x2, x3)) = 0   
POL(a__U22(x1, x2)) = 0   
POL(a__U23(x1)) = 0   
POL(a__U31(x1, x2)) = 0   
POL(a__U32(x1)) = 0   
POL(a__U41(x1, x2, x3)) = 0   
POL(a__U42(x1, x2)) = 0   
POL(a__U43(x1)) = 0   
POL(a__U51(x1, x2, x3)) = 0   
POL(a__U52(x1, x2)) = 0   
POL(a__U53(x1)) = 0   
POL(a__U61(x1, x2)) = x1   
POL(a__U62(x1)) = 0   
POL(a__U71(x1, x2)) = 0   
POL(a__U72(x1)) = 0   
POL(a____(x1, x2)) = 1 + x1 + x2   
POL(a__and(x1, x2)) = x2   
POL(a__isList(x1)) = 0   
POL(a__isNeList(x1)) = x1   
POL(a__isNePal(x1)) = 0   
POL(a__isPal(x1)) = x1   
POL(a__isPalListKind(x1)) = 0   
POL(a__isQid(x1)) = 1 + x1   
POL(and(x1, x2)) = x2   
POL(e) = 0   
POL(i) = 0   
POL(isList(x1)) = 0   
POL(isNeList(x1)) = x1   
POL(isNePal(x1)) = 0   
POL(isPal(x1)) = x1   
POL(isPalListKind(x1)) = 0   
POL(isQid(x1)) = 1 + x1   
POL(mark(x1)) = x1   
POL(nil) = 0   
POL(o) = 0   
POL(tt) = 0   
POL(u) = 1   

The following usable rules [FROCOS05] were oriented:

a____(X, nil) → mark(X)
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(nil, X) → mark(X)
mark(isNePal(X)) → a__isNePal(X)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__and(tt, X) → mark(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U71(tt, V) → a__U72(a__isNePal(V))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__U11(X1, X2) → U11(X1, X2)
a__U12(tt) → tt
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(X) → isPalListKind(X)
a__U31(tt, V) → a__U32(a__isQid(V))
a__U31(X1, X2) → U31(X1, X2)
a__isNePal(X) → isNePal(X)
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
a__isQid(X) → isQid(X)
a__and(X1, X2) → and(X1, X2)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(nil) → tt
a__isList(X) → isList(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U23(tt) → tt
a__U23(X) → U23(X)
a__U43(tt) → tt
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(tt) → tt
a__U53(X) → U53(X)
a__U32(tt) → tt
a__U32(X) → U32(X)
a__U61(tt, V) → a__U62(a__isQid(V))
a__U61(X1, X2) → U61(X1, X2)
a__U62(tt) → tt
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(tt) → tt
a__U72(X) → U72(X)
a__isPal(nil) → tt
a__isPal(X) → isPal(X)

(74) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(75) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(76) TRUE