(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A____(__(X, Y), Z) → A____(mark(X), a____(mark(Y), mark(Z)))
A____(__(X, Y), Z) → MARK(X)
A____(__(X, Y), Z) → A____(mark(Y), mark(Z))
A____(__(X, Y), Z) → MARK(Y)
A____(__(X, Y), Z) → MARK(Z)
A____(X, nil) → MARK(X)
A____(nil, X) → MARK(X)
A__U11(tt, V) → A__U12(a__isNeList(V))
A__U11(tt, V) → A__ISNELIST(V)
A__U21(tt, V1, V2) → A__U22(a__isList(V1), V2)
A__U21(tt, V1, V2) → A__ISLIST(V1)
A__U22(tt, V2) → A__U23(a__isList(V2))
A__U22(tt, V2) → A__ISLIST(V2)
A__U31(tt, V) → A__U32(a__isQid(V))
A__U31(tt, V) → A__ISQID(V)
A__U41(tt, V1, V2) → A__U42(a__isList(V1), V2)
A__U41(tt, V1, V2) → A__ISLIST(V1)
A__U42(tt, V2) → A__U43(a__isNeList(V2))
A__U42(tt, V2) → A__ISNELIST(V2)
A__U51(tt, V1, V2) → A__U52(a__isNeList(V1), V2)
A__U51(tt, V1, V2) → A__ISNELIST(V1)
A__U52(tt, V2) → A__U53(a__isList(V2))
A__U52(tt, V2) → A__ISLIST(V2)
A__U61(tt, V) → A__U62(a__isQid(V))
A__U61(tt, V) → A__ISQID(V)
A__U71(tt, V) → A__U72(a__isNePal(V))
A__U71(tt, V) → A__ISNEPAL(V)
A__AND(tt, X) → MARK(X)
A__ISLIST(V) → A__U11(a__isPalListKind(V), V)
A__ISLIST(V) → A__ISPALLISTKIND(V)
A__ISLIST(__(V1, V2)) → A__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
A__ISLIST(__(V1, V2)) → A__AND(a__isPalListKind(V1), isPalListKind(V2))
A__ISLIST(__(V1, V2)) → A__ISPALLISTKIND(V1)
A__ISNELIST(V) → A__U31(a__isPalListKind(V), V)
A__ISNELIST(V) → A__ISPALLISTKIND(V)
A__ISNELIST(__(V1, V2)) → A__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
A__ISNELIST(__(V1, V2)) → A__AND(a__isPalListKind(V1), isPalListKind(V2))
A__ISNELIST(__(V1, V2)) → A__ISPALLISTKIND(V1)
A__ISNELIST(__(V1, V2)) → A__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
A__ISNEPAL(V) → A__U61(a__isPalListKind(V), V)
A__ISNEPAL(V) → A__ISPALLISTKIND(V)
A__ISNEPAL(__(I, __(P, I))) → A__AND(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
A__ISNEPAL(__(I, __(P, I))) → A__AND(a__isQid(I), isPalListKind(I))
A__ISNEPAL(__(I, __(P, I))) → A__ISQID(I)
A__ISPAL(V) → A__U71(a__isPalListKind(V), V)
A__ISPAL(V) → A__ISPALLISTKIND(V)
A__ISPALLISTKIND(__(V1, V2)) → A__AND(a__isPalListKind(V1), isPalListKind(V2))
A__ISPALLISTKIND(__(V1, V2)) → A__ISPALLISTKIND(V1)
MARK(__(X1, X2)) → A____(mark(X1), mark(X2))
MARK(__(X1, X2)) → MARK(X1)
MARK(__(X1, X2)) → MARK(X2)
MARK(U11(X1, X2)) → A__U11(mark(X1), X2)
MARK(U11(X1, X2)) → MARK(X1)
MARK(U12(X)) → A__U12(mark(X))
MARK(U12(X)) → MARK(X)
MARK(isNeList(X)) → A__ISNELIST(X)
MARK(U21(X1, X2, X3)) → A__U21(mark(X1), X2, X3)
MARK(U21(X1, X2, X3)) → MARK(X1)
MARK(U22(X1, X2)) → A__U22(mark(X1), X2)
MARK(U22(X1, X2)) → MARK(X1)
MARK(isList(X)) → A__ISLIST(X)
MARK(U23(X)) → A__U23(mark(X))
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → A__U31(mark(X1), X2)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → A__U32(mark(X))
MARK(U32(X)) → MARK(X)
MARK(isQid(X)) → A__ISQID(X)
MARK(U41(X1, X2, X3)) → A__U41(mark(X1), X2, X3)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(U42(X1, X2)) → A__U42(mark(X1), X2)
MARK(U42(X1, X2)) → MARK(X1)
MARK(U43(X)) → A__U43(mark(X))
MARK(U43(X)) → MARK(X)
MARK(U51(X1, X2, X3)) → A__U51(mark(X1), X2, X3)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U52(X1, X2)) → A__U52(mark(X1), X2)
MARK(U52(X1, X2)) → MARK(X1)
MARK(U53(X)) → A__U53(mark(X))
MARK(U53(X)) → MARK(X)
MARK(U61(X1, X2)) → A__U61(mark(X1), X2)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → A__U62(mark(X))
MARK(U62(X)) → MARK(X)
MARK(U71(X1, X2)) → A__U71(mark(X1), X2)
MARK(U71(X1, X2)) → MARK(X1)
MARK(U72(X)) → A__U72(mark(X))
MARK(U72(X)) → MARK(X)
MARK(isNePal(X)) → A__ISNEPAL(X)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isPalListKind(X)) → A__ISPALLISTKIND(X)
MARK(isPal(X)) → A__ISPAL(X)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 22 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A____(__(X, Y), Z) → MARK(X)
MARK(__(X1, X2)) → A____(mark(X1), mark(X2))
A____(__(X, Y), Z) → A____(mark(X), a____(mark(Y), mark(Z)))
A____(__(X, Y), Z) → A____(mark(Y), mark(Z))
A____(__(X, Y), Z) → MARK(Y)
MARK(__(X1, X2)) → MARK(X1)
MARK(__(X1, X2)) → MARK(X2)
MARK(U11(X1, X2)) → A__U11(mark(X1), X2)
A__U11(tt, V) → A__ISNELIST(V)
A__ISNELIST(V) → A__ISPALLISTKIND(V)
A__ISPALLISTKIND(__(V1, V2)) → A__AND(a__isPalListKind(V1), isPalListKind(V2))
A__AND(tt, X) → MARK(X)
MARK(U11(X1, X2)) → MARK(X1)
MARK(U12(X)) → MARK(X)
MARK(isNeList(X)) → A__ISNELIST(X)
A__ISNELIST(__(V1, V2)) → A__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
A__U41(tt, V1, V2) → A__U42(a__isList(V1), V2)
A__U42(tt, V2) → A__ISNELIST(V2)
A__ISNELIST(__(V1, V2)) → A__AND(a__isPalListKind(V1), isPalListKind(V2))
A__ISNELIST(__(V1, V2)) → A__ISPALLISTKIND(V1)
A__ISPALLISTKIND(__(V1, V2)) → A__ISPALLISTKIND(V1)
A__ISNELIST(__(V1, V2)) → A__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
A__U51(tt, V1, V2) → A__U52(a__isNeList(V1), V2)
A__U52(tt, V2) → A__ISLIST(V2)
A__ISLIST(V) → A__U11(a__isPalListKind(V), V)
A__ISLIST(V) → A__ISPALLISTKIND(V)
A__ISLIST(__(V1, V2)) → A__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
A__U21(tt, V1, V2) → A__U22(a__isList(V1), V2)
A__U22(tt, V2) → A__ISLIST(V2)
A__ISLIST(__(V1, V2)) → A__AND(a__isPalListKind(V1), isPalListKind(V2))
A__ISLIST(__(V1, V2)) → A__ISPALLISTKIND(V1)
A__U21(tt, V1, V2) → A__ISLIST(V1)
A__U51(tt, V1, V2) → A__ISNELIST(V1)
A__U41(tt, V1, V2) → A__ISLIST(V1)
MARK(U21(X1, X2, X3)) → A__U21(mark(X1), X2, X3)
MARK(U21(X1, X2, X3)) → MARK(X1)
MARK(U22(X1, X2)) → A__U22(mark(X1), X2)
MARK(U22(X1, X2)) → MARK(X1)
MARK(isList(X)) → A__ISLIST(X)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → MARK(X)
MARK(U41(X1, X2, X3)) → A__U41(mark(X1), X2, X3)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(U42(X1, X2)) → A__U42(mark(X1), X2)
MARK(U42(X1, X2)) → MARK(X1)
MARK(U43(X)) → MARK(X)
MARK(U51(X1, X2, X3)) → A__U51(mark(X1), X2, X3)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U52(X1, X2)) → A__U52(mark(X1), X2)
MARK(U52(X1, X2)) → MARK(X1)
MARK(U53(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
MARK(U71(X1, X2)) → A__U71(mark(X1), X2)
A__U71(tt, V) → A__ISNEPAL(V)
A__ISNEPAL(V) → A__ISPALLISTKIND(V)
A__ISNEPAL(__(I, __(P, I))) → A__AND(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
A__ISNEPAL(__(I, __(P, I))) → A__AND(a__isQid(I), isPalListKind(I))
MARK(U71(X1, X2)) → MARK(X1)
MARK(U72(X)) → MARK(X)
MARK(isNePal(X)) → A__ISNEPAL(X)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isPalListKind(X)) → A__ISPALLISTKIND(X)
MARK(isPal(X)) → A__ISPAL(X)
A__ISPAL(V) → A__U71(a__isPalListKind(V), V)
A__ISPAL(V) → A__ISPALLISTKIND(V)
A____(__(X, Y), Z) → MARK(Z)
A____(X, nil) → MARK(X)
A____(nil, X) → MARK(X)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U11(X1, X2)) → A__U11(mark(X1), X2)
A__ISNELIST(V) → A__ISPALLISTKIND(V)
MARK(isNeList(X)) → A__ISNELIST(X)
A__ISNELIST(__(V1, V2)) → A__AND(a__isPalListKind(V1), isPalListKind(V2))
A__ISNELIST(__(V1, V2)) → A__ISPALLISTKIND(V1)
A__ISLIST(V) → A__ISPALLISTKIND(V)
A__ISLIST(__(V1, V2)) → A__AND(a__isPalListKind(V1), isPalListKind(V2))
A__ISLIST(__(V1, V2)) → A__ISPALLISTKIND(V1)
MARK(U21(X1, X2, X3)) → A__U21(mark(X1), X2, X3)
MARK(U22(X1, X2)) → A__U22(mark(X1), X2)
MARK(isList(X)) → A__ISLIST(X)
MARK(U41(X1, X2, X3)) → A__U41(mark(X1), X2, X3)
MARK(U42(X1, X2)) → A__U42(mark(X1), X2)
MARK(U51(X1, X2, X3)) → A__U51(mark(X1), X2, X3)
MARK(U52(X1, X2)) → A__U52(mark(X1), X2)
A__ISNEPAL(__(I, __(P, I))) → A__AND(a__isQid(I), isPalListKind(I))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
A____(x0, x1, x2)  =  A____(x0)
MARK(x0, x1)  =  MARK(x0, x1)
A__U11(x0, x1, x2)  =  A__U11(x1)
A__ISNELIST(x0, x1)  =  A__ISNELIST(x0, x1)
A__ISPALLISTKIND(x0, x1)  =  A__ISPALLISTKIND(x0, x1)
A__AND(x0, x1, x2)  =  A__AND(x0, x2)
A__U41(x0, x1, x2, x3)  =  A__U41(x1)
A__U42(x0, x1, x2)  =  A__U42(x0, x1)
A__U51(x0, x1, x2, x3)  =  A__U51(x0, x1)
A__U52(x0, x1, x2)  =  A__U52(x0, x1)
A__ISLIST(x0, x1)  =  A__ISLIST(x0)
A__U21(x0, x1, x2, x3)  =  A__U21(x0, x1)
A__U22(x0, x1, x2)  =  A__U22(x1)
A__U71(x0, x1, x2)  =  A__U71(x0, x1)
A__ISNEPAL(x0, x1)  =  A__ISNEPAL(x0, x1)
A__ISPAL(x0, x1)  =  A__ISPAL(x0, x1)

Tags:
A____ has argument tags [0,0,27] and root tag 1
MARK has argument tags [0,32] and root tag 1
A__U11 has argument tags [12,0,61] and root tag 0
A__ISNELIST has argument tags [0,57] and root tag 0
A__ISPALLISTKIND has argument tags [32,28] and root tag 1
A__AND has argument tags [0,59,32] and root tag 1
A__U41 has argument tags [32,0,0,28] and root tag 0
A__U42 has argument tags [20,0,32] and root tag 0
A__U51 has argument tags [49,0,6,0] and root tag 0
A__U52 has argument tags [56,0,0] and root tag 0
A__ISLIST has argument tags [0,60] and root tag 0
A__U21 has argument tags [0,16,0,8] and root tag 0
A__U22 has argument tags [56,0,53] and root tag 0
A__U71 has argument tags [28,0,0] and root tag 1
A__ISNEPAL has argument tags [0,28] and root tag 1
A__ISPAL has argument tags [0,28] and root tag 1

Comparison: MIN
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
A____(x1, x2)  =  A____
__(x1, x2)  =  __
MARK(x1)  =  MARK
mark(x1)  =  mark
a____(x1, x2)  =  a____
U11(x1, x2)  =  U11
A__U11(x1, x2)  =  A__U11
tt  =  tt
A__ISNELIST(x1)  =  A__ISNELIST
A__ISPALLISTKIND(x1)  =  A__ISPALLISTKIND
A__AND(x1, x2)  =  x1
a__isPalListKind(x1)  =  a__isPalListKind
isPalListKind(x1)  =  isPalListKind
U12(x1)  =  x1
isNeList(x1)  =  isNeList
A__U41(x1, x2, x3)  =  x3
a__and(x1, x2)  =  a__and
A__U42(x1, x2)  =  A__U42(x2)
a__isList(x1)  =  a__isList
A__U51(x1, x2, x3)  =  A__U51(x1, x2, x3)
A__U52(x1, x2)  =  A__U52(x1, x2)
a__isNeList(x1)  =  a__isNeList
A__ISLIST(x1)  =  A__ISLIST
A__U21(x1, x2, x3)  =  A__U21
A__U22(x1, x2)  =  A__U22(x1, x2)
U21(x1, x2, x3)  =  U21
U22(x1, x2)  =  U22
isList(x1)  =  isList
U23(x1)  =  x1
U31(x1, x2)  =  x1
U32(x1)  =  x1
U41(x1, x2, x3)  =  U41
U42(x1, x2)  =  U42
U43(x1)  =  x1
U51(x1, x2, x3)  =  U51
U52(x1, x2)  =  U52
U53(x1)  =  x1
U61(x1, x2)  =  U61
U62(x1)  =  x1
U71(x1, x2)  =  U71
A__U71(x1, x2)  =  x2
A__ISNEPAL(x1)  =  A__ISNEPAL
a__isQid(x1)  =  a__isQid
and(x1, x2)  =  and
isPal(x1)  =  isPal
U72(x1)  =  x1
isNePal(x1)  =  isNePal
A__ISPAL(x1)  =  A__ISPAL
nil  =  nil
a__isNePal(x1)  =  a__isNePal
a__U11(x1, x2)  =  a__U11
a__U12(x1)  =  x1
a__U21(x1, x2, x3)  =  a__U21
a__U22(x1, x2)  =  a__U22
a__U23(x1)  =  x1
a__U31(x1, x2)  =  x1
a__U32(x1)  =  x1
isQid(x1)  =  isQid
a__U41(x1, x2, x3)  =  a__U41
a__U42(x1, x2)  =  a__U42
a__U43(x1)  =  x1
a__U51(x1, x2, x3)  =  a__U51
a__U52(x1, x2)  =  a__U52
a__U53(x1)  =  x1
a__U61(x1, x2)  =  a__U61
a__U62(x1)  =  x1
a__U71(x1, x2)  =  a__U71
a__U72(x1)  =  x1
a__isPal(x1)  =  a__isPal
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u

Lexicographic path order with status [LPO].
Quasi-Precedence:
AU11 > [A, , MARK, mark, a, U11, tt, AISNELIST, aisPalListKind, isNeList, aand, aisList, aisNeList, AISLIST, AU21, U21, U22, isList, U41, U42, U51, U52, U61, U71, AISNEPAL, aisQid, and, isPal, isNePal, AISPAL, aisNePal, aU11, aU21, aU22, aU41, aU42, aU51, aU52, aU61, aU71, aisPal, u] > [AISPALLISTKIND, isPalListKind]
AU11 > [A, , MARK, mark, a, U11, tt, AISNELIST, aisPalListKind, isNeList, aand, aisList, aisNeList, AISLIST, AU21, U21, U22, isList, U41, U42, U51, U52, U61, U71, AISNEPAL, aisQid, and, isPal, isNePal, AISPAL, aisNePal, aU11, aU21, aU22, aU41, aU42, aU51, aU52, aU61, aU71, aisPal, u] > AU421
AU11 > [A, , MARK, mark, a, U11, tt, AISNELIST, aisPalListKind, isNeList, aand, aisList, aisNeList, AISLIST, AU21, U21, U22, isList, U41, U42, U51, U52, U61, U71, AISNEPAL, aisQid, and, isPal, isNePal, AISPAL, aisNePal, aU11, aU21, aU22, aU41, aU42, aU51, aU52, aU61, aU71, aisPal, u] > AU513
AU11 > [A, , MARK, mark, a, U11, tt, AISNELIST, aisPalListKind, isNeList, aand, aisList, aisNeList, AISLIST, AU21, U21, U22, isList, U41, U42, U51, U52, U61, U71, AISNEPAL, aisQid, and, isPal, isNePal, AISPAL, aisNePal, aU11, aU21, aU22, aU41, aU42, aU51, aU52, aU61, aU71, aisPal, u] > AU222
AU11 > [A, , MARK, mark, a, U11, tt, AISNELIST, aisPalListKind, isNeList, aand, aisList, aisNeList, AISLIST, AU21, U21, U22, isList, U41, U42, U51, U52, U61, U71, AISNEPAL, aisQid, and, isPal, isNePal, AISPAL, aisNePal, aU11, aU21, aU22, aU41, aU42, aU51, aU52, aU61, aU71, aisPal, u] > nil
AU11 > [A, , MARK, mark, a, U11, tt, AISNELIST, aisPalListKind, isNeList, aand, aisList, aisNeList, AISLIST, AU21, U21, U22, isList, U41, U42, U51, U52, U61, U71, AISNEPAL, aisQid, and, isPal, isNePal, AISPAL, aisNePal, aU11, aU21, aU22, aU41, aU42, aU51, aU52, aU61, aU71, aisPal, u] > isQid
AU11 > [A, , MARK, mark, a, U11, tt, AISNELIST, aisPalListKind, isNeList, aand, aisList, aisNeList, AISLIST, AU21, U21, U22, isList, U41, U42, U51, U52, U61, U71, AISNEPAL, aisQid, and, isPal, isNePal, AISPAL, aisNePal, aU11, aU21, aU22, aU41, aU42, aU51, aU52, aU61, aU71, aisPal, u] > a
AU11 > [A, , MARK, mark, a, U11, tt, AISNELIST, aisPalListKind, isNeList, aand, aisList, aisNeList, AISLIST, AU21, U21, U22, isList, U41, U42, U51, U52, U61, U71, AISNEPAL, aisQid, and, isPal, isNePal, AISPAL, aisNePal, aU11, aU21, aU22, aU41, aU42, aU51, aU52, aU61, aU71, aisPal, u] > e
AU11 > [A, , MARK, mark, a, U11, tt, AISNELIST, aisPalListKind, isNeList, aand, aisList, aisNeList, AISLIST, AU21, U21, U22, isList, U41, U42, U51, U52, U61, U71, AISNEPAL, aisQid, and, isPal, isNePal, AISPAL, aisNePal, aU11, aU21, aU22, aU41, aU42, aU51, aU52, aU61, aU71, aisPal, u] > i
AU11 > [A, , MARK, mark, a, U11, tt, AISNELIST, aisPalListKind, isNeList, aand, aisList, aisNeList, AISLIST, AU21, U21, U22, isList, U41, U42, U51, U52, U61, U71, AISNEPAL, aisQid, and, isPal, isNePal, AISPAL, aisNePal, aU11, aU21, aU22, aU41, aU42, aU51, aU52, aU61, aU71, aisPal, u] > o
AU522 > [A, , MARK, mark, a, U11, tt, AISNELIST, aisPalListKind, isNeList, aand, aisList, aisNeList, AISLIST, AU21, U21, U22, isList, U41, U42, U51, U52, U61, U71, AISNEPAL, aisQid, and, isPal, isNePal, AISPAL, aisNePal, aU11, aU21, aU22, aU41, aU42, aU51, aU52, aU61, aU71, aisPal, u] > [AISPALLISTKIND, isPalListKind]
AU522 > [A, , MARK, mark, a, U11, tt, AISNELIST, aisPalListKind, isNeList, aand, aisList, aisNeList, AISLIST, AU21, U21, U22, isList, U41, U42, U51, U52, U61, U71, AISNEPAL, aisQid, and, isPal, isNePal, AISPAL, aisNePal, aU11, aU21, aU22, aU41, aU42, aU51, aU52, aU61, aU71, aisPal, u] > AU421
AU522 > [A, , MARK, mark, a, U11, tt, AISNELIST, aisPalListKind, isNeList, aand, aisList, aisNeList, AISLIST, AU21, U21, U22, isList, U41, U42, U51, U52, U61, U71, AISNEPAL, aisQid, and, isPal, isNePal, AISPAL, aisNePal, aU11, aU21, aU22, aU41, aU42, aU51, aU52, aU61, aU71, aisPal, u] > AU513
AU522 > [A, , MARK, mark, a, U11, tt, AISNELIST, aisPalListKind, isNeList, aand, aisList, aisNeList, AISLIST, AU21, U21, U22, isList, U41, U42, U51, U52, U61, U71, AISNEPAL, aisQid, and, isPal, isNePal, AISPAL, aisNePal, aU11, aU21, aU22, aU41, aU42, aU51, aU52, aU61, aU71, aisPal, u] > AU222
AU522 > [A, , MARK, mark, a, U11, tt, AISNELIST, aisPalListKind, isNeList, aand, aisList, aisNeList, AISLIST, AU21, U21, U22, isList, U41, U42, U51, U52, U61, U71, AISNEPAL, aisQid, and, isPal, isNePal, AISPAL, aisNePal, aU11, aU21, aU22, aU41, aU42, aU51, aU52, aU61, aU71, aisPal, u] > nil
AU522 > [A, , MARK, mark, a, U11, tt, AISNELIST, aisPalListKind, isNeList, aand, aisList, aisNeList, AISLIST, AU21, U21, U22, isList, U41, U42, U51, U52, U61, U71, AISNEPAL, aisQid, and, isPal, isNePal, AISPAL, aisNePal, aU11, aU21, aU22, aU41, aU42, aU51, aU52, aU61, aU71, aisPal, u] > isQid
AU522 > [A, , MARK, mark, a, U11, tt, AISNELIST, aisPalListKind, isNeList, aand, aisList, aisNeList, AISLIST, AU21, U21, U22, isList, U41, U42, U51, U52, U61, U71, AISNEPAL, aisQid, and, isPal, isNePal, AISPAL, aisNePal, aU11, aU21, aU22, aU41, aU42, aU51, aU52, aU61, aU71, aisPal, u] > a
AU522 > [A, , MARK, mark, a, U11, tt, AISNELIST, aisPalListKind, isNeList, aand, aisList, aisNeList, AISLIST, AU21, U21, U22, isList, U41, U42, U51, U52, U61, U71, AISNEPAL, aisQid, and, isPal, isNePal, AISPAL, aisNePal, aU11, aU21, aU22, aU41, aU42, aU51, aU52, aU61, aU71, aisPal, u] > e
AU522 > [A, , MARK, mark, a, U11, tt, AISNELIST, aisPalListKind, isNeList, aand, aisList, aisNeList, AISLIST, AU21, U21, U22, isList, U41, U42, U51, U52, U61, U71, AISNEPAL, aisQid, and, isPal, isNePal, AISPAL, aisNePal, aU11, aU21, aU22, aU41, aU42, aU51, aU52, aU61, aU71, aisPal, u] > i
AU522 > [A, , MARK, mark, a, U11, tt, AISNELIST, aisPalListKind, isNeList, aand, aisList, aisNeList, AISLIST, AU21, U21, U22, isList, U41, U42, U51, U52, U61, U71, AISNEPAL, aisQid, and, isPal, isNePal, AISPAL, aisNePal, aU11, aU21, aU22, aU41, aU42, aU51, aU52, aU61, aU71, aisPal, u] > o

Status:
A: []
_: []
MARK: []
mark: []
a: []
U11: []
AU11: []
tt: []
AISNELIST: []
AISPALLISTKIND: []
aisPalListKind: []
isPalListKind: []
isNeList: []
aand: []
AU421: [1]
aisList: []
AU513: [1,2,3]
AU522: [1,2]
aisNeList: []
AISLIST: []
AU21: []
AU222: [1,2]
U21: []
U22: []
isList: []
U41: []
U42: []
U51: []
U52: []
U61: []
U71: []
AISNEPAL: []
aisQid: []
and: []
isPal: []
isNePal: []
AISPAL: []
nil: []
aisNePal: []
aU11: []
aU21: []
aU22: []
isQid: []
aU41: []
aU42: []
aU51: []
aU52: []
aU61: []
aU71: []
aisPal: []
a: []
e: []
i: []
o: []
u: []


The following usable rules [FROCOS05] were oriented:

a____(X, nil) → mark(X)
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(nil, X) → mark(X)
mark(isNePal(X)) → a__isNePal(X)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__and(tt, X) → mark(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(X) → isPalListKind(X)
a__and(X1, X2) → and(X1, X2)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isList(X) → isList(X)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(X) → isNeList(X)
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
a__isQid(X) → isQid(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U71(tt, V) → a__U72(a__isNePal(V))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__U11(X1, X2) → U11(X1, X2)
a__U12(tt) → tt
a__U12(X) → U12(X)
a__U31(tt, V) → a__U32(a__isQid(V))
a__U31(X1, X2) → U31(X1, X2)
a__isNePal(X) → isNePal(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U23(tt) → tt
a__U23(X) → U23(X)
a__U43(tt) → tt
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(tt) → tt
a__U53(X) → U53(X)
a__U32(tt) → tt
a__U32(X) → U32(X)
a__U61(tt, V) → a__U62(a__isQid(V))
a__U61(X1, X2) → U61(X1, X2)
a__U62(tt) → tt
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(tt) → tt
a__U72(X) → U72(X)
a__isPal(nil) → tt
a__isPal(X) → isPal(X)

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A____(__(X, Y), Z) → MARK(X)
MARK(__(X1, X2)) → A____(mark(X1), mark(X2))
A____(__(X, Y), Z) → A____(mark(X), a____(mark(Y), mark(Z)))
A____(__(X, Y), Z) → A____(mark(Y), mark(Z))
A____(__(X, Y), Z) → MARK(Y)
MARK(__(X1, X2)) → MARK(X1)
MARK(__(X1, X2)) → MARK(X2)
A__U11(tt, V) → A__ISNELIST(V)
A__ISPALLISTKIND(__(V1, V2)) → A__AND(a__isPalListKind(V1), isPalListKind(V2))
A__AND(tt, X) → MARK(X)
MARK(U11(X1, X2)) → MARK(X1)
MARK(U12(X)) → MARK(X)
A__ISNELIST(__(V1, V2)) → A__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
A__U41(tt, V1, V2) → A__U42(a__isList(V1), V2)
A__U42(tt, V2) → A__ISNELIST(V2)
A__ISPALLISTKIND(__(V1, V2)) → A__ISPALLISTKIND(V1)
A__ISNELIST(__(V1, V2)) → A__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
A__U51(tt, V1, V2) → A__U52(a__isNeList(V1), V2)
A__U52(tt, V2) → A__ISLIST(V2)
A__ISLIST(V) → A__U11(a__isPalListKind(V), V)
A__ISLIST(__(V1, V2)) → A__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
A__U21(tt, V1, V2) → A__U22(a__isList(V1), V2)
A__U22(tt, V2) → A__ISLIST(V2)
A__U21(tt, V1, V2) → A__ISLIST(V1)
A__U51(tt, V1, V2) → A__ISNELIST(V1)
A__U41(tt, V1, V2) → A__ISLIST(V1)
MARK(U21(X1, X2, X3)) → MARK(X1)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → MARK(X)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(U42(X1, X2)) → MARK(X1)
MARK(U43(X)) → MARK(X)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U52(X1, X2)) → MARK(X1)
MARK(U53(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
MARK(U71(X1, X2)) → A__U71(mark(X1), X2)
A__U71(tt, V) → A__ISNEPAL(V)
A__ISNEPAL(V) → A__ISPALLISTKIND(V)
A__ISNEPAL(__(I, __(P, I))) → A__AND(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
MARK(U71(X1, X2)) → MARK(X1)
MARK(U72(X)) → MARK(X)
MARK(isNePal(X)) → A__ISNEPAL(X)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isPalListKind(X)) → A__ISPALLISTKIND(X)
MARK(isPal(X)) → A__ISPAL(X)
A__ISPAL(V) → A__U71(a__isPalListKind(V), V)
A__ISPAL(V) → A__ISPALLISTKIND(V)
A____(__(X, Y), Z) → MARK(Z)
A____(X, nil) → MARK(X)
A____(nil, X) → MARK(X)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.

(8) Complex Obligation (AND)

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__ISNELIST(__(V1, V2)) → A__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
A__U41(tt, V1, V2) → A__U42(a__isList(V1), V2)
A__U42(tt, V2) → A__ISNELIST(V2)
A__ISNELIST(__(V1, V2)) → A__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
A__U51(tt, V1, V2) → A__U52(a__isNeList(V1), V2)
A__U52(tt, V2) → A__ISLIST(V2)
A__ISLIST(V) → A__U11(a__isPalListKind(V), V)
A__U11(tt, V) → A__ISNELIST(V)
A__ISLIST(__(V1, V2)) → A__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
A__U21(tt, V1, V2) → A__U22(a__isList(V1), V2)
A__U22(tt, V2) → A__ISLIST(V2)
A__U21(tt, V1, V2) → A__ISLIST(V1)
A__U51(tt, V1, V2) → A__ISNELIST(V1)
A__U41(tt, V1, V2) → A__ISLIST(V1)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__ISNELIST(__(V1, V2)) → A__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
A__U41(tt, V1, V2) → A__U42(a__isList(V1), V2)
A__U42(tt, V2) → A__ISNELIST(V2)
A__U51(tt, V1, V2) → A__U52(a__isNeList(V1), V2)
A__U52(tt, V2) → A__ISLIST(V2)
A__ISLIST(V) → A__U11(a__isPalListKind(V), V)
A__U11(tt, V) → A__ISNELIST(V)
A__ISLIST(__(V1, V2)) → A__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
A__U21(tt, V1, V2) → A__U22(a__isList(V1), V2)
A__U22(tt, V2) → A__ISLIST(V2)
A__U21(tt, V1, V2) → A__ISLIST(V1)
A__U51(tt, V1, V2) → A__ISNELIST(V1)
A__U41(tt, V1, V2) → A__ISLIST(V1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
A__ISNELIST(x0, x1)  =  A__ISNELIST(x0, x1)
A__U41(x0, x1, x2, x3)  =  A__U41(x0, x2, x3)
A__U42(x0, x1, x2)  =  A__U42(x1, x2)
A__U51(x0, x1, x2, x3)  =  A__U51(x0, x1)
A__U52(x0, x1, x2)  =  A__U52(x0, x1, x2)
A__ISLIST(x0, x1)  =  A__ISLIST(x1)
A__U11(x0, x1, x2)  =  A__U11(x0, x1)
A__U21(x0, x1, x2, x3)  =  A__U21(x0, x1)
A__U22(x0, x1, x2)  =  A__U22(x0, x1)

Tags:
A__ISNELIST has argument tags [0,1] and root tag 4
A__U41 has argument tags [30,30,20,5] and root tag 4
A__U42 has argument tags [26,0,2] and root tag 8
A__U51 has argument tags [1,1,2,4] and root tag 4
A__U52 has argument tags [16,7,21] and root tag 8
A__ISLIST has argument tags [8,21] and root tag 5
A__U11 has argument tags [21,21,10] and root tag 1
A__U21 has argument tags [21,21,16,1] and root tag 0
A__U22 has argument tags [21,22,2] and root tag 8

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
A__ISNELIST(x1)  =  x1
__(x1, x2)  =  __(x1, x2)
A__U41(x1, x2, x3)  =  A__U41(x2)
a__and(x1, x2)  =  a__and(x1, x2)
a__isPalListKind(x1)  =  x1
isPalListKind(x1)  =  x1
tt  =  tt
A__U42(x1, x2)  =  A__U42(x1, x2)
a__isList(x1)  =  a__isList
A__U51(x1, x2, x3)  =  A__U51(x2, x3)
A__U52(x1, x2)  =  x1
a__isNeList(x1)  =  a__isNeList
A__ISLIST(x1)  =  x1
A__U11(x1, x2)  =  x2
A__U21(x1, x2, x3)  =  A__U21(x2, x3)
A__U22(x1, x2)  =  x2
a  =  a
e  =  e
i  =  i
nil  =  nil
o  =  o
u  =  u
a____(x1, x2)  =  a____(x1, x2)
mark(x1)  =  x1
isNePal(x1)  =  isNePal(x1)
a__isNePal(x1)  =  a__isNePal(x1)
a__isQid(x1)  =  a__isQid
and(x1, x2)  =  and(x1, x2)
isPal(x1)  =  x1
a__U11(x1, x2)  =  a__U11
a__U21(x1, x2, x3)  =  a__U21
isList(x1)  =  isList
a__U31(x1, x2)  =  a__U31
a__U41(x1, x2, x3)  =  a__U41
a__U51(x1, x2, x3)  =  a__U51
isNeList(x1)  =  isNeList
U11(x1, x2)  =  U11
U12(x1)  =  x1
a__U12(x1)  =  x1
U21(x1, x2, x3)  =  U21
U22(x1, x2)  =  U22
a__U22(x1, x2)  =  a__U22
U23(x1)  =  x1
a__U23(x1)  =  x1
U31(x1, x2)  =  U31
U32(x1)  =  x1
a__U32(x1)  =  x1
U41(x1, x2, x3)  =  U41
U42(x1, x2)  =  U42
a__U42(x1, x2)  =  a__U42
U43(x1)  =  x1
a__U43(x1)  =  x1
U51(x1, x2, x3)  =  U51
U52(x1, x2)  =  x1
a__U52(x1, x2)  =  x1
U53(x1)  =  x1
a__U53(x1)  =  x1
U61(x1, x2)  =  U61(x1)
a__U61(x1, x2)  =  a__U61(x1)
U62(x1)  =  U62
a__U62(x1)  =  a__U62
U71(x1, x2)  =  x1
a__U71(x1, x2)  =  x1
U72(x1)  =  U72
a__U72(x1)  =  a__U72
a__isPal(x1)  =  x1
isQid(x1)  =  isQid

Lexicographic path order with status [LPO].
Quasi-Precedence:
e > [AU411, tt, aisList, aisNeList, a, aisQid, aU11, aU21, isList, aU31, aU41, aU51, isNeList, U11, U21, U22, aU22, U31, U41, U42, aU42, U51, U72, aU72, isQid] > AU422
i > [AU411, tt, aisList, aisNeList, a, aisQid, aU11, aU21, isList, aU31, aU41, aU51, isNeList, U11, U21, U22, aU22, U31, U41, U42, aU42, U51, U72, aU72, isQid] > AU422
nil > [AU411, tt, aisList, aisNeList, a, aisQid, aU11, aU21, isList, aU31, aU41, aU51, isNeList, U11, U21, U22, aU22, U31, U41, U42, aU42, U51, U72, aU72, isQid] > AU422
o > [AU411, tt, aisList, aisNeList, a, aisQid, aU11, aU21, isList, aU31, aU41, aU51, isNeList, U11, U21, U22, aU22, U31, U41, U42, aU42, U51, U72, aU72, isQid] > AU422
u > [AU411, tt, aisList, aisNeList, a, aisQid, aU11, aU21, isList, aU31, aU41, aU51, isNeList, U11, U21, U22, aU22, U31, U41, U42, aU42, U51, U72, aU72, isQid] > AU422
[isNePal1, aisNePal1, U611, aU611] > [2, aand2, AU512, AU212, a2, and2] > [AU411, tt, aisList, aisNeList, a, aisQid, aU11, aU21, isList, aU31, aU41, aU51, isNeList, U11, U21, U22, aU22, U31, U41, U42, aU42, U51, U72, aU72, isQid] > AU422
[isNePal1, aisNePal1, U611, aU611] > [U62, aU62] > [AU411, tt, aisList, aisNeList, a, aisQid, aU11, aU21, isList, aU31, aU41, aU51, isNeList, U11, U21, U22, aU22, U31, U41, U42, aU42, U51, U72, aU72, isQid] > AU422

Status:
_2: [1,2]
AU411: [1]
aand2: [1,2]
tt: []
AU422: [1,2]
aisList: []
AU512: [1,2]
aisNeList: []
AU212: [1,2]
a: []
e: []
i: []
nil: []
o: []
u: []
a2: [1,2]
isNePal1: [1]
aisNePal1: [1]
aisQid: []
and2: [1,2]
aU11: []
aU21: []
isList: []
aU31: []
aU41: []
aU51: []
isNeList: []
U11: []
U21: []
U22: []
aU22: []
U31: []
U41: []
U42: []
aU42: []
U51: []
U611: [1]
aU611: [1]
U62: []
aU62: []
U72: []
aU72: []
isQid: []


The following usable rules [FROCOS05] were oriented:

a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isList(X) → isList(X)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(X) → isNeList(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U11(X1, X2) → U11(X1, X2)
a__U12(tt) → tt
a__U12(X) → U12(X)
a__U31(tt, V) → a__U32(a__isQid(V))
a__U31(X1, X2) → U31(X1, X2)
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
a__isQid(X) → isQid(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U23(tt) → tt
a__U23(X) → U23(X)
a__U43(tt) → tt
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(tt) → tt
a__U53(X) → U53(X)
a__U32(tt) → tt
a__U32(X) → U32(X)

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__ISNELIST(__(V1, V2)) → A__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(13) TRUE

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(__(X1, X2)) → A____(mark(X1), mark(X2))
A____(__(X, Y), Z) → A____(mark(X), a____(mark(Y), mark(Z)))
A____(__(X, Y), Z) → MARK(X)
MARK(__(X1, X2)) → MARK(X1)
MARK(__(X1, X2)) → MARK(X2)
MARK(U11(X1, X2)) → MARK(X1)
MARK(U12(X)) → MARK(X)
MARK(U21(X1, X2, X3)) → MARK(X1)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → MARK(X)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(U42(X1, X2)) → MARK(X1)
MARK(U43(X)) → MARK(X)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U52(X1, X2)) → MARK(X1)
MARK(U53(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
MARK(U71(X1, X2)) → A__U71(mark(X1), X2)
A__U71(tt, V) → A__ISNEPAL(V)
A__ISNEPAL(V) → A__ISPALLISTKIND(V)
A__ISPALLISTKIND(__(V1, V2)) → A__AND(a__isPalListKind(V1), isPalListKind(V2))
A__AND(tt, X) → MARK(X)
MARK(U71(X1, X2)) → MARK(X1)
MARK(U72(X)) → MARK(X)
MARK(isNePal(X)) → A__ISNEPAL(X)
A__ISNEPAL(__(I, __(P, I))) → A__AND(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isPalListKind(X)) → A__ISPALLISTKIND(X)
A__ISPALLISTKIND(__(V1, V2)) → A__ISPALLISTKIND(V1)
MARK(isPal(X)) → A__ISPAL(X)
A__ISPAL(V) → A__U71(a__isPalListKind(V), V)
A__ISPAL(V) → A__ISPALLISTKIND(V)
A____(__(X, Y), Z) → A____(mark(Y), mark(Z))
A____(__(X, Y), Z) → MARK(Y)
A____(__(X, Y), Z) → MARK(Z)
A____(X, nil) → MARK(X)
A____(nil, X) → MARK(X)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__ISPAL(V) → A__ISPALLISTKIND(V)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x0, x1)
A____(x0, x1, x2)  =  A____(x0, x1)
A__U71(x0, x1, x2)  =  A__U71(x0, x2)
A__ISNEPAL(x0, x1)  =  A__ISNEPAL(x0, x1)
A__ISPALLISTKIND(x0, x1)  =  A__ISPALLISTKIND(x0, x1)
A__AND(x0, x1, x2)  =  A__AND(x0, x2)
A__ISPAL(x0, x1)  =  A__ISPAL(x0, x1)

Tags:
MARK has argument tags [0,0] and root tag 0
A____ has argument tags [0,0,27] and root tag 0
A__U71 has argument tags [0,31,16] and root tag 0
A__ISNEPAL has argument tags [0,8] and root tag 0
A__ISPALLISTKIND has argument tags [0,8] and root tag 0
A__AND has argument tags [0,27,0] and root tag 0
A__ISPAL has argument tags [0,16] and root tag 0

Comparison: MIN
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(x1)  =  MARK
__(x1, x2)  =  __
A____(x1, x2)  =  A____
mark(x1)  =  mark
a____(x1, x2)  =  a____
U11(x1, x2)  =  U11
U12(x1)  =  U12
U21(x1, x2, x3)  =  x1
U22(x1, x2)  =  U22
U23(x1)  =  U23
U31(x1, x2)  =  U31
U32(x1)  =  x1
U41(x1, x2, x3)  =  U41
U42(x1, x2)  =  U42
U43(x1)  =  x1
U51(x1, x2, x3)  =  U51
U52(x1, x2)  =  U52
U53(x1)  =  U53
U61(x1, x2)  =  x1
U62(x1)  =  U62
U71(x1, x2)  =  U71
A__U71(x1, x2)  =  A__U71
tt  =  tt
A__ISNEPAL(x1)  =  A__ISNEPAL
A__ISPALLISTKIND(x1)  =  A__ISPALLISTKIND
A__AND(x1, x2)  =  A__AND
a__isPalListKind(x1)  =  a__isPalListKind
isPalListKind(x1)  =  isPalListKind
U72(x1)  =  U72
isNePal(x1)  =  isNePal
a__and(x1, x2)  =  a__and
a__isQid(x1)  =  a__isQid
and(x1, x2)  =  and
isPal(x1)  =  isPal
A__ISPAL(x1)  =  A__ISPAL
nil  =  nil
a__isNePal(x1)  =  a__isNePal
a__U11(x1, x2)  =  a__U11
a__U12(x1)  =  a__U12
isNeList(x1)  =  isNeList
a__isNeList(x1)  =  a__isNeList
a__U21(x1, x2, x3)  =  x1
a__U22(x1, x2)  =  a__U22
isList(x1)  =  isList
a__isList(x1)  =  a__isList
a__U23(x1)  =  a__U23
a__U31(x1, x2)  =  a__U31
a__U32(x1)  =  x1
isQid(x1)  =  isQid
a__U41(x1, x2, x3)  =  a__U41
a__U42(x1, x2)  =  a__U42
a__U43(x1)  =  x1
a__U51(x1, x2, x3)  =  a__U51
a__U52(x1, x2)  =  a__U52
a__U53(x1)  =  a__U53
a__U61(x1, x2)  =  x1
a__U62(x1)  =  a__U62
a__U71(x1, x2)  =  a__U71
a__U72(x1)  =  a__U72
a__isPal(x1)  =  a__isPal
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u

Lexicographic path order with status [LPO].
Quasi-Precedence:
[mark, a, aisPalListKind, aand, aisNePal, isList, aisList] > and > [MARK, , A, U11, U22, U23, U31, U41, U42, U51, U52, U53, U62, U71, AU71, tt, AISNEPAL, AAND, U72, isNePal, AISPAL, nil, aU22, aU23, aU62] > [AISPALLISTKIND, isPalListKind]
[mark, a, aisPalListKind, aand, aisNePal, isList, aisList] > aU11 > aU12 > U12 > [MARK, , A, U11, U22, U23, U31, U41, U42, U51, U52, U53, U62, U71, AU71, tt, AISNEPAL, AAND, U72, isNePal, AISPAL, nil, aU22, aU23, aU62] > [AISPALLISTKIND, isPalListKind]
[mark, a, aisPalListKind, aand, aisNePal, isList, aisList] > aU11 > [aisNeList, aU41, aU42] > isNeList
[mark, a, aisPalListKind, aand, aisNePal, isList, aisList] > aU11 > [aisNeList, aU41, aU42] > aU31 > aisQid > [MARK, , A, U11, U22, U23, U31, U41, U42, U51, U52, U53, U62, U71, AU71, tt, AISNEPAL, AAND, U72, isNePal, AISPAL, nil, aU22, aU23, aU62] > [AISPALLISTKIND, isPalListKind]
[mark, a, aisPalListKind, aand, aisNePal, isList, aisList] > aU11 > [aisNeList, aU41, aU42] > aU31 > aisQid > isQid
[mark, a, aisPalListKind, aand, aisNePal, isList, aisList] > aU11 > [aisNeList, aU41, aU42] > [aU51, aU52, aU53] > [MARK, , A, U11, U22, U23, U31, U41, U42, U51, U52, U53, U62, U71, AU71, tt, AISNEPAL, AAND, U72, isNePal, AISPAL, nil, aU22, aU23, aU62] > [AISPALLISTKIND, isPalListKind]
[mark, a, aisPalListKind, aand, aisNePal, isList, aisList] > aisPal > isPal > [MARK, , A, U11, U22, U23, U31, U41, U42, U51, U52, U53, U62, U71, AU71, tt, AISNEPAL, AAND, U72, isNePal, AISPAL, nil, aU22, aU23, aU62] > [AISPALLISTKIND, isPalListKind]
[mark, a, aisPalListKind, aand, aisNePal, isList, aisList] > aisPal > [aU71, aU72] > [MARK, , A, U11, U22, U23, U31, U41, U42, U51, U52, U53, U62, U71, AU71, tt, AISNEPAL, AAND, U72, isNePal, AISPAL, nil, aU22, aU23, aU62] > [AISPALLISTKIND, isPalListKind]
[mark, a, aisPalListKind, aand, aisNePal, isList, aisList] > a
[mark, a, aisPalListKind, aand, aisNePal, isList, aisList] > e
[mark, a, aisPalListKind, aand, aisNePal, isList, aisList] > i
[mark, a, aisPalListKind, aand, aisNePal, isList, aisList] > o > [MARK, , A, U11, U22, U23, U31, U41, U42, U51, U52, U53, U62, U71, AU71, tt, AISNEPAL, AAND, U72, isNePal, AISPAL, nil, aU22, aU23, aU62] > [AISPALLISTKIND, isPalListKind]
[mark, a, aisPalListKind, aand, aisNePal, isList, aisList] > u

Status:
MARK: []
_: []
A: []
mark: []
a: []
U11: []
U12: []
U22: []
U23: []
U31: []
U41: []
U42: []
U51: []
U52: []
U53: []
U62: []
U71: []
AU71: []
tt: []
AISNEPAL: []
AISPALLISTKIND: []
AAND: []
aisPalListKind: []
isPalListKind: []
U72: []
isNePal: []
aand: []
aisQid: []
and: []
isPal: []
AISPAL: []
nil: []
aisNePal: []
aU11: []
aU12: []
isNeList: []
aisNeList: []
aU22: []
isList: []
aisList: []
aU23: []
aU31: []
isQid: []
aU41: []
aU42: []
aU51: []
aU52: []
aU53: []
aU62: []
aU71: []
aU72: []
aisPal: []
a: []
e: []
i: []
o: []
u: []


The following usable rules [FROCOS05] were oriented: none

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(__(X1, X2)) → A____(mark(X1), mark(X2))
A____(__(X, Y), Z) → A____(mark(X), a____(mark(Y), mark(Z)))
A____(__(X, Y), Z) → MARK(X)
MARK(__(X1, X2)) → MARK(X1)
MARK(__(X1, X2)) → MARK(X2)
MARK(U11(X1, X2)) → MARK(X1)
MARK(U12(X)) → MARK(X)
MARK(U21(X1, X2, X3)) → MARK(X1)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → MARK(X)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(U42(X1, X2)) → MARK(X1)
MARK(U43(X)) → MARK(X)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U52(X1, X2)) → MARK(X1)
MARK(U53(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
MARK(U71(X1, X2)) → A__U71(mark(X1), X2)
A__U71(tt, V) → A__ISNEPAL(V)
A__ISNEPAL(V) → A__ISPALLISTKIND(V)
A__ISPALLISTKIND(__(V1, V2)) → A__AND(a__isPalListKind(V1), isPalListKind(V2))
A__AND(tt, X) → MARK(X)
MARK(U71(X1, X2)) → MARK(X1)
MARK(U72(X)) → MARK(X)
MARK(isNePal(X)) → A__ISNEPAL(X)
A__ISNEPAL(__(I, __(P, I))) → A__AND(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isPalListKind(X)) → A__ISPALLISTKIND(X)
A__ISPALLISTKIND(__(V1, V2)) → A__ISPALLISTKIND(V1)
MARK(isPal(X)) → A__ISPAL(X)
A__ISPAL(V) → A__U71(a__isPalListKind(V), V)
A____(__(X, Y), Z) → A____(mark(Y), mark(Z))
A____(__(X, Y), Z) → MARK(Y)
A____(__(X, Y), Z) → MARK(Z)
A____(X, nil) → MARK(X)
A____(nil, X) → MARK(X)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(__(X1, X2)) → A____(mark(X1), mark(X2))
A____(__(X, Y), Z) → A____(mark(X), a____(mark(Y), mark(Z)))
A____(__(X, Y), Z) → MARK(X)
MARK(__(X1, X2)) → MARK(X1)
MARK(__(X1, X2)) → MARK(X2)
MARK(U11(X1, X2)) → MARK(X1)
MARK(U21(X1, X2, X3)) → MARK(X1)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U41(X1, X2, X3)) → MARK(X1)
MARK(U42(X1, X2)) → MARK(X1)
MARK(U43(X)) → MARK(X)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(U52(X1, X2)) → MARK(X1)
MARK(U71(X1, X2)) → A__U71(mark(X1), X2)
A__U71(tt, V) → A__ISNEPAL(V)
A__ISPALLISTKIND(__(V1, V2)) → A__AND(a__isPalListKind(V1), isPalListKind(V2))
A__AND(tt, X) → MARK(X)
MARK(U71(X1, X2)) → MARK(X1)
MARK(U72(X)) → MARK(X)
MARK(isNePal(X)) → A__ISNEPAL(X)
A__ISNEPAL(__(I, __(P, I))) → A__AND(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isPalListKind(X)) → A__ISPALLISTKIND(X)
A__ISPALLISTKIND(__(V1, V2)) → A__ISPALLISTKIND(V1)
MARK(isPal(X)) → A__ISPAL(X)
A__ISPAL(V) → A__U71(a__isPalListKind(V), V)
A____(__(X, Y), Z) → A____(mark(Y), mark(Z))
A____(__(X, Y), Z) → MARK(Y)
A____(__(X, Y), Z) → MARK(Z)
A____(X, nil) → MARK(X)
A____(nil, X) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x1)
A____(x0, x1, x2)  =  A____(x0)
A__U71(x0, x1, x2)  =  A__U71(x0, x2)
A__ISNEPAL(x0, x1)  =  A__ISNEPAL(x0)
A__ISPALLISTKIND(x0, x1)  =  A__ISPALLISTKIND(x0, x1)
A__AND(x0, x1, x2)  =  A__AND(x2)
A__ISPAL(x0, x1)  =  A__ISPAL(x1)

Tags:
MARK has argument tags [8,8] and root tag 0
A____ has argument tags [0,23,16] and root tag 4
A__U71 has argument tags [7,24,16] and root tag 4
A__ISNEPAL has argument tags [6,18] and root tag 1
A__ISPALLISTKIND has argument tags [8,6] and root tag 1
A__AND has argument tags [2,23,19] and root tag 6
A__ISPAL has argument tags [16,12] and root tag 3

Comparison: MIN
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(x1)  =  MARK
__(x1, x2)  =  __(x1, x2)
A____(x1, x2)  =  A____(x1, x2)
mark(x1)  =  x1
a____(x1, x2)  =  a____(x1, x2)
U11(x1, x2)  =  U11(x1, x2)
U12(x1)  =  x1
U21(x1, x2, x3)  =  U21(x1, x2, x3)
U22(x1, x2)  =  U22(x1, x2)
U23(x1)  =  x1
U31(x1, x2)  =  x1
U32(x1)  =  x1
U41(x1, x2, x3)  =  U41(x1, x2, x3)
U42(x1, x2)  =  U42(x1, x2)
U43(x1)  =  U43(x1)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
U52(x1, x2)  =  U52(x1, x2)
U53(x1)  =  x1
U61(x1, x2)  =  x1
U62(x1)  =  x1
U71(x1, x2)  =  U71(x1, x2)
A__U71(x1, x2)  =  x2
tt  =  tt
A__ISNEPAL(x1)  =  x1
A__ISPALLISTKIND(x1)  =  x1
A__AND(x1, x2)  =  x2
a__isPalListKind(x1)  =  x1
isPalListKind(x1)  =  x1
U72(x1)  =  U72(x1)
isNePal(x1)  =  x1
a__and(x1, x2)  =  a__and(x1, x2)
a__isQid(x1)  =  a__isQid
and(x1, x2)  =  and(x1, x2)
isPal(x1)  =  isPal(x1)
A__ISPAL(x1)  =  A__ISPAL
nil  =  nil
a__isNePal(x1)  =  x1
a__U11(x1, x2)  =  a__U11(x1, x2)
a__U12(x1)  =  x1
isNeList(x1)  =  x1
a__isNeList(x1)  =  x1
a__U21(x1, x2, x3)  =  a__U21(x1, x2, x3)
a__U22(x1, x2)  =  a__U22(x1, x2)
isList(x1)  =  isList(x1)
a__isList(x1)  =  a__isList(x1)
a__U23(x1)  =  x1
a__U31(x1, x2)  =  x1
a__U32(x1)  =  x1
isQid(x1)  =  isQid
a__U41(x1, x2, x3)  =  a__U41(x1, x2, x3)
a__U42(x1, x2)  =  a__U42(x1, x2)
a__U43(x1)  =  a__U43(x1)
a__U51(x1, x2, x3)  =  a__U51(x1, x2, x3)
a__U52(x1, x2)  =  a__U52(x1, x2)
a__U53(x1)  =  x1
a__U61(x1, x2)  =  x1
a__U62(x1)  =  x1
a__U71(x1, x2)  =  a__U71(x1, x2)
a__U72(x1)  =  a__U72(x1)
a__isPal(x1)  =  a__isPal(x1)
a  =  a
e  =  e
i  =  i
o  =  o
u  =  u

Lexicographic path order with status [LPO].
Quasi-Precedence:
[MARK, AISPAL] > [2, A2, a2] > [U213, aU213] > [U222, U413, aU222, isList1, aisList1, aU413] > [U112, aU112]
[MARK, AISPAL] > [2, A2, a2] > [U213, aU213] > [U222, U413, aU222, isList1, aisList1, aU413] > [tt, aisQid, isQid, u] > [U422, aU422] > [U431, aU431]
[MARK, AISPAL] > [2, A2, a2] > [U513, aU513] > [U522, aU522] > [U222, U413, aU222, isList1, aisList1, aU413] > [U112, aU112]
[MARK, AISPAL] > [2, A2, a2] > [U513, aU513] > [U522, aU522] > [U222, U413, aU222, isList1, aisList1, aU413] > [tt, aisQid, isQid, u] > [U422, aU422] > [U431, aU431]
[MARK, AISPAL] > [2, A2, a2] > [aand2, and2]
[MARK, AISPAL] > [2, A2, a2] > [isPal1, aisPal1] > [U712, aU712] > [U721, aU721] > [tt, aisQid, isQid, u] > [U422, aU422] > [U431, aU431]
nil > [tt, aisQid, isQid, u] > [U422, aU422] > [U431, aU431]
a > [tt, aisQid, isQid, u] > [U422, aU422] > [U431, aU431]
e > [tt, aisQid, isQid, u] > [U422, aU422] > [U431, aU431]
i > [tt, aisQid, isQid, u] > [U422, aU422] > [U431, aU431]
o > [tt, aisQid, isQid, u] > [U422, aU422] > [U431, aU431]

Status:
MARK: []
_2: [1,2]
A2: [1,2]
a2: [1,2]
U112: [2,1]
U213: [1,2,3]
U222: [2,1]
U413: [2,1,3]
U422: [1,2]
U431: [1]
U513: [1,3,2]
U522: [1,2]
U712: [2,1]
tt: []
U721: [1]
aand2: [1,2]
aisQid: []
and2: [1,2]
isPal1: [1]
AISPAL: []
nil: []
aU112: [2,1]
aU213: [1,2,3]
aU222: [2,1]
isList1: [1]
aisList1: [1]
isQid: []
aU413: [2,1,3]
aU422: [1,2]
aU431: [1]
aU513: [1,3,2]
aU522: [1,2]
aU712: [2,1]
aU721: [1]
aisPal1: [1]
a: []
e: []
i: []
o: []
u: []


The following usable rules [FROCOS05] were oriented:

a____(X, nil) → mark(X)
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(nil, X) → mark(X)
mark(isNePal(X)) → a__isNePal(X)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__and(tt, X) → mark(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(X) → isPalListKind(X)
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
a__isQid(X) → isQid(X)
a__and(X1, X2) → and(X1, X2)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U71(tt, V) → a__U72(a__isNePal(V))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__U11(X1, X2) → U11(X1, X2)
a__U12(tt) → tt
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U31(tt, V) → a__U32(a__isQid(V))
a__U31(X1, X2) → U31(X1, X2)
a__isNePal(X) → isNePal(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(nil) → tt
a__isList(X) → isList(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U23(tt) → tt
a__U23(X) → U23(X)
a__U43(tt) → tt
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(tt) → tt
a__U53(X) → U53(X)
a__U32(tt) → tt
a__U32(X) → U32(X)
a__U61(tt, V) → a__U62(a__isQid(V))
a__U61(X1, X2) → U61(X1, X2)
a__U62(tt) → tt
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(tt) → tt
a__U72(X) → U72(X)
a__isPal(nil) → tt
a__isPal(X) → isPal(X)

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U12(X)) → MARK(X)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → MARK(X)
MARK(U53(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
A__ISNEPAL(V) → A__ISPALLISTKIND(V)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U23(X)) → MARK(X)
MARK(U12(X)) → MARK(X)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → MARK(X)
MARK(U53(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U23(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x0, x1)

Tags:
MARK has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(x1)  =  MARK
U23(x1)  =  U23(x1)
U12(x1)  =  x1
U31(x1, x2)  =  x1
U32(x1)  =  x1
U53(x1)  =  x1
U61(x1, x2)  =  x1
U62(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
U231 > MARK

Status:
MARK: []
U231: [1]


The following usable rules [FROCOS05] were oriented: none

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U12(X)) → MARK(X)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → MARK(X)
MARK(U53(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U62(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x0)

Tags:
MARK has argument tags [0,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
U12(x1)  =  x1
U31(x1, x2)  =  x1
U32(x1)  =  x1
U53(x1)  =  x1
U61(x1, x2)  =  x1
U62(x1)  =  U62(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
MARK1: [1]
U621: [1]


The following usable rules [FROCOS05] were oriented: none

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U12(X)) → MARK(X)
MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → MARK(X)
MARK(U53(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U12(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x0, x1)

Tags:
MARK has argument tags [0,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(x1)  =  x1
U12(x1)  =  U12(x1)
U31(x1, x2)  =  x1
U32(x1)  =  x1
U53(x1)  =  x1
U61(x1, x2)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
U121: [1]


The following usable rules [FROCOS05] were oriented: none

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U31(X1, X2)) → MARK(X1)
MARK(U32(X)) → MARK(X)
MARK(U53(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U31(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x0, x1)

Tags:
MARK has argument tags [0,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
U31(x1, x2)  =  U31(x1, x2)
U32(x1)  =  x1
U53(x1)  =  x1
U61(x1, x2)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
MARK1: [1]
U312: [2,1]


The following usable rules [FROCOS05] were oriented: none

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U32(X)) → MARK(X)
MARK(U53(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U61(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x0, x1)

Tags:
MARK has argument tags [0,0] and root tag 0

Comparison: MS
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(x1)  =  MARK
U32(x1)  =  x1
U53(x1)  =  x1
U61(x1, x2)  =  U61(x1, x2)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
MARK: []
U612: [1,2]


The following usable rules [FROCOS05] were oriented: none

(30) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U32(X)) → MARK(X)
MARK(U53(X)) → MARK(X)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U32(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x0, x1)

Tags:
MARK has argument tags [1,0] and root tag 0

Comparison: MS
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(x1)  =  MARK
U32(x1)  =  U32(x1)
U53(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
MARK: []
U321: [1]


The following usable rules [FROCOS05] were oriented: none

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U53(X)) → MARK(X)

The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(33) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U53(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x0)

Tags:
MARK has argument tags [0,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(x1)  =  x1
U53(x1)  =  U53(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
U531: [1]


The following usable rules [FROCOS05] were oriented: none

(34) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a____(__(X, Y), Z) → a____(mark(X), a____(mark(Y), mark(Z)))
a____(X, nil) → mark(X)
a____(nil, X) → mark(X)
a__U11(tt, V) → a__U12(a__isNeList(V))
a__U12(tt) → tt
a__U21(tt, V1, V2) → a__U22(a__isList(V1), V2)
a__U22(tt, V2) → a__U23(a__isList(V2))
a__U23(tt) → tt
a__U31(tt, V) → a__U32(a__isQid(V))
a__U32(tt) → tt
a__U41(tt, V1, V2) → a__U42(a__isList(V1), V2)
a__U42(tt, V2) → a__U43(a__isNeList(V2))
a__U43(tt) → tt
a__U51(tt, V1, V2) → a__U52(a__isNeList(V1), V2)
a__U52(tt, V2) → a__U53(a__isList(V2))
a__U53(tt) → tt
a__U61(tt, V) → a__U62(a__isQid(V))
a__U62(tt) → tt
a__U71(tt, V) → a__U72(a__isNePal(V))
a__U72(tt) → tt
a__and(tt, X) → mark(X)
a__isList(V) → a__U11(a__isPalListKind(V), V)
a__isList(nil) → tt
a__isList(__(V1, V2)) → a__U21(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(V) → a__U31(a__isPalListKind(V), V)
a__isNeList(__(V1, V2)) → a__U41(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNeList(__(V1, V2)) → a__U51(a__and(a__isPalListKind(V1), isPalListKind(V2)), V1, V2)
a__isNePal(V) → a__U61(a__isPalListKind(V), V)
a__isNePal(__(I, __(P, I))) → a__and(a__and(a__isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P)))
a__isPal(V) → a__U71(a__isPalListKind(V), V)
a__isPal(nil) → tt
a__isPalListKind(a) → tt
a__isPalListKind(e) → tt
a__isPalListKind(i) → tt
a__isPalListKind(nil) → tt
a__isPalListKind(o) → tt
a__isPalListKind(u) → tt
a__isPalListKind(__(V1, V2)) → a__and(a__isPalListKind(V1), isPalListKind(V2))
a__isQid(a) → tt
a__isQid(e) → tt
a__isQid(i) → tt
a__isQid(o) → tt
a__isQid(u) → tt
mark(__(X1, X2)) → a____(mark(X1), mark(X2))
mark(U11(X1, X2)) → a__U11(mark(X1), X2)
mark(U12(X)) → a__U12(mark(X))
mark(isNeList(X)) → a__isNeList(X)
mark(U21(X1, X2, X3)) → a__U21(mark(X1), X2, X3)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(isList(X)) → a__isList(X)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2)) → a__U31(mark(X1), X2)
mark(U32(X)) → a__U32(mark(X))
mark(isQid(X)) → a__isQid(X)
mark(U41(X1, X2, X3)) → a__U41(mark(X1), X2, X3)
mark(U42(X1, X2)) → a__U42(mark(X1), X2)
mark(U43(X)) → a__U43(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U52(X1, X2)) → a__U52(mark(X1), X2)
mark(U53(X)) → a__U53(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X)) → a__U72(mark(X))
mark(isNePal(X)) → a__isNePal(X)
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isPalListKind(X)) → a__isPalListKind(X)
mark(isPal(X)) → a__isPal(X)
mark(nil) → nil
mark(tt) → tt
mark(a) → a
mark(e) → e
mark(i) → i
mark(o) → o
mark(u) → u
a____(X1, X2) → __(X1, X2)
a__U11(X1, X2) → U11(X1, X2)
a__U12(X) → U12(X)
a__isNeList(X) → isNeList(X)
a__U21(X1, X2, X3) → U21(X1, X2, X3)
a__U22(X1, X2) → U22(X1, X2)
a__isList(X) → isList(X)
a__U23(X) → U23(X)
a__U31(X1, X2) → U31(X1, X2)
a__U32(X) → U32(X)
a__isQid(X) → isQid(X)
a__U41(X1, X2, X3) → U41(X1, X2, X3)
a__U42(X1, X2) → U42(X1, X2)
a__U43(X) → U43(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U52(X1, X2) → U52(X1, X2)
a__U53(X) → U53(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X) → U72(X)
a__isNePal(X) → isNePal(X)
a__and(X1, X2) → and(X1, X2)
a__isPalListKind(X) → isPalListKind(X)
a__isPal(X) → isPal(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(35) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(36) TRUE