(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isPalListKind(activate(V)), activate(V))
U12(tt, V) → U13(isNeList(activate(V)))
U13(tt) → tt
U21(tt, V1, V2) → U22(isPalListKind(activate(V1)), activate(V1), activate(V2))
U22(tt, V1, V2) → U23(isPalListKind(activate(V2)), activate(V1), activate(V2))
U23(tt, V1, V2) → U24(isPalListKind(activate(V2)), activate(V1), activate(V2))
U24(tt, V1, V2) → U25(isList(activate(V1)), activate(V2))
U25(tt, V2) → U26(isList(activate(V2)))
U26(tt) → tt
U31(tt, V) → U32(isPalListKind(activate(V)), activate(V))
U32(tt, V) → U33(isQid(activate(V)))
U33(tt) → tt
U41(tt, V1, V2) → U42(isPalListKind(activate(V1)), activate(V1), activate(V2))
U42(tt, V1, V2) → U43(isPalListKind(activate(V2)), activate(V1), activate(V2))
U43(tt, V1, V2) → U44(isPalListKind(activate(V2)), activate(V1), activate(V2))
U44(tt, V1, V2) → U45(isList(activate(V1)), activate(V2))
U45(tt, V2) → U46(isNeList(activate(V2)))
U46(tt) → tt
U51(tt, V1, V2) → U52(isPalListKind(activate(V1)), activate(V1), activate(V2))
U52(tt, V1, V2) → U53(isPalListKind(activate(V2)), activate(V1), activate(V2))
U53(tt, V1, V2) → U54(isPalListKind(activate(V2)), activate(V1), activate(V2))
U54(tt, V1, V2) → U55(isNeList(activate(V1)), activate(V2))
U55(tt, V2) → U56(isList(activate(V2)))
U56(tt) → tt
U61(tt, V) → U62(isPalListKind(activate(V)), activate(V))
U62(tt, V) → U63(isQid(activate(V)))
U63(tt) → tt
U71(tt, I, P) → U72(isPalListKind(activate(I)), activate(P))
U72(tt, P) → U73(isPal(activate(P)), activate(P))
U73(tt, P) → U74(isPalListKind(activate(P)))
U74(tt) → tt
U81(tt, V) → U82(isPalListKind(activate(V)), activate(V))
U82(tt, V) → U83(isNePal(activate(V)))
U83(tt) → tt
U91(tt, V2) → U92(isPalListKind(activate(V2)))
U92(tt) → tt
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → U71(isQid(activate(I)), activate(I), activate(P))
isPal(V) → U81(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → U91(isPalListKind(activate(V1)), activate(V2))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

__1(__(X, Y), Z) → __1(X, __(Y, Z))
__1(__(X, Y), Z) → __1(Y, Z)
U111(tt, V) → U121(isPalListKind(activate(V)), activate(V))
U111(tt, V) → ISPALLISTKIND(activate(V))
U111(tt, V) → ACTIVATE(V)
U121(tt, V) → U131(isNeList(activate(V)))
U121(tt, V) → ISNELIST(activate(V))
U121(tt, V) → ACTIVATE(V)
U211(tt, V1, V2) → U221(isPalListKind(activate(V1)), activate(V1), activate(V2))
U211(tt, V1, V2) → ISPALLISTKIND(activate(V1))
U211(tt, V1, V2) → ACTIVATE(V1)
U211(tt, V1, V2) → ACTIVATE(V2)
U221(tt, V1, V2) → U231(isPalListKind(activate(V2)), activate(V1), activate(V2))
U221(tt, V1, V2) → ISPALLISTKIND(activate(V2))
U221(tt, V1, V2) → ACTIVATE(V2)
U221(tt, V1, V2) → ACTIVATE(V1)
U231(tt, V1, V2) → U241(isPalListKind(activate(V2)), activate(V1), activate(V2))
U231(tt, V1, V2) → ISPALLISTKIND(activate(V2))
U231(tt, V1, V2) → ACTIVATE(V2)
U231(tt, V1, V2) → ACTIVATE(V1)
U241(tt, V1, V2) → U251(isList(activate(V1)), activate(V2))
U241(tt, V1, V2) → ISLIST(activate(V1))
U241(tt, V1, V2) → ACTIVATE(V1)
U241(tt, V1, V2) → ACTIVATE(V2)
U251(tt, V2) → U261(isList(activate(V2)))
U251(tt, V2) → ISLIST(activate(V2))
U251(tt, V2) → ACTIVATE(V2)
U311(tt, V) → U321(isPalListKind(activate(V)), activate(V))
U311(tt, V) → ISPALLISTKIND(activate(V))
U311(tt, V) → ACTIVATE(V)
U321(tt, V) → U331(isQid(activate(V)))
U321(tt, V) → ISQID(activate(V))
U321(tt, V) → ACTIVATE(V)
U411(tt, V1, V2) → U421(isPalListKind(activate(V1)), activate(V1), activate(V2))
U411(tt, V1, V2) → ISPALLISTKIND(activate(V1))
U411(tt, V1, V2) → ACTIVATE(V1)
U411(tt, V1, V2) → ACTIVATE(V2)
U421(tt, V1, V2) → U431(isPalListKind(activate(V2)), activate(V1), activate(V2))
U421(tt, V1, V2) → ISPALLISTKIND(activate(V2))
U421(tt, V1, V2) → ACTIVATE(V2)
U421(tt, V1, V2) → ACTIVATE(V1)
U431(tt, V1, V2) → U441(isPalListKind(activate(V2)), activate(V1), activate(V2))
U431(tt, V1, V2) → ISPALLISTKIND(activate(V2))
U431(tt, V1, V2) → ACTIVATE(V2)
U431(tt, V1, V2) → ACTIVATE(V1)
U441(tt, V1, V2) → U451(isList(activate(V1)), activate(V2))
U441(tt, V1, V2) → ISLIST(activate(V1))
U441(tt, V1, V2) → ACTIVATE(V1)
U441(tt, V1, V2) → ACTIVATE(V2)
U451(tt, V2) → U461(isNeList(activate(V2)))
U451(tt, V2) → ISNELIST(activate(V2))
U451(tt, V2) → ACTIVATE(V2)
U511(tt, V1, V2) → U521(isPalListKind(activate(V1)), activate(V1), activate(V2))
U511(tt, V1, V2) → ISPALLISTKIND(activate(V1))
U511(tt, V1, V2) → ACTIVATE(V1)
U511(tt, V1, V2) → ACTIVATE(V2)
U521(tt, V1, V2) → U531(isPalListKind(activate(V2)), activate(V1), activate(V2))
U521(tt, V1, V2) → ISPALLISTKIND(activate(V2))
U521(tt, V1, V2) → ACTIVATE(V2)
U521(tt, V1, V2) → ACTIVATE(V1)
U531(tt, V1, V2) → U541(isPalListKind(activate(V2)), activate(V1), activate(V2))
U531(tt, V1, V2) → ISPALLISTKIND(activate(V2))
U531(tt, V1, V2) → ACTIVATE(V2)
U531(tt, V1, V2) → ACTIVATE(V1)
U541(tt, V1, V2) → U551(isNeList(activate(V1)), activate(V2))
U541(tt, V1, V2) → ISNELIST(activate(V1))
U541(tt, V1, V2) → ACTIVATE(V1)
U541(tt, V1, V2) → ACTIVATE(V2)
U551(tt, V2) → U561(isList(activate(V2)))
U551(tt, V2) → ISLIST(activate(V2))
U551(tt, V2) → ACTIVATE(V2)
U611(tt, V) → U621(isPalListKind(activate(V)), activate(V))
U611(tt, V) → ISPALLISTKIND(activate(V))
U611(tt, V) → ACTIVATE(V)
U621(tt, V) → U631(isQid(activate(V)))
U621(tt, V) → ISQID(activate(V))
U621(tt, V) → ACTIVATE(V)
U711(tt, I, P) → U721(isPalListKind(activate(I)), activate(P))
U711(tt, I, P) → ISPALLISTKIND(activate(I))
U711(tt, I, P) → ACTIVATE(I)
U711(tt, I, P) → ACTIVATE(P)
U721(tt, P) → U731(isPal(activate(P)), activate(P))
U721(tt, P) → ISPAL(activate(P))
U721(tt, P) → ACTIVATE(P)
U731(tt, P) → U741(isPalListKind(activate(P)))
U731(tt, P) → ISPALLISTKIND(activate(P))
U731(tt, P) → ACTIVATE(P)
U811(tt, V) → U821(isPalListKind(activate(V)), activate(V))
U811(tt, V) → ISPALLISTKIND(activate(V))
U811(tt, V) → ACTIVATE(V)
U821(tt, V) → U831(isNePal(activate(V)))
U821(tt, V) → ISNEPAL(activate(V))
U821(tt, V) → ACTIVATE(V)
U911(tt, V2) → U921(isPalListKind(activate(V2)))
U911(tt, V2) → ISPALLISTKIND(activate(V2))
U911(tt, V2) → ACTIVATE(V2)
ISLIST(V) → U111(isPalListKind(activate(V)), activate(V))
ISLIST(V) → ISPALLISTKIND(activate(V))
ISLIST(V) → ACTIVATE(V)
ISLIST(n____(V1, V2)) → U211(isPalListKind(activate(V1)), activate(V1), activate(V2))
ISLIST(n____(V1, V2)) → ISPALLISTKIND(activate(V1))
ISLIST(n____(V1, V2)) → ACTIVATE(V1)
ISLIST(n____(V1, V2)) → ACTIVATE(V2)
ISNELIST(V) → U311(isPalListKind(activate(V)), activate(V))
ISNELIST(V) → ISPALLISTKIND(activate(V))
ISNELIST(V) → ACTIVATE(V)
ISNELIST(n____(V1, V2)) → U411(isPalListKind(activate(V1)), activate(V1), activate(V2))
ISNELIST(n____(V1, V2)) → ISPALLISTKIND(activate(V1))
ISNELIST(n____(V1, V2)) → ACTIVATE(V1)
ISNELIST(n____(V1, V2)) → ACTIVATE(V2)
ISNELIST(n____(V1, V2)) → U511(isPalListKind(activate(V1)), activate(V1), activate(V2))
ISNEPAL(V) → U611(isPalListKind(activate(V)), activate(V))
ISNEPAL(V) → ISPALLISTKIND(activate(V))
ISNEPAL(V) → ACTIVATE(V)
ISNEPAL(n____(I, n____(P, I))) → U711(isQid(activate(I)), activate(I), activate(P))
ISNEPAL(n____(I, n____(P, I))) → ISQID(activate(I))
ISNEPAL(n____(I, n____(P, I))) → ACTIVATE(I)
ISNEPAL(n____(I, n____(P, I))) → ACTIVATE(P)
ISPAL(V) → U811(isPalListKind(activate(V)), activate(V))
ISPAL(V) → ISPALLISTKIND(activate(V))
ISPAL(V) → ACTIVATE(V)
ISPALLISTKIND(n____(V1, V2)) → U911(isPalListKind(activate(V1)), activate(V2))
ISPALLISTKIND(n____(V1, V2)) → ISPALLISTKIND(activate(V1))
ISPALLISTKIND(n____(V1, V2)) → ACTIVATE(V1)
ISPALLISTKIND(n____(V1, V2)) → ACTIVATE(V2)
ACTIVATE(n__nil) → NIL
ACTIVATE(n____(X1, X2)) → __1(activate(X1), activate(X2))
ACTIVATE(n____(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n____(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__a) → A
ACTIVATE(n__e) → E
ACTIVATE(n__i) → I
ACTIVATE(n__o) → O
ACTIVATE(n__u) → U

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isPalListKind(activate(V)), activate(V))
U12(tt, V) → U13(isNeList(activate(V)))
U13(tt) → tt
U21(tt, V1, V2) → U22(isPalListKind(activate(V1)), activate(V1), activate(V2))
U22(tt, V1, V2) → U23(isPalListKind(activate(V2)), activate(V1), activate(V2))
U23(tt, V1, V2) → U24(isPalListKind(activate(V2)), activate(V1), activate(V2))
U24(tt, V1, V2) → U25(isList(activate(V1)), activate(V2))
U25(tt, V2) → U26(isList(activate(V2)))
U26(tt) → tt
U31(tt, V) → U32(isPalListKind(activate(V)), activate(V))
U32(tt, V) → U33(isQid(activate(V)))
U33(tt) → tt
U41(tt, V1, V2) → U42(isPalListKind(activate(V1)), activate(V1), activate(V2))
U42(tt, V1, V2) → U43(isPalListKind(activate(V2)), activate(V1), activate(V2))
U43(tt, V1, V2) → U44(isPalListKind(activate(V2)), activate(V1), activate(V2))
U44(tt, V1, V2) → U45(isList(activate(V1)), activate(V2))
U45(tt, V2) → U46(isNeList(activate(V2)))
U46(tt) → tt
U51(tt, V1, V2) → U52(isPalListKind(activate(V1)), activate(V1), activate(V2))
U52(tt, V1, V2) → U53(isPalListKind(activate(V2)), activate(V1), activate(V2))
U53(tt, V1, V2) → U54(isPalListKind(activate(V2)), activate(V1), activate(V2))
U54(tt, V1, V2) → U55(isNeList(activate(V1)), activate(V2))
U55(tt, V2) → U56(isList(activate(V2)))
U56(tt) → tt
U61(tt, V) → U62(isPalListKind(activate(V)), activate(V))
U62(tt, V) → U63(isQid(activate(V)))
U63(tt) → tt
U71(tt, I, P) → U72(isPalListKind(activate(I)), activate(P))
U72(tt, P) → U73(isPal(activate(P)), activate(P))
U73(tt, P) → U74(isPalListKind(activate(P)))
U74(tt) → tt
U81(tt, V) → U82(isPalListKind(activate(V)), activate(V))
U82(tt, V) → U83(isNePal(activate(V)))
U83(tt) → tt
U91(tt, V2) → U92(isPalListKind(activate(V2)))
U92(tt) → tt
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → U71(isQid(activate(I)), activate(I), activate(P))
isPal(V) → U81(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → U91(isPalListKind(activate(V1)), activate(V2))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 97 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

__1(__(X, Y), Z) → __1(Y, Z)
__1(__(X, Y), Z) → __1(X, __(Y, Z))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isPalListKind(activate(V)), activate(V))
U12(tt, V) → U13(isNeList(activate(V)))
U13(tt) → tt
U21(tt, V1, V2) → U22(isPalListKind(activate(V1)), activate(V1), activate(V2))
U22(tt, V1, V2) → U23(isPalListKind(activate(V2)), activate(V1), activate(V2))
U23(tt, V1, V2) → U24(isPalListKind(activate(V2)), activate(V1), activate(V2))
U24(tt, V1, V2) → U25(isList(activate(V1)), activate(V2))
U25(tt, V2) → U26(isList(activate(V2)))
U26(tt) → tt
U31(tt, V) → U32(isPalListKind(activate(V)), activate(V))
U32(tt, V) → U33(isQid(activate(V)))
U33(tt) → tt
U41(tt, V1, V2) → U42(isPalListKind(activate(V1)), activate(V1), activate(V2))
U42(tt, V1, V2) → U43(isPalListKind(activate(V2)), activate(V1), activate(V2))
U43(tt, V1, V2) → U44(isPalListKind(activate(V2)), activate(V1), activate(V2))
U44(tt, V1, V2) → U45(isList(activate(V1)), activate(V2))
U45(tt, V2) → U46(isNeList(activate(V2)))
U46(tt) → tt
U51(tt, V1, V2) → U52(isPalListKind(activate(V1)), activate(V1), activate(V2))
U52(tt, V1, V2) → U53(isPalListKind(activate(V2)), activate(V1), activate(V2))
U53(tt, V1, V2) → U54(isPalListKind(activate(V2)), activate(V1), activate(V2))
U54(tt, V1, V2) → U55(isNeList(activate(V1)), activate(V2))
U55(tt, V2) → U56(isList(activate(V2)))
U56(tt) → tt
U61(tt, V) → U62(isPalListKind(activate(V)), activate(V))
U62(tt, V) → U63(isQid(activate(V)))
U63(tt) → tt
U71(tt, I, P) → U72(isPalListKind(activate(I)), activate(P))
U72(tt, P) → U73(isPal(activate(P)), activate(P))
U73(tt, P) → U74(isPalListKind(activate(P)))
U74(tt) → tt
U81(tt, V) → U82(isPalListKind(activate(V)), activate(V))
U82(tt, V) → U83(isNePal(activate(V)))
U83(tt) → tt
U91(tt, V2) → U92(isPalListKind(activate(V2)))
U92(tt) → tt
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → U71(isQid(activate(I)), activate(I), activate(P))
isPal(V) → U81(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → U91(isPalListKind(activate(V1)), activate(V2))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


__1(__(X, Y), Z) → __1(Y, Z)
__1(__(X, Y), Z) → __1(X, __(Y, Z))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
__1(x0, x1, x2)  =  __1(x0)

Tags:
__1 has argument tags [2,3,3] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
__1(x1, x2)  =  __1(x1, x2)
__(x1, x2)  =  __(x1, x2)
nil  =  nil
n____(x1, x2)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
_^12 > _2
nil > _2

Status:
_^12: [1,2]
_2: [1,2]
nil: multiset


The following usable rules [FROCOS05] were oriented:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
__(X1, X2) → n____(X1, X2)

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isPalListKind(activate(V)), activate(V))
U12(tt, V) → U13(isNeList(activate(V)))
U13(tt) → tt
U21(tt, V1, V2) → U22(isPalListKind(activate(V1)), activate(V1), activate(V2))
U22(tt, V1, V2) → U23(isPalListKind(activate(V2)), activate(V1), activate(V2))
U23(tt, V1, V2) → U24(isPalListKind(activate(V2)), activate(V1), activate(V2))
U24(tt, V1, V2) → U25(isList(activate(V1)), activate(V2))
U25(tt, V2) → U26(isList(activate(V2)))
U26(tt) → tt
U31(tt, V) → U32(isPalListKind(activate(V)), activate(V))
U32(tt, V) → U33(isQid(activate(V)))
U33(tt) → tt
U41(tt, V1, V2) → U42(isPalListKind(activate(V1)), activate(V1), activate(V2))
U42(tt, V1, V2) → U43(isPalListKind(activate(V2)), activate(V1), activate(V2))
U43(tt, V1, V2) → U44(isPalListKind(activate(V2)), activate(V1), activate(V2))
U44(tt, V1, V2) → U45(isList(activate(V1)), activate(V2))
U45(tt, V2) → U46(isNeList(activate(V2)))
U46(tt) → tt
U51(tt, V1, V2) → U52(isPalListKind(activate(V1)), activate(V1), activate(V2))
U52(tt, V1, V2) → U53(isPalListKind(activate(V2)), activate(V1), activate(V2))
U53(tt, V1, V2) → U54(isPalListKind(activate(V2)), activate(V1), activate(V2))
U54(tt, V1, V2) → U55(isNeList(activate(V1)), activate(V2))
U55(tt, V2) → U56(isList(activate(V2)))
U56(tt) → tt
U61(tt, V) → U62(isPalListKind(activate(V)), activate(V))
U62(tt, V) → U63(isQid(activate(V)))
U63(tt) → tt
U71(tt, I, P) → U72(isPalListKind(activate(I)), activate(P))
U72(tt, P) → U73(isPal(activate(P)), activate(P))
U73(tt, P) → U74(isPalListKind(activate(P)))
U74(tt) → tt
U81(tt, V) → U82(isPalListKind(activate(V)), activate(V))
U82(tt, V) → U83(isNePal(activate(V)))
U83(tt) → tt
U91(tt, V2) → U92(isPalListKind(activate(V2)))
U92(tt) → tt
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → U71(isQid(activate(I)), activate(I), activate(P))
isPal(V) → U81(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → U91(isPalListKind(activate(V1)), activate(V2))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n____(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n____(X1, X2)) → ACTIVATE(X1)

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isPalListKind(activate(V)), activate(V))
U12(tt, V) → U13(isNeList(activate(V)))
U13(tt) → tt
U21(tt, V1, V2) → U22(isPalListKind(activate(V1)), activate(V1), activate(V2))
U22(tt, V1, V2) → U23(isPalListKind(activate(V2)), activate(V1), activate(V2))
U23(tt, V1, V2) → U24(isPalListKind(activate(V2)), activate(V1), activate(V2))
U24(tt, V1, V2) → U25(isList(activate(V1)), activate(V2))
U25(tt, V2) → U26(isList(activate(V2)))
U26(tt) → tt
U31(tt, V) → U32(isPalListKind(activate(V)), activate(V))
U32(tt, V) → U33(isQid(activate(V)))
U33(tt) → tt
U41(tt, V1, V2) → U42(isPalListKind(activate(V1)), activate(V1), activate(V2))
U42(tt, V1, V2) → U43(isPalListKind(activate(V2)), activate(V1), activate(V2))
U43(tt, V1, V2) → U44(isPalListKind(activate(V2)), activate(V1), activate(V2))
U44(tt, V1, V2) → U45(isList(activate(V1)), activate(V2))
U45(tt, V2) → U46(isNeList(activate(V2)))
U46(tt) → tt
U51(tt, V1, V2) → U52(isPalListKind(activate(V1)), activate(V1), activate(V2))
U52(tt, V1, V2) → U53(isPalListKind(activate(V2)), activate(V1), activate(V2))
U53(tt, V1, V2) → U54(isPalListKind(activate(V2)), activate(V1), activate(V2))
U54(tt, V1, V2) → U55(isNeList(activate(V1)), activate(V2))
U55(tt, V2) → U56(isList(activate(V2)))
U56(tt) → tt
U61(tt, V) → U62(isPalListKind(activate(V)), activate(V))
U62(tt, V) → U63(isQid(activate(V)))
U63(tt) → tt
U71(tt, I, P) → U72(isPalListKind(activate(I)), activate(P))
U72(tt, P) → U73(isPal(activate(P)), activate(P))
U73(tt, P) → U74(isPalListKind(activate(P)))
U74(tt) → tt
U81(tt, V) → U82(isPalListKind(activate(V)), activate(V))
U82(tt, V) → U83(isNePal(activate(V)))
U83(tt) → tt
U91(tt, V2) → U92(isPalListKind(activate(V2)))
U92(tt) → tt
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → U71(isQid(activate(I)), activate(I), activate(P))
isPal(V) → U81(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → U91(isPalListKind(activate(V1)), activate(V2))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n____(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n____(X1, X2)) → ACTIVATE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ACTIVATE(x0, x1)  =  ACTIVATE(x0, x1)

Tags:
ACTIVATE has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
ACTIVATE(x1)  =  ACTIVATE
n____(x1, x2)  =  n____(x1, x2)

Recursive path order with status [RPO].
Quasi-Precedence:
[ACTIVATE, n2]

Status:
ACTIVATE: multiset
n2: multiset


The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isPalListKind(activate(V)), activate(V))
U12(tt, V) → U13(isNeList(activate(V)))
U13(tt) → tt
U21(tt, V1, V2) → U22(isPalListKind(activate(V1)), activate(V1), activate(V2))
U22(tt, V1, V2) → U23(isPalListKind(activate(V2)), activate(V1), activate(V2))
U23(tt, V1, V2) → U24(isPalListKind(activate(V2)), activate(V1), activate(V2))
U24(tt, V1, V2) → U25(isList(activate(V1)), activate(V2))
U25(tt, V2) → U26(isList(activate(V2)))
U26(tt) → tt
U31(tt, V) → U32(isPalListKind(activate(V)), activate(V))
U32(tt, V) → U33(isQid(activate(V)))
U33(tt) → tt
U41(tt, V1, V2) → U42(isPalListKind(activate(V1)), activate(V1), activate(V2))
U42(tt, V1, V2) → U43(isPalListKind(activate(V2)), activate(V1), activate(V2))
U43(tt, V1, V2) → U44(isPalListKind(activate(V2)), activate(V1), activate(V2))
U44(tt, V1, V2) → U45(isList(activate(V1)), activate(V2))
U45(tt, V2) → U46(isNeList(activate(V2)))
U46(tt) → tt
U51(tt, V1, V2) → U52(isPalListKind(activate(V1)), activate(V1), activate(V2))
U52(tt, V1, V2) → U53(isPalListKind(activate(V2)), activate(V1), activate(V2))
U53(tt, V1, V2) → U54(isPalListKind(activate(V2)), activate(V1), activate(V2))
U54(tt, V1, V2) → U55(isNeList(activate(V1)), activate(V2))
U55(tt, V2) → U56(isList(activate(V2)))
U56(tt) → tt
U61(tt, V) → U62(isPalListKind(activate(V)), activate(V))
U62(tt, V) → U63(isQid(activate(V)))
U63(tt) → tt
U71(tt, I, P) → U72(isPalListKind(activate(I)), activate(P))
U72(tt, P) → U73(isPal(activate(P)), activate(P))
U73(tt, P) → U74(isPalListKind(activate(P)))
U74(tt) → tt
U81(tt, V) → U82(isPalListKind(activate(V)), activate(V))
U82(tt, V) → U83(isNePal(activate(V)))
U83(tt) → tt
U91(tt, V2) → U92(isPalListKind(activate(V2)))
U92(tt) → tt
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → U71(isQid(activate(I)), activate(I), activate(P))
isPal(V) → U81(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → U91(isPalListKind(activate(V1)), activate(V2))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U911(tt, V2) → ISPALLISTKIND(activate(V2))
ISPALLISTKIND(n____(V1, V2)) → U911(isPalListKind(activate(V1)), activate(V2))
ISPALLISTKIND(n____(V1, V2)) → ISPALLISTKIND(activate(V1))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isPalListKind(activate(V)), activate(V))
U12(tt, V) → U13(isNeList(activate(V)))
U13(tt) → tt
U21(tt, V1, V2) → U22(isPalListKind(activate(V1)), activate(V1), activate(V2))
U22(tt, V1, V2) → U23(isPalListKind(activate(V2)), activate(V1), activate(V2))
U23(tt, V1, V2) → U24(isPalListKind(activate(V2)), activate(V1), activate(V2))
U24(tt, V1, V2) → U25(isList(activate(V1)), activate(V2))
U25(tt, V2) → U26(isList(activate(V2)))
U26(tt) → tt
U31(tt, V) → U32(isPalListKind(activate(V)), activate(V))
U32(tt, V) → U33(isQid(activate(V)))
U33(tt) → tt
U41(tt, V1, V2) → U42(isPalListKind(activate(V1)), activate(V1), activate(V2))
U42(tt, V1, V2) → U43(isPalListKind(activate(V2)), activate(V1), activate(V2))
U43(tt, V1, V2) → U44(isPalListKind(activate(V2)), activate(V1), activate(V2))
U44(tt, V1, V2) → U45(isList(activate(V1)), activate(V2))
U45(tt, V2) → U46(isNeList(activate(V2)))
U46(tt) → tt
U51(tt, V1, V2) → U52(isPalListKind(activate(V1)), activate(V1), activate(V2))
U52(tt, V1, V2) → U53(isPalListKind(activate(V2)), activate(V1), activate(V2))
U53(tt, V1, V2) → U54(isPalListKind(activate(V2)), activate(V1), activate(V2))
U54(tt, V1, V2) → U55(isNeList(activate(V1)), activate(V2))
U55(tt, V2) → U56(isList(activate(V2)))
U56(tt) → tt
U61(tt, V) → U62(isPalListKind(activate(V)), activate(V))
U62(tt, V) → U63(isQid(activate(V)))
U63(tt) → tt
U71(tt, I, P) → U72(isPalListKind(activate(I)), activate(P))
U72(tt, P) → U73(isPal(activate(P)), activate(P))
U73(tt, P) → U74(isPalListKind(activate(P)))
U74(tt) → tt
U81(tt, V) → U82(isPalListKind(activate(V)), activate(V))
U82(tt, V) → U83(isNePal(activate(V)))
U83(tt) → tt
U91(tt, V2) → U92(isPalListKind(activate(V2)))
U92(tt) → tt
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → U71(isQid(activate(I)), activate(I), activate(P))
isPal(V) → U81(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → U91(isPalListKind(activate(V1)), activate(V2))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U911(tt, V2) → ISPALLISTKIND(activate(V2))
ISPALLISTKIND(n____(V1, V2)) → U911(isPalListKind(activate(V1)), activate(V2))
ISPALLISTKIND(n____(V1, V2)) → ISPALLISTKIND(activate(V1))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
U911(x0, x1, x2)  =  U911(x0, x1, x2)
ISPALLISTKIND(x0, x1)  =  ISPALLISTKIND(x0)

Tags:
U911 has argument tags [3,4,0] and root tag 1
ISPALLISTKIND has argument tags [0,6] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
U911(x1, x2)  =  U911
tt  =  tt
ISPALLISTKIND(x1)  =  x1
activate(x1)  =  x1
n____(x1, x2)  =  n____(x1, x2)
isPalListKind(x1)  =  isPalListKind
n__nil  =  n__nil
nil  =  nil
__(x1, x2)  =  __(x1, x2)
n__a  =  n__a
a  =  a
n__e  =  n__e
e  =  e
n__i  =  n__i
i  =  i
n__o  =  n__o
o  =  o
n__u  =  n__u
u  =  u
U91(x1, x2)  =  x1
U92(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[U91^1, n2, 2] > [tt, isPalListKind, nnil, nil]
[na, a] > [tt, isPalListKind, nnil, nil]
[ne, e] > [tt, isPalListKind, nnil, nil]
[ni, i] > [tt, isPalListKind, nnil, nil]
[no, o] > [tt, isPalListKind, nnil, nil]
[nu, u] > [tt, isPalListKind, nnil, nil]

Status:
U91^1: []
tt: multiset
n2: [1,2]
isPalListKind: multiset
nnil: multiset
nil: multiset
_2: [1,2]
na: multiset
a: multiset
ne: multiset
e: multiset
ni: multiset
i: multiset
no: multiset
o: multiset
nu: multiset
u: multiset


The following usable rules [FROCOS05] were oriented:

activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
__(X1, X2) → n____(X1, X2)
niln__nil
an__a
en__e
in__i
on__o
un__u

(17) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isPalListKind(activate(V)), activate(V))
U12(tt, V) → U13(isNeList(activate(V)))
U13(tt) → tt
U21(tt, V1, V2) → U22(isPalListKind(activate(V1)), activate(V1), activate(V2))
U22(tt, V1, V2) → U23(isPalListKind(activate(V2)), activate(V1), activate(V2))
U23(tt, V1, V2) → U24(isPalListKind(activate(V2)), activate(V1), activate(V2))
U24(tt, V1, V2) → U25(isList(activate(V1)), activate(V2))
U25(tt, V2) → U26(isList(activate(V2)))
U26(tt) → tt
U31(tt, V) → U32(isPalListKind(activate(V)), activate(V))
U32(tt, V) → U33(isQid(activate(V)))
U33(tt) → tt
U41(tt, V1, V2) → U42(isPalListKind(activate(V1)), activate(V1), activate(V2))
U42(tt, V1, V2) → U43(isPalListKind(activate(V2)), activate(V1), activate(V2))
U43(tt, V1, V2) → U44(isPalListKind(activate(V2)), activate(V1), activate(V2))
U44(tt, V1, V2) → U45(isList(activate(V1)), activate(V2))
U45(tt, V2) → U46(isNeList(activate(V2)))
U46(tt) → tt
U51(tt, V1, V2) → U52(isPalListKind(activate(V1)), activate(V1), activate(V2))
U52(tt, V1, V2) → U53(isPalListKind(activate(V2)), activate(V1), activate(V2))
U53(tt, V1, V2) → U54(isPalListKind(activate(V2)), activate(V1), activate(V2))
U54(tt, V1, V2) → U55(isNeList(activate(V1)), activate(V2))
U55(tt, V2) → U56(isList(activate(V2)))
U56(tt) → tt
U61(tt, V) → U62(isPalListKind(activate(V)), activate(V))
U62(tt, V) → U63(isQid(activate(V)))
U63(tt) → tt
U71(tt, I, P) → U72(isPalListKind(activate(I)), activate(P))
U72(tt, P) → U73(isPal(activate(P)), activate(P))
U73(tt, P) → U74(isPalListKind(activate(P)))
U74(tt) → tt
U81(tt, V) → U82(isPalListKind(activate(V)), activate(V))
U82(tt, V) → U83(isNePal(activate(V)))
U83(tt) → tt
U91(tt, V2) → U92(isPalListKind(activate(V2)))
U92(tt) → tt
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → U71(isQid(activate(I)), activate(I), activate(P))
isPal(V) → U81(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → U91(isPalListKind(activate(V1)), activate(V2))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(19) TRUE

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ISNEPAL(n____(I, n____(P, I))) → U711(isQid(activate(I)), activate(I), activate(P))
U711(tt, I, P) → U721(isPalListKind(activate(I)), activate(P))
U721(tt, P) → ISPAL(activate(P))
ISPAL(V) → U811(isPalListKind(activate(V)), activate(V))
U811(tt, V) → U821(isPalListKind(activate(V)), activate(V))
U821(tt, V) → ISNEPAL(activate(V))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isPalListKind(activate(V)), activate(V))
U12(tt, V) → U13(isNeList(activate(V)))
U13(tt) → tt
U21(tt, V1, V2) → U22(isPalListKind(activate(V1)), activate(V1), activate(V2))
U22(tt, V1, V2) → U23(isPalListKind(activate(V2)), activate(V1), activate(V2))
U23(tt, V1, V2) → U24(isPalListKind(activate(V2)), activate(V1), activate(V2))
U24(tt, V1, V2) → U25(isList(activate(V1)), activate(V2))
U25(tt, V2) → U26(isList(activate(V2)))
U26(tt) → tt
U31(tt, V) → U32(isPalListKind(activate(V)), activate(V))
U32(tt, V) → U33(isQid(activate(V)))
U33(tt) → tt
U41(tt, V1, V2) → U42(isPalListKind(activate(V1)), activate(V1), activate(V2))
U42(tt, V1, V2) → U43(isPalListKind(activate(V2)), activate(V1), activate(V2))
U43(tt, V1, V2) → U44(isPalListKind(activate(V2)), activate(V1), activate(V2))
U44(tt, V1, V2) → U45(isList(activate(V1)), activate(V2))
U45(tt, V2) → U46(isNeList(activate(V2)))
U46(tt) → tt
U51(tt, V1, V2) → U52(isPalListKind(activate(V1)), activate(V1), activate(V2))
U52(tt, V1, V2) → U53(isPalListKind(activate(V2)), activate(V1), activate(V2))
U53(tt, V1, V2) → U54(isPalListKind(activate(V2)), activate(V1), activate(V2))
U54(tt, V1, V2) → U55(isNeList(activate(V1)), activate(V2))
U55(tt, V2) → U56(isList(activate(V2)))
U56(tt) → tt
U61(tt, V) → U62(isPalListKind(activate(V)), activate(V))
U62(tt, V) → U63(isQid(activate(V)))
U63(tt) → tt
U71(tt, I, P) → U72(isPalListKind(activate(I)), activate(P))
U72(tt, P) → U73(isPal(activate(P)), activate(P))
U73(tt, P) → U74(isPalListKind(activate(P)))
U74(tt) → tt
U81(tt, V) → U82(isPalListKind(activate(V)), activate(V))
U82(tt, V) → U83(isNePal(activate(V)))
U83(tt) → tt
U91(tt, V2) → U92(isPalListKind(activate(V2)))
U92(tt) → tt
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → U71(isQid(activate(I)), activate(I), activate(P))
isPal(V) → U81(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → U91(isPalListKind(activate(V1)), activate(V2))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ISNEPAL(n____(I, n____(P, I))) → U711(isQid(activate(I)), activate(I), activate(P))
U721(tt, P) → ISPAL(activate(P))
U821(tt, V) → ISNEPAL(activate(V))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ISNEPAL(x0, x1)  =  ISNEPAL(x0, x1)
U711(x0, x1, x2, x3)  =  U711(x1, x3)
U721(x0, x1, x2)  =  U721(x0, x1, x2)
ISPAL(x0, x1)  =  ISPAL(x0, x1)
U811(x0, x1, x2)  =  U811(x0, x1)
U821(x0, x1, x2)  =  U821(x1, x2)

Tags:
ISNEPAL has argument tags [25,25] and root tag 0
U711 has argument tags [6,19,26,26] and root tag 5
U721 has argument tags [4,13,26] and root tag 5
ISPAL has argument tags [13,25] and root tag 2
U811 has argument tags [25,9,0] and root tag 2
U821 has argument tags [6,6,25] and root tag 2

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
ISNEPAL(x1)  =  x1
n____(x1, x2)  =  n____(x1, x2)
U711(x1, x2, x3)  =  U711(x1, x3)
isQid(x1)  =  isQid(x1)
activate(x1)  =  x1
tt  =  tt
U721(x1, x2)  =  x2
isPalListKind(x1)  =  isPalListKind
ISPAL(x1)  =  ISPAL
U811(x1, x2)  =  x2
U821(x1, x2)  =  U821(x1, x2)
n__nil  =  n__nil
nil  =  nil
__(x1, x2)  =  __(x1, x2)
n__a  =  n__a
a  =  a
n__e  =  n__e
e  =  e
n__i  =  n__i
i  =  i
n__o  =  n__o
o  =  o
n__u  =  n__u
u  =  u
U91(x1, x2)  =  x1
U92(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[n2, isQid1, 2] > [tt, isPalListKind, ISPAL] > U82^12
U71^12 > [tt, isPalListKind, ISPAL] > U82^12
[nnil, nil]
[na, a]
[ne, e]
[ni, i]
[no, o]
[nu, u]

Status:
n2: [1,2]
U71^12: multiset
isQid1: [1]
tt: multiset
isPalListKind: []
ISPAL: []
U82^12: multiset
nnil: multiset
nil: multiset
_2: [1,2]
na: multiset
a: multiset
ne: multiset
e: multiset
ni: multiset
i: multiset
no: multiset
o: multiset
nu: multiset
u: multiset


The following usable rules [FROCOS05] were oriented:

activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → U91(isPalListKind(activate(V1)), activate(V2))
U91(tt, V2) → U92(isPalListKind(activate(V2)))
U92(tt) → tt
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
__(X1, X2) → n____(X1, X2)
niln__nil
an__a
en__e
in__i
on__o
un__u

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U711(tt, I, P) → U721(isPalListKind(activate(I)), activate(P))
ISPAL(V) → U811(isPalListKind(activate(V)), activate(V))
U811(tt, V) → U821(isPalListKind(activate(V)), activate(V))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isPalListKind(activate(V)), activate(V))
U12(tt, V) → U13(isNeList(activate(V)))
U13(tt) → tt
U21(tt, V1, V2) → U22(isPalListKind(activate(V1)), activate(V1), activate(V2))
U22(tt, V1, V2) → U23(isPalListKind(activate(V2)), activate(V1), activate(V2))
U23(tt, V1, V2) → U24(isPalListKind(activate(V2)), activate(V1), activate(V2))
U24(tt, V1, V2) → U25(isList(activate(V1)), activate(V2))
U25(tt, V2) → U26(isList(activate(V2)))
U26(tt) → tt
U31(tt, V) → U32(isPalListKind(activate(V)), activate(V))
U32(tt, V) → U33(isQid(activate(V)))
U33(tt) → tt
U41(tt, V1, V2) → U42(isPalListKind(activate(V1)), activate(V1), activate(V2))
U42(tt, V1, V2) → U43(isPalListKind(activate(V2)), activate(V1), activate(V2))
U43(tt, V1, V2) → U44(isPalListKind(activate(V2)), activate(V1), activate(V2))
U44(tt, V1, V2) → U45(isList(activate(V1)), activate(V2))
U45(tt, V2) → U46(isNeList(activate(V2)))
U46(tt) → tt
U51(tt, V1, V2) → U52(isPalListKind(activate(V1)), activate(V1), activate(V2))
U52(tt, V1, V2) → U53(isPalListKind(activate(V2)), activate(V1), activate(V2))
U53(tt, V1, V2) → U54(isPalListKind(activate(V2)), activate(V1), activate(V2))
U54(tt, V1, V2) → U55(isNeList(activate(V1)), activate(V2))
U55(tt, V2) → U56(isList(activate(V2)))
U56(tt) → tt
U61(tt, V) → U62(isPalListKind(activate(V)), activate(V))
U62(tt, V) → U63(isQid(activate(V)))
U63(tt) → tt
U71(tt, I, P) → U72(isPalListKind(activate(I)), activate(P))
U72(tt, P) → U73(isPal(activate(P)), activate(P))
U73(tt, P) → U74(isPalListKind(activate(P)))
U74(tt) → tt
U81(tt, V) → U82(isPalListKind(activate(V)), activate(V))
U82(tt, V) → U83(isNePal(activate(V)))
U83(tt) → tt
U91(tt, V2) → U92(isPalListKind(activate(V2)))
U92(tt) → tt
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → U71(isQid(activate(I)), activate(I), activate(P))
isPal(V) → U81(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → U91(isPalListKind(activate(V1)), activate(V2))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 3 less nodes.

(24) TRUE

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(tt, V) → U121(isPalListKind(activate(V)), activate(V))
U121(tt, V) → ISNELIST(activate(V))
ISNELIST(n____(V1, V2)) → U411(isPalListKind(activate(V1)), activate(V1), activate(V2))
U411(tt, V1, V2) → U421(isPalListKind(activate(V1)), activate(V1), activate(V2))
U421(tt, V1, V2) → U431(isPalListKind(activate(V2)), activate(V1), activate(V2))
U431(tt, V1, V2) → U441(isPalListKind(activate(V2)), activate(V1), activate(V2))
U441(tt, V1, V2) → U451(isList(activate(V1)), activate(V2))
U451(tt, V2) → ISNELIST(activate(V2))
ISNELIST(n____(V1, V2)) → U511(isPalListKind(activate(V1)), activate(V1), activate(V2))
U511(tt, V1, V2) → U521(isPalListKind(activate(V1)), activate(V1), activate(V2))
U521(tt, V1, V2) → U531(isPalListKind(activate(V2)), activate(V1), activate(V2))
U531(tt, V1, V2) → U541(isPalListKind(activate(V2)), activate(V1), activate(V2))
U541(tt, V1, V2) → U551(isNeList(activate(V1)), activate(V2))
U551(tt, V2) → ISLIST(activate(V2))
ISLIST(V) → U111(isPalListKind(activate(V)), activate(V))
ISLIST(n____(V1, V2)) → U211(isPalListKind(activate(V1)), activate(V1), activate(V2))
U211(tt, V1, V2) → U221(isPalListKind(activate(V1)), activate(V1), activate(V2))
U221(tt, V1, V2) → U231(isPalListKind(activate(V2)), activate(V1), activate(V2))
U231(tt, V1, V2) → U241(isPalListKind(activate(V2)), activate(V1), activate(V2))
U241(tt, V1, V2) → U251(isList(activate(V1)), activate(V2))
U251(tt, V2) → ISLIST(activate(V2))
U241(tt, V1, V2) → ISLIST(activate(V1))
U541(tt, V1, V2) → ISNELIST(activate(V1))
U441(tt, V1, V2) → ISLIST(activate(V1))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isPalListKind(activate(V)), activate(V))
U12(tt, V) → U13(isNeList(activate(V)))
U13(tt) → tt
U21(tt, V1, V2) → U22(isPalListKind(activate(V1)), activate(V1), activate(V2))
U22(tt, V1, V2) → U23(isPalListKind(activate(V2)), activate(V1), activate(V2))
U23(tt, V1, V2) → U24(isPalListKind(activate(V2)), activate(V1), activate(V2))
U24(tt, V1, V2) → U25(isList(activate(V1)), activate(V2))
U25(tt, V2) → U26(isList(activate(V2)))
U26(tt) → tt
U31(tt, V) → U32(isPalListKind(activate(V)), activate(V))
U32(tt, V) → U33(isQid(activate(V)))
U33(tt) → tt
U41(tt, V1, V2) → U42(isPalListKind(activate(V1)), activate(V1), activate(V2))
U42(tt, V1, V2) → U43(isPalListKind(activate(V2)), activate(V1), activate(V2))
U43(tt, V1, V2) → U44(isPalListKind(activate(V2)), activate(V1), activate(V2))
U44(tt, V1, V2) → U45(isList(activate(V1)), activate(V2))
U45(tt, V2) → U46(isNeList(activate(V2)))
U46(tt) → tt
U51(tt, V1, V2) → U52(isPalListKind(activate(V1)), activate(V1), activate(V2))
U52(tt, V1, V2) → U53(isPalListKind(activate(V2)), activate(V1), activate(V2))
U53(tt, V1, V2) → U54(isPalListKind(activate(V2)), activate(V1), activate(V2))
U54(tt, V1, V2) → U55(isNeList(activate(V1)), activate(V2))
U55(tt, V2) → U56(isList(activate(V2)))
U56(tt) → tt
U61(tt, V) → U62(isPalListKind(activate(V)), activate(V))
U62(tt, V) → U63(isQid(activate(V)))
U63(tt) → tt
U71(tt, I, P) → U72(isPalListKind(activate(I)), activate(P))
U72(tt, P) → U73(isPal(activate(P)), activate(P))
U73(tt, P) → U74(isPalListKind(activate(P)))
U74(tt) → tt
U81(tt, V) → U82(isPalListKind(activate(V)), activate(V))
U82(tt, V) → U83(isNePal(activate(V)))
U83(tt) → tt
U91(tt, V2) → U92(isPalListKind(activate(V2)))
U92(tt) → tt
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → U71(isQid(activate(I)), activate(I), activate(P))
isPal(V) → U81(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → U91(isPalListKind(activate(V1)), activate(V2))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U111(tt, V) → U121(isPalListKind(activate(V)), activate(V))
U121(tt, V) → ISNELIST(activate(V))
ISNELIST(n____(V1, V2)) → U411(isPalListKind(activate(V1)), activate(V1), activate(V2))
U431(tt, V1, V2) → U441(isPalListKind(activate(V2)), activate(V1), activate(V2))
U451(tt, V2) → ISNELIST(activate(V2))
ISNELIST(n____(V1, V2)) → U511(isPalListKind(activate(V1)), activate(V1), activate(V2))
U511(tt, V1, V2) → U521(isPalListKind(activate(V1)), activate(V1), activate(V2))
U521(tt, V1, V2) → U531(isPalListKind(activate(V2)), activate(V1), activate(V2))
U531(tt, V1, V2) → U541(isPalListKind(activate(V2)), activate(V1), activate(V2))
U551(tt, V2) → ISLIST(activate(V2))
ISLIST(V) → U111(isPalListKind(activate(V)), activate(V))
ISLIST(n____(V1, V2)) → U211(isPalListKind(activate(V1)), activate(V1), activate(V2))
U221(tt, V1, V2) → U231(isPalListKind(activate(V2)), activate(V1), activate(V2))
U231(tt, V1, V2) → U241(isPalListKind(activate(V2)), activate(V1), activate(V2))
U251(tt, V2) → ISLIST(activate(V2))
U241(tt, V1, V2) → ISLIST(activate(V1))
U541(tt, V1, V2) → ISNELIST(activate(V1))
U441(tt, V1, V2) → ISLIST(activate(V1))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
U111(x0, x1, x2)  =  U111(x1, x2)
U121(x0, x1, x2)  =  U121(x2)
ISNELIST(x0, x1)  =  ISNELIST(x1)
U411(x0, x1, x2, x3)  =  U411(x2, x3)
U421(x0, x1, x2, x3)  =  U421(x2, x3)
U431(x0, x1, x2, x3)  =  U431(x2, x3)
U441(x0, x1, x2, x3)  =  U441(x2, x3)
U451(x0, x1, x2)  =  U451(x0)
U511(x0, x1, x2, x3)  =  U511(x0, x1)
U521(x0, x1, x2, x3)  =  U521(x0, x1, x3)
U531(x0, x1, x2, x3)  =  U531(x0)
U541(x0, x1, x2, x3)  =  U541(x0, x1)
U551(x0, x1, x2)  =  U551(x0, x2)
ISLIST(x0, x1)  =  ISLIST(x1)
U211(x0, x1, x2, x3)  =  U211(x2, x3)
U221(x0, x1, x2, x3)  =  U221(x2, x3)
U231(x0, x1, x2, x3)  =  U231(x2, x3)
U241(x0, x1, x2, x3)  =  U241(x1, x2, x3)
U251(x0, x1, x2)  =  U251(x0, x2)

Tags:
U111 has argument tags [24,76,72] and root tag 10
U121 has argument tags [29,54,66] and root tag 0
ISNELIST has argument tags [113,46] and root tag 16
U411 has argument tags [18,115,76,48] and root tag 28
U421 has argument tags [65,92,76,48] and root tag 28
U431 has argument tags [48,11,76,48] and root tag 28
U441 has argument tags [51,116,76,46] and root tag 27
U451 has argument tags [46,13,81] and root tag 27
U511 has argument tags [14,34,97,124] and root tag 19
U521 has argument tags [31,94,63,2] and root tag 28
U531 has argument tags [38,124,112,0] and root tag 31
U541 has argument tags [1,17,12,40] and root tag 0
U551 has argument tags [17,25,112] and root tag 0
ISLIST has argument tags [33,76] and root tag 17
U211 has argument tags [61,95,77,96] and root tag 28
U221 has argument tags [2,112,77,96] and root tag 28
U231 has argument tags [13,127,76,96] and root tag 24
U241 has argument tags [48,96,76,76] and root tag 22
U251 has argument tags [76,64,0] and root tag 22

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
U111(x1, x2)  =  U111(x2)
tt  =  tt
U121(x1, x2)  =  U121(x1, x2)
isPalListKind(x1)  =  x1
activate(x1)  =  x1
ISNELIST(x1)  =  x1
n____(x1, x2)  =  n____(x1, x2)
U411(x1, x2, x3)  =  x2
U421(x1, x2, x3)  =  U421(x3)
U431(x1, x2, x3)  =  x3
U441(x1, x2, x3)  =  U441(x1, x3)
U451(x1, x2)  =  x2
isList(x1)  =  isList
U511(x1, x2, x3)  =  U511(x2, x3)
U521(x1, x2, x3)  =  U521(x1, x2, x3)
U531(x1, x2, x3)  =  U531(x1, x2, x3)
U541(x1, x2, x3)  =  U541(x2, x3)
U551(x1, x2)  =  U551
isNeList(x1)  =  x1
ISLIST(x1)  =  ISLIST
U211(x1, x2, x3)  =  x1
U221(x1, x2, x3)  =  U221(x1, x2, x3)
U231(x1, x2, x3)  =  U231(x1, x2, x3)
U241(x1, x2, x3)  =  x1
U251(x1, x2)  =  x2
n__nil  =  n__nil
nil  =  nil
__(x1, x2)  =  __(x1, x2)
n__a  =  n__a
a  =  a
n__e  =  n__e
e  =  e
n__i  =  n__i
i  =  i
n__o  =  n__o
o  =  o
n__u  =  n__u
u  =  u
U91(x1, x2)  =  U91
U11(x1, x2)  =  x1
U21(x1, x2, x3)  =  x2
U31(x1, x2)  =  U31(x1, x2)
U41(x1, x2, x3)  =  U41
U51(x1, x2, x3)  =  x1
U42(x1, x2, x3)  =  U42(x1, x2, x3)
U12(x1, x2)  =  U12(x1)
U22(x1, x2, x3)  =  U22(x1, x2)
U52(x1, x2, x3)  =  U52(x1, x2, x3)
U43(x1, x2, x3)  =  U43(x1, x3)
U13(x1)  =  U13
U23(x1, x2, x3)  =  x1
U53(x1, x2, x3)  =  x2
U44(x1, x2, x3)  =  U44(x1, x2, x3)
U24(x1, x2, x3)  =  U24(x1, x2, x3)
U54(x1, x2, x3)  =  U54(x1)
U45(x1, x2)  =  U45
U25(x1, x2)  =  U25
U55(x1, x2)  =  x2
U46(x1)  =  U46(x1)
U26(x1)  =  U26(x1)
U56(x1)  =  U56
U32(x1, x2)  =  x2
U33(x1)  =  U33(x1)
isQid(x1)  =  x1
U92(x1)  =  U92

Recursive path order with status [RPO].
Quasi-Precedence:
U12^12 > U523
[n2, U51^12, 2, U91] > U52^13 > U53^13 > U54^12 > U523
[n2, U51^12, 2, U91] > U41 > [tt, U55^1, U423, U222, U13] > U54^12 > U523
[n2, U51^12, 2, U91] > U41 > [tt, U55^1, U423, U222, U13] > U432 > U523
[n2, U51^12, 2, U91] > U41 > [tt, U55^1, U423, U222, U13] > U331 > U523
[n2, U51^12, 2, U91] > U92 > [tt, U55^1, U423, U222, U13] > U54^12 > U523
[n2, U51^12, 2, U91] > U92 > [tt, U55^1, U423, U222, U13] > U432 > U523
[n2, U51^12, 2, U91] > U92 > [tt, U55^1, U423, U222, U13] > U331 > U523
U42^11 > U523
U44^12 > U523
ISLIST > U11^11 > U523
U22^13 > U523
U23^13 > U523
[nnil, nil] > [tt, U55^1, U423, U222, U13] > U54^12 > U523
[nnil, nil] > [tt, U55^1, U423, U222, U13] > U432 > U523
[nnil, nil] > [tt, U55^1, U423, U222, U13] > U331 > U523
[na, a] > [tt, U55^1, U423, U222, U13] > U54^12 > U523
[na, a] > [tt, U55^1, U423, U222, U13] > U432 > U523
[na, a] > [tt, U55^1, U423, U222, U13] > U331 > U523
[ne, e] > [tt, U55^1, U423, U222, U13] > U54^12 > U523
[ne, e] > [tt, U55^1, U423, U222, U13] > U432 > U523
[ne, e] > [tt, U55^1, U423, U222, U13] > U331 > U523
[ni, i] > [tt, U55^1, U423, U222, U13] > U54^12 > U523
[ni, i] > [tt, U55^1, U423, U222, U13] > U432 > U523
[ni, i] > [tt, U55^1, U423, U222, U13] > U331 > U523
[no, o] > [tt, U55^1, U423, U222, U13] > U54^12 > U523
[no, o] > [tt, U55^1, U423, U222, U13] > U432 > U523
[no, o] > [tt, U55^1, U423, U222, U13] > U331 > U523
[nu, u] > [tt, U55^1, U423, U222, U13] > U54^12 > U523
[nu, u] > [tt, U55^1, U423, U222, U13] > U432 > U523
[nu, u] > [tt, U55^1, U423, U222, U13] > U331 > U523
U312 > U523
U121 > [tt, U55^1, U423, U222, U13] > U54^12 > U523
U121 > [tt, U55^1, U423, U222, U13] > U432 > U523
U121 > [tt, U55^1, U423, U222, U13] > U331 > U523
U443 > [isList, U243] > [tt, U55^1, U423, U222, U13] > U54^12 > U523
U443 > [isList, U243] > [tt, U55^1, U423, U222, U13] > U432 > U523
U443 > [isList, U243] > [tt, U55^1, U423, U222, U13] > U331 > U523
U443 > [isList, U243] > U25 > U523
U541 > U523
U45 > U523
U461 > [tt, U55^1, U423, U222, U13] > U54^12 > U523
U461 > [tt, U55^1, U423, U222, U13] > U432 > U523
U461 > [tt, U55^1, U423, U222, U13] > U331 > U523
U261 > [tt, U55^1, U423, U222, U13] > U54^12 > U523
U261 > [tt, U55^1, U423, U222, U13] > U432 > U523
U261 > [tt, U55^1, U423, U222, U13] > U331 > U523
U56 > [tt, U55^1, U423, U222, U13] > U54^12 > U523
U56 > [tt, U55^1, U423, U222, U13] > U432 > U523
U56 > [tt, U55^1, U423, U222, U13] > U331 > U523

Status:
U11^11: [1]
tt: multiset
U12^12: [1,2]
n2: [1,2]
U42^11: [1]
U44^12: [2,1]
isList: []
U51^12: [1,2]
U52^13: multiset
U53^13: multiset
U54^12: multiset
U55^1: multiset
ISLIST: []
U22^13: multiset
U23^13: [1,3,2]
nnil: multiset
nil: multiset
_2: [1,2]
na: multiset
a: multiset
ne: multiset
e: multiset
ni: multiset
i: multiset
no: multiset
o: multiset
nu: multiset
u: multiset
U91: []
U312: [1,2]
U41: multiset
U423: multiset
U121: multiset
U222: [1,2]
U523: [2,3,1]
U432: multiset
U13: []
U443: multiset
U243: multiset
U541: multiset
U45: []
U25: []
U461: [1]
U261: multiset
U56: []
U331: [1]
U92: []


The following usable rules [FROCOS05] were oriented:

activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → U91(isPalListKind(activate(V1)), activate(V2))
U91(tt, V2) → U92(isPalListKind(activate(V2)))
U92(tt) → tt
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
__(X1, X2) → n____(X1, X2)
niln__nil
an__a
en__e
in__i
on__o
un__u

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U411(tt, V1, V2) → U421(isPalListKind(activate(V1)), activate(V1), activate(V2))
U421(tt, V1, V2) → U431(isPalListKind(activate(V2)), activate(V1), activate(V2))
U441(tt, V1, V2) → U451(isList(activate(V1)), activate(V2))
U541(tt, V1, V2) → U551(isNeList(activate(V1)), activate(V2))
U211(tt, V1, V2) → U221(isPalListKind(activate(V1)), activate(V1), activate(V2))
U241(tt, V1, V2) → U251(isList(activate(V1)), activate(V2))

The TRS R consists of the following rules:

__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt, V) → U12(isPalListKind(activate(V)), activate(V))
U12(tt, V) → U13(isNeList(activate(V)))
U13(tt) → tt
U21(tt, V1, V2) → U22(isPalListKind(activate(V1)), activate(V1), activate(V2))
U22(tt, V1, V2) → U23(isPalListKind(activate(V2)), activate(V1), activate(V2))
U23(tt, V1, V2) → U24(isPalListKind(activate(V2)), activate(V1), activate(V2))
U24(tt, V1, V2) → U25(isList(activate(V1)), activate(V2))
U25(tt, V2) → U26(isList(activate(V2)))
U26(tt) → tt
U31(tt, V) → U32(isPalListKind(activate(V)), activate(V))
U32(tt, V) → U33(isQid(activate(V)))
U33(tt) → tt
U41(tt, V1, V2) → U42(isPalListKind(activate(V1)), activate(V1), activate(V2))
U42(tt, V1, V2) → U43(isPalListKind(activate(V2)), activate(V1), activate(V2))
U43(tt, V1, V2) → U44(isPalListKind(activate(V2)), activate(V1), activate(V2))
U44(tt, V1, V2) → U45(isList(activate(V1)), activate(V2))
U45(tt, V2) → U46(isNeList(activate(V2)))
U46(tt) → tt
U51(tt, V1, V2) → U52(isPalListKind(activate(V1)), activate(V1), activate(V2))
U52(tt, V1, V2) → U53(isPalListKind(activate(V2)), activate(V1), activate(V2))
U53(tt, V1, V2) → U54(isPalListKind(activate(V2)), activate(V1), activate(V2))
U54(tt, V1, V2) → U55(isNeList(activate(V1)), activate(V2))
U55(tt, V2) → U56(isList(activate(V2)))
U56(tt) → tt
U61(tt, V) → U62(isPalListKind(activate(V)), activate(V))
U62(tt, V) → U63(isQid(activate(V)))
U63(tt) → tt
U71(tt, I, P) → U72(isPalListKind(activate(I)), activate(P))
U72(tt, P) → U73(isPal(activate(P)), activate(P))
U73(tt, P) → U74(isPalListKind(activate(P)))
U74(tt) → tt
U81(tt, V) → U82(isPalListKind(activate(V)), activate(V))
U82(tt, V) → U83(isNePal(activate(V)))
U83(tt) → tt
U91(tt, V2) → U92(isPalListKind(activate(V2)))
U92(tt) → tt
isList(V) → U11(isPalListKind(activate(V)), activate(V))
isList(n__nil) → tt
isList(n____(V1, V2)) → U21(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNeList(V) → U31(isPalListKind(activate(V)), activate(V))
isNeList(n____(V1, V2)) → U41(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNeList(n____(V1, V2)) → U51(isPalListKind(activate(V1)), activate(V1), activate(V2))
isNePal(V) → U61(isPalListKind(activate(V)), activate(V))
isNePal(n____(I, n____(P, I))) → U71(isQid(activate(I)), activate(I), activate(P))
isPal(V) → U81(isPalListKind(activate(V)), activate(V))
isPal(n__nil) → tt
isPalListKind(n__a) → tt
isPalListKind(n__e) → tt
isPalListKind(n__i) → tt
isPalListKind(n__nil) → tt
isPalListKind(n__o) → tt
isPalListKind(n__u) → tt
isPalListKind(n____(V1, V2)) → U91(isPalListKind(activate(V1)), activate(V2))
isQid(n__a) → tt
isQid(n__e) → tt
isQid(n__i) → tt
isQid(n__o) → tt
isQid(n__u) → tt
niln__nil
__(X1, X2) → n____(X1, X2)
an__a
en__e
in__i
on__o
un__u
activate(n__nil) → nil
activate(n____(X1, X2)) → __(activate(X1), activate(X2))
activate(n__a) → a
activate(n__e) → e
activate(n__i) → i
activate(n__o) → o
activate(n__u) → u
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 6 less nodes.

(29) TRUE