(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

U11(tt, M, N) → U12(tt, activate(M), activate(N))
U12(tt, M, N) → s(plus(activate(N), activate(M)))
U21(tt, M, N) → U22(tt, activate(M), activate(N))
U22(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
plus(N, 0) → N
plus(N, s(M)) → U11(tt, M, N)
x(N, 0) → 0
x(N, s(M)) → U21(tt, M, N)
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(tt, M, N) → U121(tt, activate(M), activate(N))
U111(tt, M, N) → ACTIVATE(M)
U111(tt, M, N) → ACTIVATE(N)
U121(tt, M, N) → PLUS(activate(N), activate(M))
U121(tt, M, N) → ACTIVATE(N)
U121(tt, M, N) → ACTIVATE(M)
U211(tt, M, N) → U221(tt, activate(M), activate(N))
U211(tt, M, N) → ACTIVATE(M)
U211(tt, M, N) → ACTIVATE(N)
U221(tt, M, N) → PLUS(x(activate(N), activate(M)), activate(N))
U221(tt, M, N) → X(activate(N), activate(M))
U221(tt, M, N) → ACTIVATE(N)
U221(tt, M, N) → ACTIVATE(M)
PLUS(N, s(M)) → U111(tt, M, N)
X(N, s(M)) → U211(tt, M, N)

The TRS R consists of the following rules:

U11(tt, M, N) → U12(tt, activate(M), activate(N))
U12(tt, M, N) → s(plus(activate(N), activate(M)))
U21(tt, M, N) → U22(tt, activate(M), activate(N))
U22(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
plus(N, 0) → N
plus(N, s(M)) → U11(tt, M, N)
x(N, 0) → 0
x(N, s(M)) → U21(tt, M, N)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 9 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U121(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → U111(tt, M, N)
U111(tt, M, N) → U121(tt, activate(M), activate(N))

The TRS R consists of the following rules:

U11(tt, M, N) → U12(tt, activate(M), activate(N))
U12(tt, M, N) → s(plus(activate(N), activate(M)))
U21(tt, M, N) → U22(tt, activate(M), activate(N))
U22(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
plus(N, 0) → N
plus(N, s(M)) → U11(tt, M, N)
x(N, 0) → 0
x(N, s(M)) → U21(tt, M, N)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPSizeChangeProof (EQUIVALENT transformation)

We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.

Order:Combined order from the following AFS and order.
activate(x1)  =  x1
tt  =  tt
s(x1)  =  s(x1)

Homeomorphic Embedding Order

AFS:
activate(x1)  =  x1
tt  =  tt
s(x1)  =  s(x1)

From the DPs we obtained the following set of size-change graphs:

  • PLUS(N, s(M)) → U111(tt, M, N) (allowed arguments on rhs = {2, 3})
    The graph contains the following edges 2 > 2, 1 >= 3

  • U111(tt, M, N) → U121(tt, activate(M), activate(N)) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 1 >= 1, 2 >= 2

  • U121(tt, M, N) → PLUS(activate(N), activate(M)) (allowed arguments on rhs = {2})
    The graph contains the following edges 2 >= 2

We oriented the following set of usable rules [AAECC05,FROCOS05].


activate(X) → X

(7) TRUE

(8) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U221(tt, M, N) → X(activate(N), activate(M))
X(N, s(M)) → U211(tt, M, N)
U211(tt, M, N) → U221(tt, activate(M), activate(N))

The TRS R consists of the following rules:

U11(tt, M, N) → U12(tt, activate(M), activate(N))
U12(tt, M, N) → s(plus(activate(N), activate(M)))
U21(tt, M, N) → U22(tt, activate(M), activate(N))
U22(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
plus(N, 0) → N
plus(N, s(M)) → U11(tt, M, N)
x(N, 0) → 0
x(N, s(M)) → U21(tt, M, N)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(9) QDPSizeChangeProof (EQUIVALENT transformation)

We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.

Order:Combined order from the following AFS and order.
activate(x1)  =  x1
tt  =  tt
s(x1)  =  s(x1)

Homeomorphic Embedding Order

AFS:
activate(x1)  =  x1
tt  =  tt
s(x1)  =  s(x1)

From the DPs we obtained the following set of size-change graphs:

  • X(N, s(M)) → U211(tt, M, N) (allowed arguments on rhs = {2, 3})
    The graph contains the following edges 2 > 2, 1 >= 3

  • U211(tt, M, N) → U221(tt, activate(M), activate(N)) (allowed arguments on rhs = {1, 2})
    The graph contains the following edges 1 >= 1, 2 >= 2

  • U221(tt, M, N) → X(activate(N), activate(M)) (allowed arguments on rhs = {2})
    The graph contains the following edges 2 >= 2

We oriented the following set of usable rules [AAECC05,FROCOS05].


activate(X) → X

(10) TRUE