(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

U11(tt, N) → activate(N)
U21(tt, M, N) → s(plus(activate(N), activate(M)))
U31(tt) → 0
U41(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
isNat(n__s(V1)) → isNat(activate(V1))
isNat(n__x(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
x(N, 0) → U31(isNat(N))
x(N, s(M)) → U41(and(isNat(M), n__isNat(N)), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNat(X) → n__isNat(X)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNat(X)) → isNat(X)
activate(n__s(X)) → s(X)
activate(n__x(X1, X2)) → x(X1, X2)
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(tt, N) → ACTIVATE(N)
U211(tt, M, N) → S(plus(activate(N), activate(M)))
U211(tt, M, N) → PLUS(activate(N), activate(M))
U211(tt, M, N) → ACTIVATE(N)
U211(tt, M, N) → ACTIVATE(M)
U311(tt) → 01
U411(tt, M, N) → PLUS(x(activate(N), activate(M)), activate(N))
U411(tt, M, N) → X(activate(N), activate(M))
U411(tt, M, N) → ACTIVATE(N)
U411(tt, M, N) → ACTIVATE(M)
AND(tt, X) → ACTIVATE(X)
ISNAT(n__plus(V1, V2)) → AND(isNat(activate(V1)), n__isNat(activate(V2)))
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNAT(n__x(V1, V2)) → AND(isNat(activate(V1)), n__isNat(activate(V2)))
ISNAT(n__x(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__x(V1, V2)) → ACTIVATE(V1)
ISNAT(n__x(V1, V2)) → ACTIVATE(V2)
PLUS(N, 0) → U111(isNat(N), N)
PLUS(N, 0) → ISNAT(N)
PLUS(N, s(M)) → U211(and(isNat(M), n__isNat(N)), M, N)
PLUS(N, s(M)) → AND(isNat(M), n__isNat(N))
PLUS(N, s(M)) → ISNAT(M)
X(N, 0) → U311(isNat(N))
X(N, 0) → ISNAT(N)
X(N, s(M)) → U411(and(isNat(M), n__isNat(N)), M, N)
X(N, s(M)) → AND(isNat(M), n__isNat(N))
X(N, s(M)) → ISNAT(M)
ACTIVATE(n__0) → 01
ACTIVATE(n__plus(X1, X2)) → PLUS(X1, X2)
ACTIVATE(n__isNat(X)) → ISNAT(X)
ACTIVATE(n__s(X)) → S(X)
ACTIVATE(n__x(X1, X2)) → X(X1, X2)

The TRS R consists of the following rules:

U11(tt, N) → activate(N)
U21(tt, M, N) → s(plus(activate(N), activate(M)))
U31(tt) → 0
U41(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
isNat(n__s(V1)) → isNat(activate(V1))
isNat(n__x(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
x(N, 0) → U31(isNat(N))
x(N, s(M)) → U41(and(isNat(M), n__isNat(N)), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNat(X) → n__isNat(X)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNat(X)) → isNat(X)
activate(n__s(X)) → s(X)
activate(n__x(X1, X2)) → x(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 5 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__plus(X1, X2)) → PLUS(X1, X2)
PLUS(N, 0) → U111(isNat(N), N)
U111(tt, N) → ACTIVATE(N)
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNAT(n__plus(V1, V2)) → AND(isNat(activate(V1)), n__isNat(activate(V2)))
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__x(X1, X2)) → X(X1, X2)
X(N, 0) → ISNAT(N)
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNAT(n__x(V1, V2)) → AND(isNat(activate(V1)), n__isNat(activate(V2)))
ISNAT(n__x(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__x(V1, V2)) → ACTIVATE(V1)
ISNAT(n__x(V1, V2)) → ACTIVATE(V2)
X(N, s(M)) → U411(and(isNat(M), n__isNat(N)), M, N)
U411(tt, M, N) → PLUS(x(activate(N), activate(M)), activate(N))
PLUS(N, 0) → ISNAT(N)
PLUS(N, s(M)) → U211(and(isNat(M), n__isNat(N)), M, N)
U211(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → AND(isNat(M), n__isNat(N))
PLUS(N, s(M)) → ISNAT(M)
U211(tt, M, N) → ACTIVATE(N)
U211(tt, M, N) → ACTIVATE(M)
U411(tt, M, N) → X(activate(N), activate(M))
X(N, s(M)) → AND(isNat(M), n__isNat(N))
X(N, s(M)) → ISNAT(M)
U411(tt, M, N) → ACTIVATE(N)
U411(tt, M, N) → ACTIVATE(M)

The TRS R consists of the following rules:

U11(tt, N) → activate(N)
U21(tt, M, N) → s(plus(activate(N), activate(M)))
U31(tt) → 0
U41(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
isNat(n__s(V1)) → isNat(activate(V1))
isNat(n__x(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
x(N, 0) → U31(isNat(N))
x(N, s(M)) → U41(and(isNat(M), n__isNat(N)), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNat(X) → n__isNat(X)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNat(X)) → isNat(X)
activate(n__s(X)) → s(X)
activate(n__x(X1, X2)) → x(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__plus(X1, X2)) → PLUS(X1, X2)
PLUS(N, 0) → U111(isNat(N), N)
U111(tt, N) → ACTIVATE(N)
ACTIVATE(n__isNat(X)) → ISNAT(X)
ISNAT(n__plus(V1, V2)) → AND(isNat(activate(V1)), n__isNat(activate(V2)))
AND(tt, X) → ACTIVATE(X)
ACTIVATE(n__x(X1, X2)) → X(X1, X2)
X(N, 0) → ISNAT(N)
ISNAT(n__plus(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__plus(V1, V2)) → ACTIVATE(V1)
ISNAT(n__plus(V1, V2)) → ACTIVATE(V2)
ISNAT(n__s(V1)) → ISNAT(activate(V1))
ISNAT(n__s(V1)) → ACTIVATE(V1)
ISNAT(n__x(V1, V2)) → AND(isNat(activate(V1)), n__isNat(activate(V2)))
ISNAT(n__x(V1, V2)) → ISNAT(activate(V1))
ISNAT(n__x(V1, V2)) → ACTIVATE(V1)
ISNAT(n__x(V1, V2)) → ACTIVATE(V2)
X(N, s(M)) → U411(and(isNat(M), n__isNat(N)), M, N)
U411(tt, M, N) → PLUS(x(activate(N), activate(M)), activate(N))
PLUS(N, 0) → ISNAT(N)
PLUS(N, s(M)) → U211(and(isNat(M), n__isNat(N)), M, N)
U211(tt, M, N) → PLUS(activate(N), activate(M))
PLUS(N, s(M)) → AND(isNat(M), n__isNat(N))
PLUS(N, s(M)) → ISNAT(M)
U211(tt, M, N) → ACTIVATE(N)
U211(tt, M, N) → ACTIVATE(M)
U411(tt, M, N) → X(activate(N), activate(M))
X(N, s(M)) → AND(isNat(M), n__isNat(N))
X(N, s(M)) → ISNAT(M)
U411(tt, M, N) → ACTIVATE(N)
U411(tt, M, N) → ACTIVATE(M)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ACTIVATE(x0, x1)  =  ACTIVATE(x0, x1)
PLUS(x0, x1, x2)  =  PLUS(x0, x1, x2)
U111(x0, x1, x2)  =  U111(x0)
ISNAT(x0, x1)  =  ISNAT(x0)
AND(x0, x1, x2)  =  AND(x1, x2)
X(x0, x1, x2)  =  X(x0)
U411(x0, x1, x2, x3)  =  U411(x0, x1, x3)
U211(x0, x1, x2, x3)  =  U211(x2, x3)

Tags:
ACTIVATE has argument tags [1,0] and root tag 0
PLUS has argument tags [8,17,6] and root tag 4
U111 has argument tags [17,22,0] and root tag 4
ISNAT has argument tags [1,18] and root tag 0
AND has argument tags [0,23,17] and root tag 5
X has argument tags [1,2,16] and root tag 1
U411 has argument tags [0,17,0,4] and root tag 4
U211 has argument tags [0,6,18,17] and root tag 0

Comparison: MS
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
ACTIVATE(x1)  =  x1
n__plus(x1, x2)  =  n__plus(x1, x2)
PLUS(x1, x2)  =  PLUS
0  =  0
U111(x1, x2)  =  x2
isNat(x1)  =  x1
tt  =  tt
n__isNat(x1)  =  x1
ISNAT(x1)  =  x1
AND(x1, x2)  =  x2
activate(x1)  =  x1
n__x(x1, x2)  =  n__x(x1, x2)
X(x1, x2)  =  X(x1, x2)
n__s(x1)  =  n__s(x1)
s(x1)  =  s(x1)
U411(x1, x2, x3)  =  U411(x1, x2, x3)
and(x1, x2)  =  and(x1, x2)
x(x1, x2)  =  x(x1, x2)
U211(x1, x2, x3)  =  x1
n__0  =  n__0
plus(x1, x2)  =  plus(x1, x2)
U11(x1, x2)  =  x2
U41(x1, x2, x3)  =  U41(x1, x2, x3)
U31(x1)  =  U31(x1)
U21(x1, x2, x3)  =  U21(x1, x2, x3)

Recursive path order with status [RPO].
Quasi-Precedence:
[0, tt, n0] > [nplus2, plus2, U213] > and2 > [PLUS, ns1, s1]
[0, tt, n0] > U311 > [PLUS, ns1, s1]
[nx2, X2, U41^13, x2, U413] > [nplus2, plus2, U213] > and2 > [PLUS, ns1, s1]
[nx2, X2, U41^13, x2, U413] > U311 > [PLUS, ns1, s1]

Status:
nplus2: [1,2]
PLUS: multiset
0: multiset
tt: multiset
nx2: [1,2]
X2: [1,2]
ns1: multiset
s1: multiset
U41^13: [3,2,1]
and2: multiset
x2: [1,2]
n0: multiset
plus2: [1,2]
U413: [3,2,1]
U311: [1]
U213: [3,2,1]


The following usable rules [FROCOS05] were oriented:

isNat(n__0) → tt
activate(n__plus(X1, X2)) → plus(X1, X2)
plus(N, 0) → U11(isNat(N), N)
U11(tt, N) → activate(N)
activate(n__isNat(X)) → isNat(X)
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
and(tt, X) → activate(X)
activate(n__x(X1, X2)) → x(X1, X2)
x(N, s(M)) → U41(and(isNat(M), n__isNat(N)), M, N)
U41(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
isNat(n__s(V1)) → isNat(activate(V1))
isNat(n__x(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
isNat(X) → n__isNat(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(X) → X
x(N, 0) → U31(isNat(N))
x(X1, X2) → n__x(X1, X2)
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
U21(tt, M, N) → s(plus(activate(N), activate(M)))
plus(X1, X2) → n__plus(X1, X2)
s(X) → n__s(X)
U31(tt) → 0
0n__0

(6) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

U11(tt, N) → activate(N)
U21(tt, M, N) → s(plus(activate(N), activate(M)))
U31(tt) → 0
U41(tt, M, N) → plus(x(activate(N), activate(M)), activate(N))
and(tt, X) → activate(X)
isNat(n__0) → tt
isNat(n__plus(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
isNat(n__s(V1)) → isNat(activate(V1))
isNat(n__x(V1, V2)) → and(isNat(activate(V1)), n__isNat(activate(V2)))
plus(N, 0) → U11(isNat(N), N)
plus(N, s(M)) → U21(and(isNat(M), n__isNat(N)), M, N)
x(N, 0) → U31(isNat(N))
x(N, s(M)) → U41(and(isNat(M), n__isNat(N)), M, N)
0n__0
plus(X1, X2) → n__plus(X1, X2)
isNat(X) → n__isNat(X)
s(X) → n__s(X)
x(X1, X2) → n__x(X1, X2)
activate(n__0) → 0
activate(n__plus(X1, X2)) → plus(X1, X2)
activate(n__isNat(X)) → isNat(X)
activate(n__s(X)) → s(X)
activate(n__x(X1, X2)) → x(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(8) TRUE