(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U101(tt, M, N) → A__U102(a__isNatKind(M), M, N)
A__U101(tt, M, N) → A__ISNATKIND(M)
A__U102(tt, M, N) → A__U103(a__isNat(N), M, N)
A__U102(tt, M, N) → A__ISNAT(N)
A__U103(tt, M, N) → A__U104(a__isNatKind(N), M, N)
A__U103(tt, M, N) → A__ISNATKIND(N)
A__U104(tt, M, N) → A__PLUS(a__x(mark(N), mark(M)), mark(N))
A__U104(tt, M, N) → A__X(mark(N), mark(M))
A__U104(tt, M, N) → MARK(N)
A__U104(tt, M, N) → MARK(M)
A__U11(tt, V1, V2) → A__U12(a__isNatKind(V1), V1, V2)
A__U11(tt, V1, V2) → A__ISNATKIND(V1)
A__U12(tt, V1, V2) → A__U13(a__isNatKind(V2), V1, V2)
A__U12(tt, V1, V2) → A__ISNATKIND(V2)
A__U13(tt, V1, V2) → A__U14(a__isNatKind(V2), V1, V2)
A__U13(tt, V1, V2) → A__ISNATKIND(V2)
A__U14(tt, V1, V2) → A__U15(a__isNat(V1), V2)
A__U14(tt, V1, V2) → A__ISNAT(V1)
A__U15(tt, V2) → A__U16(a__isNat(V2))
A__U15(tt, V2) → A__ISNAT(V2)
A__U21(tt, V1) → A__U22(a__isNatKind(V1), V1)
A__U21(tt, V1) → A__ISNATKIND(V1)
A__U22(tt, V1) → A__U23(a__isNat(V1))
A__U22(tt, V1) → A__ISNAT(V1)
A__U31(tt, V1, V2) → A__U32(a__isNatKind(V1), V1, V2)
A__U31(tt, V1, V2) → A__ISNATKIND(V1)
A__U32(tt, V1, V2) → A__U33(a__isNatKind(V2), V1, V2)
A__U32(tt, V1, V2) → A__ISNATKIND(V2)
A__U33(tt, V1, V2) → A__U34(a__isNatKind(V2), V1, V2)
A__U33(tt, V1, V2) → A__ISNATKIND(V2)
A__U34(tt, V1, V2) → A__U35(a__isNat(V1), V2)
A__U34(tt, V1, V2) → A__ISNAT(V1)
A__U35(tt, V2) → A__U36(a__isNat(V2))
A__U35(tt, V2) → A__ISNAT(V2)
A__U41(tt, V2) → A__U42(a__isNatKind(V2))
A__U41(tt, V2) → A__ISNATKIND(V2)
A__U61(tt, V2) → A__U62(a__isNatKind(V2))
A__U61(tt, V2) → A__ISNATKIND(V2)
A__U71(tt, N) → A__U72(a__isNatKind(N), N)
A__U71(tt, N) → A__ISNATKIND(N)
A__U72(tt, N) → MARK(N)
A__U81(tt, M, N) → A__U82(a__isNatKind(M), M, N)
A__U81(tt, M, N) → A__ISNATKIND(M)
A__U82(tt, M, N) → A__U83(a__isNat(N), M, N)
A__U82(tt, M, N) → A__ISNAT(N)
A__U83(tt, M, N) → A__U84(a__isNatKind(N), M, N)
A__U83(tt, M, N) → A__ISNATKIND(N)
A__U84(tt, M, N) → A__PLUS(mark(N), mark(M))
A__U84(tt, M, N) → MARK(N)
A__U84(tt, M, N) → MARK(M)
A__U91(tt, N) → A__U92(a__isNatKind(N))
A__U91(tt, N) → A__ISNATKIND(N)
A__ISNAT(plus(V1, V2)) → A__U11(a__isNatKind(V1), V1, V2)
A__ISNAT(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__ISNAT(s(V1)) → A__ISNATKIND(V1)
A__ISNAT(x(V1, V2)) → A__U31(a__isNatKind(V1), V1, V2)
A__ISNAT(x(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(plus(V1, V2)) → A__U41(a__isNatKind(V1), V2)
A__ISNATKIND(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__U51(a__isNatKind(V1))
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
A__ISNATKIND(x(V1, V2)) → A__U61(a__isNatKind(V1), V2)
A__ISNATKIND(x(V1, V2)) → A__ISNATKIND(V1)
A__PLUS(N, 0) → A__U71(a__isNat(N), N)
A__PLUS(N, 0) → A__ISNAT(N)
A__PLUS(N, s(M)) → A__U81(a__isNat(M), M, N)
A__PLUS(N, s(M)) → A__ISNAT(M)
A__X(N, 0) → A__U91(a__isNat(N), N)
A__X(N, 0) → A__ISNAT(N)
A__X(N, s(M)) → A__U101(a__isNat(M), M, N)
A__X(N, s(M)) → A__ISNAT(M)
MARK(U101(X1, X2, X3)) → A__U101(mark(X1), X2, X3)
MARK(U101(X1, X2, X3)) → MARK(X1)
MARK(U102(X1, X2, X3)) → A__U102(mark(X1), X2, X3)
MARK(U102(X1, X2, X3)) → MARK(X1)
MARK(isNatKind(X)) → A__ISNATKIND(X)
MARK(U103(X1, X2, X3)) → A__U103(mark(X1), X2, X3)
MARK(U103(X1, X2, X3)) → MARK(X1)
MARK(isNat(X)) → A__ISNAT(X)
MARK(U104(X1, X2, X3)) → A__U104(mark(X1), X2, X3)
MARK(U104(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(x(X1, X2)) → A__X(mark(X1), mark(X2))
MARK(x(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X2)
MARK(U11(X1, X2, X3)) → A__U11(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2, X3)) → A__U12(mark(X1), X2, X3)
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(U13(X1, X2, X3)) → A__U13(mark(X1), X2, X3)
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → A__U14(mark(X1), X2, X3)
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → A__U15(mark(X1), X2)
MARK(U15(X1, X2)) → MARK(X1)
MARK(U16(X)) → A__U16(mark(X))
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → A__U21(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → A__U22(mark(X1), X2)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → A__U23(mark(X))
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2, X3)) → A__U31(mark(X1), X2, X3)
MARK(U31(X1, X2, X3)) → MARK(X1)
MARK(U32(X1, X2, X3)) → A__U32(mark(X1), X2, X3)
MARK(U32(X1, X2, X3)) → MARK(X1)
MARK(U33(X1, X2, X3)) → A__U33(mark(X1), X2, X3)
MARK(U33(X1, X2, X3)) → MARK(X1)
MARK(U34(X1, X2, X3)) → A__U34(mark(X1), X2, X3)
MARK(U34(X1, X2, X3)) → MARK(X1)
MARK(U35(X1, X2)) → A__U35(mark(X1), X2)
MARK(U35(X1, X2)) → MARK(X1)
MARK(U36(X)) → A__U36(mark(X))
MARK(U36(X)) → MARK(X)
MARK(U41(X1, X2)) → A__U41(mark(X1), X2)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → A__U42(mark(X))
MARK(U42(X)) → MARK(X)
MARK(U51(X)) → A__U51(mark(X))
MARK(U51(X)) → MARK(X)
MARK(U61(X1, X2)) → A__U61(mark(X1), X2)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → A__U62(mark(X))
MARK(U62(X)) → MARK(X)
MARK(U71(X1, X2)) → A__U71(mark(X1), X2)
MARK(U71(X1, X2)) → MARK(X1)
MARK(U72(X1, X2)) → A__U72(mark(X1), X2)
MARK(U72(X1, X2)) → MARK(X1)
MARK(U81(X1, X2, X3)) → A__U81(mark(X1), X2, X3)
MARK(U81(X1, X2, X3)) → MARK(X1)
MARK(U82(X1, X2, X3)) → A__U82(mark(X1), X2, X3)
MARK(U82(X1, X2, X3)) → MARK(X1)
MARK(U83(X1, X2, X3)) → A__U83(mark(X1), X2, X3)
MARK(U83(X1, X2, X3)) → MARK(X1)
MARK(U84(X1, X2, X3)) → A__U84(mark(X1), X2, X3)
MARK(U84(X1, X2, X3)) → MARK(X1)
MARK(U91(X1, X2)) → A__U91(mark(X1), X2)
MARK(U91(X1, X2)) → MARK(X1)
MARK(U92(X)) → A__U92(mark(X))
MARK(U92(X)) → MARK(X)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 54 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U41(tt, V2) → A__ISNATKIND(V2)
A__ISNATKIND(plus(V1, V2)) → A__U41(a__isNatKind(V1), V2)
A__ISNATKIND(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
A__ISNATKIND(x(V1, V2)) → A__U61(a__isNatKind(V1), V2)
A__U61(tt, V2) → A__ISNATKIND(V2)
A__ISNATKIND(x(V1, V2)) → A__ISNATKIND(V1)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U41(tt, V2) → A__ISNATKIND(V2)
A__ISNATKIND(plus(V1, V2)) → A__U41(a__isNatKind(V1), V2)
A__ISNATKIND(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(x(V1, V2)) → A__U61(a__isNatKind(V1), V2)
A__U61(tt, V2) → A__ISNATKIND(V2)
A__ISNATKIND(x(V1, V2)) → A__ISNATKIND(V1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
A__U41(x0, x1, x2)  =  A__U41(x2)
A__ISNATKIND(x0, x1)  =  A__ISNATKIND(x1)
A__U61(x0, x1, x2)  =  A__U61(x1, x2)

Tags:
A__U41 has argument tags [0,5,3] and root tag 2
A__ISNATKIND has argument tags [3,2] and root tag 0
A__U61 has argument tags [5,7,2] and root tag 2

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
A__U41(x1, x2)  =  A__U41(x1, x2)
tt  =  tt
A__ISNATKIND(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
a__isNatKind(x1)  =  a__isNatKind
s(x1)  =  x1
x(x1, x2)  =  x(x1, x2)
A__U61(x1, x2)  =  A__U61(x1, x2)
0  =  0
a__U41(x1, x2)  =  x1
a__U51(x1)  =  x1
a__U61(x1, x2)  =  a__U61
isNatKind(x1)  =  isNatKind
a__U42(x1)  =  a__U42
a__U62(x1)  =  x1
U41(x1, x2)  =  x1
U51(x1)  =  x1
U61(x1, x2)  =  U61
U62(x1)  =  x1
U42(x1)  =  U42

Lexicographic path order with status [LPO].
Quasi-Precedence:
[aisNatKind, x2, aU61, isNatKind] > [tt, aU42] > U42
[aisNatKind, x2, aU61, isNatKind] > U61
0 > [tt, aU42] > U42

Status:
AU412: [2,1]
tt: []
plus2: [2,1]
aisNatKind: []
x2: [2,1]
AU612: [2,1]
0: []
aU61: []
isNatKind: []
aU42: []
U61: []
U42: []


The following usable rules [FROCOS05] were oriented:

a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__isNatKind(X) → isNatKind(X)
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U41(X1, X2) → U41(X1, X2)
a__U51(tt) → tt
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(tt) → tt
a__U62(X) → U62(X)
a__U42(tt) → tt
a__U42(X) → U42(X)

(7) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
A__ISNATKIND(x0, x1)  =  A__ISNATKIND(x1)

Tags:
A__ISNATKIND has argument tags [1,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
A__ISNATKIND(x1)  =  A__ISNATKIND
s(x1)  =  s(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
AISNATKIND: []
s1: [1]


The following usable rules [FROCOS05] were oriented: none

(9) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(11) TRUE

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U12(tt, V1, V2) → A__U13(a__isNatKind(V2), V1, V2)
A__U13(tt, V1, V2) → A__U14(a__isNatKind(V2), V1, V2)
A__U14(tt, V1, V2) → A__U15(a__isNat(V1), V2)
A__U15(tt, V2) → A__ISNAT(V2)
A__ISNAT(plus(V1, V2)) → A__U11(a__isNatKind(V1), V1, V2)
A__U11(tt, V1, V2) → A__U12(a__isNatKind(V1), V1, V2)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__U21(tt, V1) → A__U22(a__isNatKind(V1), V1)
A__U22(tt, V1) → A__ISNAT(V1)
A__ISNAT(x(V1, V2)) → A__U31(a__isNatKind(V1), V1, V2)
A__U31(tt, V1, V2) → A__U32(a__isNatKind(V1), V1, V2)
A__U32(tt, V1, V2) → A__U33(a__isNatKind(V2), V1, V2)
A__U33(tt, V1, V2) → A__U34(a__isNatKind(V2), V1, V2)
A__U34(tt, V1, V2) → A__U35(a__isNat(V1), V2)
A__U35(tt, V2) → A__ISNAT(V2)
A__U34(tt, V1, V2) → A__ISNAT(V1)
A__U14(tt, V1, V2) → A__ISNAT(V1)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U12(tt, V1, V2) → A__U13(a__isNatKind(V2), V1, V2)
A__U13(tt, V1, V2) → A__U14(a__isNatKind(V2), V1, V2)
A__U14(tt, V1, V2) → A__U15(a__isNat(V1), V2)
A__U15(tt, V2) → A__ISNAT(V2)
A__ISNAT(plus(V1, V2)) → A__U11(a__isNatKind(V1), V1, V2)
A__U11(tt, V1, V2) → A__U12(a__isNatKind(V1), V1, V2)
A__U31(tt, V1, V2) → A__U32(a__isNatKind(V1), V1, V2)
A__U32(tt, V1, V2) → A__U33(a__isNatKind(V2), V1, V2)
A__U33(tt, V1, V2) → A__U34(a__isNatKind(V2), V1, V2)
A__U34(tt, V1, V2) → A__U35(a__isNat(V1), V2)
A__U35(tt, V2) → A__ISNAT(V2)
A__U34(tt, V1, V2) → A__ISNAT(V1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
A__U12(x0, x1, x2, x3)  =  A__U12(x0)
A__U13(x0, x1, x2, x3)  =  A__U13(x0, x3)
A__U14(x0, x1, x2, x3)  =  A__U14(x2, x3)
A__U15(x0, x1, x2)  =  A__U15(x2)
A__ISNAT(x0, x1)  =  A__ISNAT(x1)
A__U11(x0, x1, x2, x3)  =  A__U11(x0)
A__U21(x0, x1, x2)  =  A__U21(x2)
A__U22(x0, x1, x2)  =  A__U22(x2)
A__U31(x0, x1, x2, x3)  =  A__U31(x0, x2, x3)
A__U32(x0, x1, x2, x3)  =  A__U32(x0, x1, x2)
A__U33(x0, x1, x2, x3)  =  A__U33(x0)
A__U34(x0, x1, x2, x3)  =  A__U34(x0, x2)
A__U35(x0, x1, x2)  =  A__U35(x2)

Tags:
A__U12 has argument tags [0,7,62,0] and root tag 0
A__U13 has argument tags [63,56,60,62] and root tag 12
A__U14 has argument tags [2,0,0,62] and root tag 0
A__U15 has argument tags [32,24,0] and root tag 10
A__ISNAT has argument tags [38,0] and root tag 0
A__U11 has argument tags [63,24,0,0] and root tag 11
A__U21 has argument tags [48,23,0] and root tag 0
A__U22 has argument tags [55,24,0] and root tag 0
A__U31 has argument tags [0,0,5,47] and root tag 0
A__U32 has argument tags [1,52,10,0] and root tag 13
A__U33 has argument tags [32,11,36,0] and root tag 0
A__U34 has argument tags [56,43,40,3] and root tag 12
A__U35 has argument tags [52,57,56] and root tag 5

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
A__U12(x1, x2, x3)  =  A__U12(x1, x2, x3)
tt  =  tt
A__U13(x1, x2, x3)  =  A__U13(x1, x2)
a__isNatKind(x1)  =  a__isNatKind(x1)
A__U14(x1, x2, x3)  =  x1
A__U15(x1, x2)  =  A__U15
a__isNat(x1)  =  x1
A__ISNAT(x1)  =  A__ISNAT
plus(x1, x2)  =  plus(x1, x2)
A__U11(x1, x2, x3)  =  A__U11(x2, x3)
s(x1)  =  x1
A__U21(x1, x2)  =  x1
A__U22(x1, x2)  =  x2
x(x1, x2)  =  x(x1, x2)
A__U31(x1, x2, x3)  =  A__U31(x2, x3)
A__U32(x1, x2, x3)  =  A__U32(x1, x2, x3)
A__U33(x1, x2, x3)  =  A__U33(x1, x2, x3)
A__U34(x1, x2, x3)  =  x3
A__U35(x1, x2)  =  A__U35(x1)
0  =  0
a__U41(x1, x2)  =  x1
a__U51(x1)  =  x1
a__U61(x1, x2)  =  a__U61(x1, x2)
isNatKind(x1)  =  isNatKind(x1)
a__U11(x1, x2, x3)  =  a__U11(x1, x2, x3)
a__U21(x1, x2)  =  x2
a__U31(x1, x2, x3)  =  a__U31(x1, x2, x3)
isNat(x1)  =  x1
a__U12(x1, x2, x3)  =  a__U12(x2, x3)
a__U22(x1, x2)  =  x2
a__U32(x1, x2, x3)  =  a__U32(x1, x2, x3)
a__U13(x1, x2, x3)  =  a__U13(x1, x2, x3)
a__U23(x1)  =  x1
a__U33(x1, x2, x3)  =  a__U33(x1, x2, x3)
a__U14(x1, x2, x3)  =  x3
a__U34(x1, x2, x3)  =  x1
a__U15(x1, x2)  =  x2
a__U35(x1, x2)  =  a__U35
a__U16(x1)  =  x1
a__U36(x1)  =  a__U36
U13(x1, x2, x3)  =  U13(x1, x2, x3)
U14(x1, x2, x3)  =  x3
U15(x1, x2)  =  U15
U11(x1, x2, x3)  =  U11(x1, x2, x3)
U12(x1, x2, x3)  =  U12(x2, x3)
U21(x1, x2)  =  U21
U22(x1, x2)  =  x2
U23(x1)  =  x1
U31(x1, x2, x3)  =  U31(x1, x2, x3)
U32(x1, x2, x3)  =  U32(x1, x2)
U33(x1, x2, x3)  =  U33(x1, x2, x3)
U34(x1, x2, x3)  =  x1
U35(x1, x2)  =  U35
U36(x1)  =  U36
U16(x1)  =  x1
a__U42(x1)  =  a__U42
a__U62(x1)  =  x1
U41(x1, x2)  =  U41
U51(x1)  =  x1
U61(x1, x2)  =  U61(x1, x2)
U62(x1)  =  U62
U42(x1)  =  U42

Lexicographic path order with status [LPO].
Quasi-Precedence:
AU15 > AISNAT > [aisNatKind1, AU333, isNatKind1] > [U15, U21, U41, U62]
plus2 > AU112 > [AU123, tt, 0, aU113, aU122, aU35, aU36, U122, U35, aU42, U42] > AU132 > [U15, U21, U41, U62]
plus2 > AU112 > [AU123, tt, 0, aU113, aU122, aU35, aU36, U122, U35, aU42, U42] > AU323 > [aisNatKind1, AU333, isNatKind1] > [U15, U21, U41, U62]
plus2 > AU112 > [AU123, tt, 0, aU113, aU122, aU35, aU36, U122, U35, aU42, U42] > AU351 > AISNAT > [aisNatKind1, AU333, isNatKind1] > [U15, U21, U41, U62]
plus2 > AU112 > [AU123, tt, 0, aU113, aU122, aU35, aU36, U122, U35, aU42, U42] > aU323 > [aU333, U333] > [aisNatKind1, AU333, isNatKind1] > [U15, U21, U41, U62]
plus2 > AU112 > [AU123, tt, 0, aU113, aU122, aU35, aU36, U122, U35, aU42, U42] > aU323 > U322 > [U15, U21, U41, U62]
plus2 > AU112 > [AU123, tt, 0, aU113, aU122, aU35, aU36, U122, U35, aU42, U42] > [aU133, U133] > [U15, U21, U41, U62]
plus2 > AU112 > [AU123, tt, 0, aU113, aU122, aU35, aU36, U122, U35, aU42, U42] > U113 > [U15, U21, U41, U62]
plus2 > AU112 > [AU123, tt, 0, aU113, aU122, aU35, aU36, U122, U35, aU42, U42] > U36 > [U15, U21, U41, U62]
[x2, AU312] > AU323 > [aisNatKind1, AU333, isNatKind1] > [U15, U21, U41, U62]
[x2, AU312] > [aU612, U612] > [aisNatKind1, AU333, isNatKind1] > [U15, U21, U41, U62]
[x2, AU312] > aU313 > aU323 > [aU333, U333] > [aisNatKind1, AU333, isNatKind1] > [U15, U21, U41, U62]
[x2, AU312] > aU313 > aU323 > U322 > [U15, U21, U41, U62]
[x2, AU312] > aU313 > U313 > [U15, U21, U41, U62]

Status:
AU123: [3,2,1]
tt: []
AU132: [2,1]
aisNatKind1: [1]
AU15: []
AISNAT: []
plus2: [1,2]
AU112: [1,2]
x2: [2,1]
AU312: [2,1]
AU323: [3,2,1]
AU333: [2,3,1]
AU351: [1]
0: []
aU612: [2,1]
isNatKind1: [1]
aU113: [2,3,1]
aU313: [3,2,1]
aU122: [1,2]
aU323: [2,3,1]
aU133: [1,2,3]
aU333: [2,3,1]
aU35: []
aU36: []
U133: [1,2,3]
U15: []
U113: [3,1,2]
U122: [1,2]
U21: []
U313: [1,2,3]
U322: [2,1]
U333: [2,3,1]
U35: []
U36: []
aU42: []
U41: []
U612: [2,1]
U62: []
U42: []


The following usable rules [FROCOS05] were oriented:

a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__isNatKind(X) → isNatKind(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNat(X) → isNat(X)
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(tt) → tt
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(tt) → tt
a__U36(X) → U36(X)
a__U16(tt) → tt
a__U16(X) → U16(X)
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U41(X1, X2) → U41(X1, X2)
a__U51(tt) → tt
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(tt) → tt
a__U62(X) → U62(X)
a__U42(tt) → tt
a__U42(X) → U42(X)

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__U21(tt, V1) → A__U22(a__isNatKind(V1), V1)
A__U22(tt, V1) → A__ISNAT(V1)
A__ISNAT(x(V1, V2)) → A__U31(a__isNatKind(V1), V1, V2)
A__U14(tt, V1, V2) → A__ISNAT(V1)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U21(tt, V1) → A__U22(a__isNatKind(V1), V1)
A__U22(tt, V1) → A__ISNAT(V1)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
A__U21(x0, x1, x2)  =  A__U21(x2)
A__U22(x0, x1, x2)  =  A__U22(x2)
A__ISNAT(x0, x1)  =  A__ISNAT(x1)

Tags:
A__U21 has argument tags [5,5,0] and root tag 0
A__U22 has argument tags [4,5,0] and root tag 0
A__ISNAT has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
A__U21(x1, x2)  =  A__U21(x1)
tt  =  tt
A__U22(x1, x2)  =  A__U22(x1)
a__isNatKind(x1)  =  x1
A__ISNAT(x1)  =  A__ISNAT(x1)
s(x1)  =  s(x1)
0  =  0
plus(x1, x2)  =  plus(x1, x2)
a__U41(x1, x2)  =  a__U41(x1, x2)
a__U51(x1)  =  a__U51
x(x1, x2)  =  x(x1, x2)
a__U61(x1, x2)  =  a__U61
isNatKind(x1)  =  x1
a__U42(x1)  =  x1
a__U62(x1)  =  a__U62
U41(x1, x2)  =  U41(x1, x2)
U51(x1)  =  U51
U61(x1, x2)  =  U61
U62(x1)  =  U62
U42(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
AISNAT1 > AU211 > AU221 > U62
s1 > AU211 > AU221 > U62
s1 > aU51 > [tt, 0, aU62] > AU221 > U62
s1 > aU51 > U51 > U62
[plus2, aU412, U412] > U62
x2 > aU61 > [tt, 0, aU62] > AU221 > U62
x2 > aU61 > U61 > U62

Status:
AU211: [1]
tt: []
AU221: [1]
AISNAT1: [1]
s1: [1]
0: []
plus2: [1,2]
aU412: [1,2]
aU51: []
x2: [1,2]
aU61: []
aU62: []
U412: [1,2]
U51: []
U61: []
U62: []


The following usable rules [FROCOS05] were oriented:

a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__isNatKind(X) → isNatKind(X)
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U41(X1, X2) → U41(X1, X2)
a__U51(tt) → tt
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(tt) → tt
a__U62(X) → U62(X)
a__U42(tt) → tt
a__U42(X) → U42(X)

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U21(tt, V1) → A__U22(a__isNatKind(V1), V1)
A__U22(tt, V1) → A__ISNAT(V1)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(20) TRUE

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U102(tt, M, N) → A__U103(a__isNat(N), M, N)
A__U103(tt, M, N) → A__U104(a__isNatKind(N), M, N)
A__U104(tt, M, N) → A__PLUS(a__x(mark(N), mark(M)), mark(N))
A__PLUS(N, 0) → A__U71(a__isNat(N), N)
A__U71(tt, N) → A__U72(a__isNatKind(N), N)
A__U72(tt, N) → MARK(N)
MARK(U101(X1, X2, X3)) → A__U101(mark(X1), X2, X3)
A__U101(tt, M, N) → A__U102(a__isNatKind(M), M, N)
MARK(U101(X1, X2, X3)) → MARK(X1)
MARK(U102(X1, X2, X3)) → A__U102(mark(X1), X2, X3)
MARK(U102(X1, X2, X3)) → MARK(X1)
MARK(U103(X1, X2, X3)) → A__U103(mark(X1), X2, X3)
MARK(U103(X1, X2, X3)) → MARK(X1)
MARK(U104(X1, X2, X3)) → A__U104(mark(X1), X2, X3)
A__U104(tt, M, N) → A__X(mark(N), mark(M))
A__X(N, s(M)) → A__U101(a__isNat(M), M, N)
A__U104(tt, M, N) → MARK(N)
MARK(U104(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
A__PLUS(N, s(M)) → A__U81(a__isNat(M), M, N)
A__U81(tt, M, N) → A__U82(a__isNatKind(M), M, N)
A__U82(tt, M, N) → A__U83(a__isNat(N), M, N)
A__U83(tt, M, N) → A__U84(a__isNatKind(N), M, N)
A__U84(tt, M, N) → A__PLUS(mark(N), mark(M))
A__U84(tt, M, N) → MARK(N)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(x(X1, X2)) → A__X(mark(X1), mark(X2))
MARK(x(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X2)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → MARK(X1)
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2, X3)) → MARK(X1)
MARK(U32(X1, X2, X3)) → MARK(X1)
MARK(U33(X1, X2, X3)) → MARK(X1)
MARK(U34(X1, X2, X3)) → MARK(X1)
MARK(U35(X1, X2)) → MARK(X1)
MARK(U36(X)) → MARK(X)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
MARK(U71(X1, X2)) → A__U71(mark(X1), X2)
MARK(U71(X1, X2)) → MARK(X1)
MARK(U72(X1, X2)) → A__U72(mark(X1), X2)
MARK(U72(X1, X2)) → MARK(X1)
MARK(U81(X1, X2, X3)) → A__U81(mark(X1), X2, X3)
MARK(U81(X1, X2, X3)) → MARK(X1)
MARK(U82(X1, X2, X3)) → A__U82(mark(X1), X2, X3)
MARK(U82(X1, X2, X3)) → MARK(X1)
MARK(U83(X1, X2, X3)) → A__U83(mark(X1), X2, X3)
MARK(U83(X1, X2, X3)) → MARK(X1)
MARK(U84(X1, X2, X3)) → A__U84(mark(X1), X2, X3)
A__U84(tt, M, N) → MARK(M)
MARK(U84(X1, X2, X3)) → MARK(X1)
MARK(U91(X1, X2)) → MARK(X1)
MARK(U92(X)) → MARK(X)
MARK(s(X)) → MARK(X)
A__U104(tt, M, N) → MARK(M)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U102(tt, M, N) → A__U103(a__isNat(N), M, N)
A__U103(tt, M, N) → A__U104(a__isNatKind(N), M, N)
A__U104(tt, M, N) → A__PLUS(a__x(mark(N), mark(M)), mark(N))
A__PLUS(N, 0) → A__U71(a__isNat(N), N)
A__U71(tt, N) → A__U72(a__isNatKind(N), N)
MARK(U101(X1, X2, X3)) → A__U101(mark(X1), X2, X3)
A__U101(tt, M, N) → A__U102(a__isNatKind(M), M, N)
MARK(U101(X1, X2, X3)) → MARK(X1)
MARK(U102(X1, X2, X3)) → A__U102(mark(X1), X2, X3)
MARK(U102(X1, X2, X3)) → MARK(X1)
MARK(U103(X1, X2, X3)) → A__U103(mark(X1), X2, X3)
MARK(U103(X1, X2, X3)) → MARK(X1)
MARK(U104(X1, X2, X3)) → A__U104(mark(X1), X2, X3)
A__U104(tt, M, N) → A__X(mark(N), mark(M))
A__X(N, s(M)) → A__U101(a__isNat(M), M, N)
A__U104(tt, M, N) → MARK(N)
MARK(U104(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
A__U84(tt, M, N) → MARK(N)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(x(X1, X2)) → A__X(mark(X1), mark(X2))
MARK(x(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X2)
MARK(U71(X1, X2)) → A__U71(mark(X1), X2)
MARK(U71(X1, X2)) → MARK(X1)
MARK(U72(X1, X2)) → A__U72(mark(X1), X2)
MARK(U72(X1, X2)) → MARK(X1)
MARK(U81(X1, X2, X3)) → A__U81(mark(X1), X2, X3)
MARK(U81(X1, X2, X3)) → MARK(X1)
MARK(U82(X1, X2, X3)) → A__U82(mark(X1), X2, X3)
MARK(U82(X1, X2, X3)) → MARK(X1)
MARK(U83(X1, X2, X3)) → A__U83(mark(X1), X2, X3)
MARK(U83(X1, X2, X3)) → MARK(X1)
MARK(U84(X1, X2, X3)) → A__U84(mark(X1), X2, X3)
A__U84(tt, M, N) → MARK(M)
MARK(U84(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → MARK(X)
A__U104(tt, M, N) → MARK(M)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
A__U102(x0, x1, x2, x3)  =  A__U102(x0, x1)
A__U103(x0, x1, x2, x3)  =  A__U103(x0)
A__U104(x0, x1, x2, x3)  =  A__U104(x0, x1)
A__PLUS(x0, x1, x2)  =  A__PLUS(x1, x2)
A__U71(x0, x1, x2)  =  A__U71(x2)
A__U72(x0, x1, x2)  =  A__U72(x2)
MARK(x0, x1)  =  MARK(x1)
A__U101(x0, x1, x2, x3)  =  A__U101(x0)
A__X(x0, x1, x2)  =  A__X(x0, x1, x2)
A__U81(x0, x1, x2, x3)  =  A__U81(x2, x3)
A__U82(x0, x1, x2, x3)  =  A__U82(x2, x3)
A__U83(x0, x1, x2, x3)  =  A__U83(x2, x3)
A__U84(x0, x1, x2, x3)  =  A__U84(x0, x2, x3)

Tags:
A__U102 has argument tags [28,35,44,0] and root tag 9
A__U103 has argument tags [28,29,20,58] and root tag 7
A__U104 has argument tags [4,38,7,63] and root tag 4
A__PLUS has argument tags [36,1,0] and root tag 4
A__U71 has argument tags [9,31,0] and root tag 14
A__U72 has argument tags [0,63,0] and root tag 9
MARK has argument tags [52,0] and root tag 9
A__U101 has argument tags [0,28,28,55] and root tag 1
A__X has argument tags [0,15,12] and root tag 5
A__U81 has argument tags [0,36,57,1] and root tag 4
A__U82 has argument tags [53,32,56,1] and root tag 4
A__U83 has argument tags [57,28,56,1] and root tag 4
A__U84 has argument tags [9,35,5,1] and root tag 4

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
A__U102(x1, x2, x3)  =  A__U102(x2, x3)
tt  =  tt
A__U103(x1, x2, x3)  =  A__U103(x2, x3)
a__isNat(x1)  =  a__isNat
A__U104(x1, x2, x3)  =  A__U104(x2, x3)
a__isNatKind(x1)  =  a__isNatKind
A__PLUS(x1, x2)  =  A__PLUS(x1, x2)
a__x(x1, x2)  =  a__x(x1, x2)
mark(x1)  =  x1
0  =  0
A__U71(x1, x2)  =  A__U71(x2)
A__U72(x1, x2)  =  A__U72(x1)
MARK(x1)  =  MARK
U101(x1, x2, x3)  =  U101(x1, x2, x3)
A__U101(x1, x2, x3)  =  A__U101(x1, x2, x3)
U102(x1, x2, x3)  =  U102(x1, x2, x3)
U103(x1, x2, x3)  =  U103(x1, x2, x3)
U104(x1, x2, x3)  =  U104(x1, x2, x3)
A__X(x1, x2)  =  A__X(x1, x2)
s(x1)  =  s(x1)
plus(x1, x2)  =  plus(x1, x2)
A__U81(x1, x2, x3)  =  x1
A__U82(x1, x2, x3)  =  x3
A__U83(x1, x2, x3)  =  A__U83(x2, x3)
A__U84(x1, x2, x3)  =  A__U84
x(x1, x2)  =  x(x1, x2)
U11(x1, x2, x3)  =  x1
U12(x1, x2, x3)  =  x1
U13(x1, x2, x3)  =  x1
U14(x1, x2, x3)  =  x1
U15(x1, x2)  =  x1
U16(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1, x2)  =  x1
U23(x1)  =  x1
U31(x1, x2, x3)  =  x1
U32(x1, x2, x3)  =  x1
U33(x1, x2, x3)  =  x1
U34(x1, x2, x3)  =  x1
U35(x1, x2)  =  x1
U36(x1)  =  x1
U41(x1, x2)  =  x1
U42(x1)  =  x1
U51(x1)  =  x1
U61(x1, x2)  =  x1
U62(x1)  =  x1
U71(x1, x2)  =  U71(x1, x2)
U72(x1, x2)  =  U72(x1, x2)
U81(x1, x2, x3)  =  U81(x1, x2, x3)
U82(x1, x2, x3)  =  U82(x1, x2, x3)
U83(x1, x2, x3)  =  U83(x1, x2, x3)
U84(x1, x2, x3)  =  U84(x1, x2, x3)
U91(x1, x2)  =  x1
U92(x1)  =  x1
a__U11(x1, x2, x3)  =  x1
a__U21(x1, x2)  =  x1
a__U31(x1, x2, x3)  =  x1
isNat(x1)  =  isNat
a__U41(x1, x2)  =  x1
a__U51(x1)  =  x1
a__U61(x1, x2)  =  x1
isNatKind(x1)  =  isNatKind
a__U102(x1, x2, x3)  =  a__U102(x1, x2, x3)
a__U103(x1, x2, x3)  =  a__U103(x1, x2, x3)
a__U104(x1, x2, x3)  =  a__U104(x1, x2, x3)
a__plus(x1, x2)  =  a__plus(x1, x2)
a__U71(x1, x2)  =  a__U71(x1, x2)
a__U72(x1, x2)  =  a__U72(x1, x2)
a__U101(x1, x2, x3)  =  a__U101(x1, x2, x3)
a__U12(x1, x2, x3)  =  x1
a__U13(x1, x2, x3)  =  x1
a__U14(x1, x2, x3)  =  x1
a__U15(x1, x2)  =  x1
a__U16(x1)  =  x1
a__U22(x1, x2)  =  x1
a__U23(x1)  =  x1
a__U32(x1, x2, x3)  =  x1
a__U33(x1, x2, x3)  =  x1
a__U34(x1, x2, x3)  =  x1
a__U35(x1, x2)  =  x1
a__U36(x1)  =  x1
a__U42(x1)  =  x1
a__U62(x1)  =  x1
a__U81(x1, x2, x3)  =  a__U81(x1, x2, x3)
a__U82(x1, x2, x3)  =  a__U82(x1, x2, x3)
a__U83(x1, x2, x3)  =  a__U83(x1, x2, x3)
a__U84(x1, x2, x3)  =  a__U84(x1, x2, x3)
a__U91(x1, x2)  =  x1
a__U92(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[AU1022, AU1032, AU1042, ax2, U1013, AU1013, U1023, U1033, U1043, AX2, x2, aU1023, aU1033, aU1043, aU1013] > [tt, aisNat, aisNatKind, 0, MARK, plus2, U813, U823, U833, U843, isNat, isNatKind, aplus2, aU813, aU823, aU833, aU843] > APLUS2 > AU84
[AU1022, AU1032, AU1042, ax2, U1013, AU1013, U1023, U1033, U1043, AX2, x2, aU1023, aU1033, aU1043, aU1013] > [tt, aisNat, aisNatKind, 0, MARK, plus2, U813, U823, U833, U843, isNat, isNatKind, aplus2, aU813, aU823, aU833, aU843] > s1 > AU84
[AU1022, AU1032, AU1042, ax2, U1013, AU1013, U1023, U1033, U1043, AX2, x2, aU1023, aU1033, aU1043, aU1013] > [tt, aisNat, aisNatKind, 0, MARK, plus2, U813, U823, U833, U843, isNat, isNatKind, aplus2, aU813, aU823, aU833, aU843] > AU832 > AU84
[AU1022, AU1032, AU1042, ax2, U1013, AU1013, U1023, U1033, U1043, AX2, x2, aU1023, aU1033, aU1043, aU1013] > [tt, aisNat, aisNatKind, 0, MARK, plus2, U813, U823, U833, U843, isNat, isNatKind, aplus2, aU813, aU823, aU833, aU843] > [U712, aU712] > AU711 > AU721 > AU84
[AU1022, AU1032, AU1042, ax2, U1013, AU1013, U1023, U1033, U1043, AX2, x2, aU1023, aU1033, aU1043, aU1013] > [tt, aisNat, aisNatKind, 0, MARK, plus2, U813, U823, U833, U843, isNat, isNatKind, aplus2, aU813, aU823, aU833, aU843] > [U712, aU712] > [U722, aU722] > AU84

Status:
AU1022: [1,2]
tt: []
AU1032: [1,2]
aisNat: []
AU1042: [1,2]
aisNatKind: []
APLUS2: [2,1]
ax2: [2,1]
0: []
AU711: [1]
AU721: [1]
MARK: []
U1013: [2,3,1]
AU1013: [2,3,1]
U1023: [2,3,1]
U1033: [2,3,1]
U1043: [2,3,1]
AX2: [2,1]
s1: [1]
plus2: [2,1]
AU832: [2,1]
AU84: []
x2: [2,1]
U712: [2,1]
U722: [1,2]
U813: [2,3,1]
U823: [2,3,1]
U833: [2,3,1]
U843: [2,3,1]
isNat: []
isNatKind: []
aU1023: [2,3,1]
aU1033: [2,3,1]
aU1043: [2,3,1]
aplus2: [2,1]
aU712: [2,1]
aU722: [1,2]
aU1013: [2,3,1]
aU813: [2,3,1]
aU823: [2,3,1]
aU833: [2,3,1]
aU843: [2,3,1]


The following usable rules [FROCOS05] were oriented:

a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNat(X) → isNat(X)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__isNatKind(X) → isNatKind(X)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(isNat(X)) → a__isNat(X)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(X1, X2) → x(X1, X2)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U15(X1, X2) → U15(X1, X2)
a__U16(tt) → tt
a__U16(X) → U16(X)
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U21(X1, X2) → U21(X1, X2)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U22(X1, X2) → U22(X1, X2)
a__U23(tt) → tt
a__U23(X) → U23(X)
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U35(X1, X2) → U35(X1, X2)
a__U36(tt) → tt
a__U36(X) → U36(X)
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U41(X1, X2) → U41(X1, X2)
a__U42(tt) → tt
a__U42(X) → U42(X)
a__U51(tt) → tt
a__U51(X) → U51(X)
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U61(X1, X2) → U61(X1, X2)
a__U62(tt) → tt
a__U62(X) → U62(X)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U91(X1, X2) → U91(X1, X2)
a__U92(tt) → 0
a__U92(X) → U92(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U72(tt, N) → MARK(N)
A__PLUS(N, s(M)) → A__U81(a__isNat(M), M, N)
A__U81(tt, M, N) → A__U82(a__isNatKind(M), M, N)
A__U82(tt, M, N) → A__U83(a__isNat(N), M, N)
A__U83(tt, M, N) → A__U84(a__isNatKind(N), M, N)
A__U84(tt, M, N) → A__PLUS(mark(N), mark(M))
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → MARK(X1)
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2, X3)) → MARK(X1)
MARK(U32(X1, X2, X3)) → MARK(X1)
MARK(U33(X1, X2, X3)) → MARK(X1)
MARK(U34(X1, X2, X3)) → MARK(X1)
MARK(U35(X1, X2)) → MARK(X1)
MARK(U36(X)) → MARK(X)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
MARK(U91(X1, X2)) → MARK(X1)
MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs with 1 less node.

(25) Complex Obligation (AND)

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → MARK(X1)
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2, X3)) → MARK(X1)
MARK(U32(X1, X2, X3)) → MARK(X1)
MARK(U33(X1, X2, X3)) → MARK(X1)
MARK(U34(X1, X2, X3)) → MARK(X1)
MARK(U35(X1, X2)) → MARK(X1)
MARK(U36(X)) → MARK(X)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
MARK(U91(X1, X2)) → MARK(X1)
MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U31(X1, X2, X3)) → MARK(X1)
MARK(U33(X1, X2, X3)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x1)

Tags:
MARK has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(x1)  =  MARK
U12(x1, x2, x3)  =  x1
U11(x1, x2, x3)  =  U11(x1, x2, x3)
U13(x1, x2, x3)  =  x1
U14(x1, x2, x3)  =  U14(x1, x2, x3)
U15(x1, x2)  =  x1
U16(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1, x2)  =  x1
U23(x1)  =  x1
U31(x1, x2, x3)  =  U31(x1, x2, x3)
U32(x1, x2, x3)  =  x1
U33(x1, x2, x3)  =  U33(x1, x2, x3)
U34(x1, x2, x3)  =  x1
U35(x1, x2)  =  x1
U36(x1)  =  x1
U41(x1, x2)  =  x1
U42(x1)  =  x1
U51(x1)  =  x1
U61(x1, x2)  =  x1
U62(x1)  =  x1
U91(x1, x2)  =  x1
U92(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
MARK: []
U113: [2,1,3]
U143: [2,3,1]
U313: [2,3,1]
U333: [2,1,3]


The following usable rules [FROCOS05] were oriented: none

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → MARK(X1)
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U32(X1, X2, X3)) → MARK(X1)
MARK(U34(X1, X2, X3)) → MARK(X1)
MARK(U35(X1, X2)) → MARK(X1)
MARK(U36(X)) → MARK(X)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
MARK(U91(X1, X2)) → MARK(X1)
MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(29) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U34(X1, X2, X3)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x1)

Tags:
MARK has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(x1)  =  MARK
U12(x1, x2, x3)  =  x1
U13(x1, x2, x3)  =  x1
U15(x1, x2)  =  x1
U16(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1, x2)  =  x1
U23(x1)  =  x1
U32(x1, x2, x3)  =  x1
U34(x1, x2, x3)  =  U34(x1, x2, x3)
U35(x1, x2)  =  x1
U36(x1)  =  x1
U41(x1, x2)  =  x1
U42(x1)  =  x1
U51(x1)  =  x1
U61(x1, x2)  =  x1
U62(x1)  =  x1
U91(x1, x2)  =  x1
U92(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
MARK: []
U343: [3,1,2]


The following usable rules [FROCOS05] were oriented: none

(30) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → MARK(X1)
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U32(X1, X2, X3)) → MARK(X1)
MARK(U35(X1, X2)) → MARK(X1)
MARK(U36(X)) → MARK(X)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
MARK(U91(X1, X2)) → MARK(X1)
MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(31) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U36(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x1)

Tags:
MARK has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(x1)  =  x1
U12(x1, x2, x3)  =  x1
U13(x1, x2, x3)  =  x1
U15(x1, x2)  =  x1
U16(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1, x2)  =  x1
U23(x1)  =  x1
U32(x1, x2, x3)  =  x1
U35(x1, x2)  =  x1
U36(x1)  =  U36(x1)
U41(x1, x2)  =  x1
U42(x1)  =  x1
U51(x1)  =  x1
U61(x1, x2)  =  x1
U62(x1)  =  x1
U91(x1, x2)  =  x1
U92(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
U361: [1]


The following usable rules [FROCOS05] were oriented: none

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → MARK(X1)
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U32(X1, X2, X3)) → MARK(X1)
MARK(U35(X1, X2)) → MARK(X1)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
MARK(U91(X1, X2)) → MARK(X1)
MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(33) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U32(X1, X2, X3)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x1)

Tags:
MARK has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(x1)  =  MARK
U12(x1, x2, x3)  =  U12(x1, x2)
U13(x1, x2, x3)  =  U13(x1, x2, x3)
U15(x1, x2)  =  x1
U16(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1, x2)  =  x1
U23(x1)  =  x1
U32(x1, x2, x3)  =  U32(x1, x2, x3)
U35(x1, x2)  =  x1
U41(x1, x2)  =  x1
U42(x1)  =  x1
U51(x1)  =  x1
U61(x1, x2)  =  x1
U62(x1)  =  x1
U91(x1, x2)  =  x1
U92(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
MARK: []
U122: [2,1]
U133: [2,3,1]
U323: [3,2,1]


The following usable rules [FROCOS05] were oriented: none

(34) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U15(X1, X2)) → MARK(X1)
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U35(X1, X2)) → MARK(X1)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
MARK(U91(X1, X2)) → MARK(X1)
MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(35) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U62(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x1)

Tags:
MARK has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
U15(x1, x2)  =  x1
U16(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1, x2)  =  x1
U23(x1)  =  x1
U35(x1, x2)  =  x1
U41(x1, x2)  =  x1
U42(x1)  =  x1
U51(x1)  =  x1
U61(x1, x2)  =  x1
U62(x1)  =  U62(x1)
U91(x1, x2)  =  x1
U92(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
U621 > MARK1

Status:
MARK1: [1]
U621: [1]


The following usable rules [FROCOS05] were oriented: none

(36) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U15(X1, X2)) → MARK(X1)
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U35(X1, X2)) → MARK(X1)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U91(X1, X2)) → MARK(X1)
MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(37) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U23(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x1)

Tags:
MARK has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(x1)  =  x1
U15(x1, x2)  =  x1
U16(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1, x2)  =  x1
U23(x1)  =  U23(x1)
U35(x1, x2)  =  x1
U41(x1, x2)  =  x1
U42(x1)  =  x1
U51(x1)  =  x1
U61(x1, x2)  =  x1
U91(x1, x2)  =  x1
U92(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
U231: [1]


The following usable rules [FROCOS05] were oriented: none

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U15(X1, X2)) → MARK(X1)
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U35(X1, X2)) → MARK(X1)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U91(X1, X2)) → MARK(X1)
MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(39) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U15(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x1)

Tags:
MARK has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(x1)  =  MARK
U15(x1, x2)  =  U15(x1, x2)
U16(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1, x2)  =  x1
U35(x1, x2)  =  x1
U41(x1, x2)  =  x1
U42(x1)  =  x1
U51(x1)  =  x1
U61(x1, x2)  =  x1
U91(x1, x2)  =  x1
U92(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
MARK: []
U152: [1,2]


The following usable rules [FROCOS05] were oriented: none

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U35(X1, X2)) → MARK(X1)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U91(X1, X2)) → MARK(X1)
MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(41) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U91(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x1)

Tags:
MARK has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(x1)  =  MARK
U16(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1, x2)  =  x1
U35(x1, x2)  =  x1
U41(x1, x2)  =  x1
U42(x1)  =  x1
U51(x1)  =  x1
U61(x1, x2)  =  x1
U91(x1, x2)  =  U91(x1, x2)
U92(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
MARK: []
U912: [1,2]


The following usable rules [FROCOS05] were oriented: none

(42) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U35(X1, X2)) → MARK(X1)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(43) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U35(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x1)

Tags:
MARK has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(x1)  =  MARK
U16(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1, x2)  =  x1
U35(x1, x2)  =  U35(x1, x2)
U41(x1, x2)  =  x1
U42(x1)  =  x1
U51(x1)  =  x1
U61(x1, x2)  =  x1
U92(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[MARK, U352]

Status:
MARK: []
U352: [2,1]


The following usable rules [FROCOS05] were oriented: none

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(45) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U16(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x1)

Tags:
MARK has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
U16(x1)  =  U16(x1)
U21(x1, x2)  =  x1
U22(x1, x2)  =  x1
U41(x1, x2)  =  x1
U42(x1)  =  x1
U51(x1)  =  x1
U61(x1, x2)  =  x1
U92(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
MARK1: [1]
U161: [1]


The following usable rules [FROCOS05] were oriented: none

(46) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(47) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U22(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x1)

Tags:
MARK has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(x1)  =  MARK
U21(x1, x2)  =  x1
U22(x1, x2)  =  U22(x1)
U41(x1, x2)  =  x1
U42(x1)  =  x1
U51(x1)  =  x1
U61(x1, x2)  =  x1
U92(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
U221 > MARK

Status:
MARK: []
U221: [1]


The following usable rules [FROCOS05] were oriented: none

(48) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U21(X1, X2)) → MARK(X1)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(49) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U21(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x1)

Tags:
MARK has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(x1)  =  MARK
U21(x1, x2)  =  U21(x1, x2)
U41(x1, x2)  =  x1
U42(x1)  =  x1
U51(x1)  =  x1
U61(x1, x2)  =  x1
U92(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
MARK: []
U212: [2,1]


The following usable rules [FROCOS05] were oriented: none

(50) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(51) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U41(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x1)

Tags:
MARK has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(x1)  =  MARK
U41(x1, x2)  =  U41(x1)
U42(x1)  =  x1
U51(x1)  =  x1
U61(x1, x2)  =  x1
U92(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
MARK: []
U411: [1]


The following usable rules [FROCOS05] were oriented: none

(52) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U42(X)) → MARK(X)
MARK(U51(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(53) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U61(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x1)

Tags:
MARK has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(x1)  =  MARK
U42(x1)  =  x1
U51(x1)  =  x1
U61(x1, x2)  =  U61(x1, x2)
U92(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
MARK: []
U612: [2,1]


The following usable rules [FROCOS05] were oriented: none

(54) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U42(X)) → MARK(X)
MARK(U51(X)) → MARK(X)
MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(55) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U42(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x1)

Tags:
MARK has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(x1)  =  MARK
U42(x1)  =  U42(x1)
U51(x1)  =  x1
U92(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
MARK: []
U421: [1]


The following usable rules [FROCOS05] were oriented: none

(56) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U51(X)) → MARK(X)
MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(57) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U51(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x1)

Tags:
MARK has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(x1)  =  MARK
U51(x1)  =  U51(x1)
U92(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
MARK: []
U511: [1]


The following usable rules [FROCOS05] were oriented: none

(58) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(59) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U92(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x1)

Tags:
MARK has argument tags [1,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(x1)  =  MARK
U92(x1)  =  U92(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
MARK: []
U921: [1]


The following usable rules [FROCOS05] were oriented: none

(60) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(61) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(62) TRUE

(63) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U81(tt, M, N) → A__U82(a__isNatKind(M), M, N)
A__U82(tt, M, N) → A__U83(a__isNat(N), M, N)
A__U83(tt, M, N) → A__U84(a__isNatKind(N), M, N)
A__U84(tt, M, N) → A__PLUS(mark(N), mark(M))
A__PLUS(N, s(M)) → A__U81(a__isNat(M), M, N)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(64) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U81(tt, M, N) → A__U82(a__isNatKind(M), M, N)
A__U82(tt, M, N) → A__U83(a__isNat(N), M, N)
A__U83(tt, M, N) → A__U84(a__isNatKind(N), M, N)
A__U84(tt, M, N) → A__PLUS(mark(N), mark(M))
A__PLUS(N, s(M)) → A__U81(a__isNat(M), M, N)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
A__U81(x0, x1, x2, x3)  =  A__U81(x0, x1)
A__U82(x0, x1, x2, x3)  =  A__U82(x0, x1, x2, x3)
A__U83(x0, x1, x2, x3)  =  A__U83(x0, x3)
A__U84(x0, x1, x2, x3)  =  A__U84(x0)
A__PLUS(x0, x1, x2)  =  A__PLUS(x0, x1, x2)

Tags:
A__U81 has argument tags [25,30,31,0] and root tag 6
A__U82 has argument tags [24,8,26,28] and root tag 7
A__U83 has argument tags [23,19,5,8] and root tag 4
A__U84 has argument tags [16,3,16,4] and root tag 3
A__PLUS has argument tags [8,3,0] and root tag 4

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
A__U81(x1, x2, x3)  =  A__U81(x2, x3)
tt  =  tt
A__U82(x1, x2, x3)  =  A__U82(x2, x3)
a__isNatKind(x1)  =  a__isNatKind
A__U83(x1, x2, x3)  =  A__U83(x2, x3)
a__isNat(x1)  =  a__isNat
A__U84(x1, x2, x3)  =  A__U84(x2, x3)
A__PLUS(x1, x2)  =  A__PLUS(x1, x2)
mark(x1)  =  x1
s(x1)  =  s(x1)
0  =  0
plus(x1, x2)  =  plus(x1, x2)
a__U41(x1, x2)  =  x1
a__U51(x1)  =  x1
x(x1, x2)  =  x(x1, x2)
a__U61(x1, x2)  =  a__U61
isNatKind(x1)  =  isNatKind
a__U11(x1, x2, x3)  =  a__U11
a__U21(x1, x2)  =  x1
a__U31(x1, x2, x3)  =  a__U31
isNat(x1)  =  isNat
a__U102(x1, x2, x3)  =  a__U102(x1, x2, x3)
a__U103(x1, x2, x3)  =  a__U103(x1, x2, x3)
a__U104(x1, x2, x3)  =  a__U104(x1, x2, x3)
a__plus(x1, x2)  =  a__plus(x1, x2)
a__x(x1, x2)  =  a__x(x1, x2)
a__U71(x1, x2)  =  x2
a__U72(x1, x2)  =  x2
U101(x1, x2, x3)  =  U101(x1, x2, x3)
a__U101(x1, x2, x3)  =  a__U101(x1, x2, x3)
U102(x1, x2, x3)  =  U102(x1, x2, x3)
U103(x1, x2, x3)  =  U103(x1, x2, x3)
U104(x1, x2, x3)  =  U104(x1, x2, x3)
U71(x1, x2)  =  x2
U72(x1, x2)  =  x2
U11(x1, x2, x3)  =  U11
U12(x1, x2, x3)  =  U12
a__U12(x1, x2, x3)  =  a__U12
U13(x1, x2, x3)  =  U13
a__U13(x1, x2, x3)  =  a__U13
U14(x1, x2, x3)  =  U14
a__U14(x1, x2, x3)  =  a__U14
U15(x1, x2)  =  U15
a__U15(x1, x2)  =  a__U15
U16(x1)  =  x1
a__U16(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1, x2)  =  x1
a__U22(x1, x2)  =  x1
U23(x1)  =  U23
a__U23(x1)  =  a__U23
U31(x1, x2, x3)  =  U31
U32(x1, x2, x3)  =  U32
a__U32(x1, x2, x3)  =  a__U32
U33(x1, x2, x3)  =  U33
a__U33(x1, x2, x3)  =  a__U33
U34(x1, x2, x3)  =  x1
a__U34(x1, x2, x3)  =  x1
U35(x1, x2)  =  U35
a__U35(x1, x2)  =  a__U35
U36(x1)  =  x1
a__U36(x1)  =  x1
U41(x1, x2)  =  x1
U42(x1)  =  x1
a__U42(x1)  =  x1
U51(x1)  =  x1
U61(x1, x2)  =  U61
U62(x1)  =  x1
a__U62(x1)  =  x1
U81(x1, x2, x3)  =  U81(x1, x2, x3)
a__U81(x1, x2, x3)  =  a__U81(x1, x2, x3)
U82(x1, x2, x3)  =  U82(x1, x2, x3)
a__U82(x1, x2, x3)  =  a__U82(x1, x2, x3)
U83(x1, x2, x3)  =  U83(x1, x2, x3)
a__U83(x1, x2, x3)  =  a__U83(x1, x2, x3)
U84(x1, x2, x3)  =  U84(x1, x2, x3)
a__U84(x1, x2, x3)  =  a__U84(x1, x2, x3)
U91(x1, x2)  =  U91(x1, x2)
a__U91(x1, x2)  =  a__U91(x1, x2)
U92(x1)  =  x1
a__U92(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[AU812, AU822, AU832, AU842, APLUS2] > [tt, aisNatKind, aisNat, 0, aU61, isNatKind, aU11, aU31, isNat, U11, U12, aU12, U13, aU13, U14, aU14, U15, aU15, U23, aU23, U31, U32, aU32, U33, aU33, U35, aU35, U61] > s1
[x2, aU1023, aU1033, aU1043, ax2, U1013, aU1013, U1023, U1033, U1043, U912, aU912] > [plus2, aplus2, U813, aU813, U823, aU823, U833, aU833, U843, aU843] > [tt, aisNatKind, aisNat, 0, aU61, isNatKind, aU11, aU31, isNat, U11, U12, aU12, U13, aU13, U14, aU14, U15, aU15, U23, aU23, U31, U32, aU32, U33, aU33, U35, aU35, U61] > s1

Status:
AU812: [1,2]
tt: []
AU822: [1,2]
aisNatKind: []
AU832: [1,2]
aisNat: []
AU842: [1,2]
APLUS2: [2,1]
s1: [1]
0: []
plus2: [1,2]
x2: [1,2]
aU61: []
isNatKind: []
aU11: []
aU31: []
isNat: []
aU1023: [3,2,1]
aU1033: [3,2,1]
aU1043: [3,2,1]
aplus2: [1,2]
ax2: [1,2]
U1013: [3,2,1]
aU1013: [3,2,1]
U1023: [3,2,1]
U1033: [3,2,1]
U1043: [3,2,1]
U11: []
U12: []
aU12: []
U13: []
aU13: []
U14: []
aU14: []
U15: []
aU15: []
U23: []
aU23: []
U31: []
U32: []
aU32: []
U33: []
aU33: []
U35: []
aU35: []
U61: []
U813: [3,2,1]
aU813: [3,2,1]
U823: [3,2,1]
aU823: [3,2,1]
U833: [3,2,1]
aU833: [3,2,1]
U843: [3,2,1]
aU843: [3,2,1]
U912: [2,1]
aU912: [2,1]


The following usable rules [FROCOS05] were oriented:

a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__isNatKind(X) → isNatKind(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNat(X) → isNat(X)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(isNat(X)) → a__isNat(X)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U15(X1, X2) → U15(X1, X2)
a__U16(tt) → tt
a__U16(X) → U16(X)
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U21(X1, X2) → U21(X1, X2)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U22(X1, X2) → U22(X1, X2)
a__U23(tt) → tt
a__U23(X) → U23(X)
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U35(X1, X2) → U35(X1, X2)
a__U36(tt) → tt
a__U36(X) → U36(X)
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U41(X1, X2) → U41(X1, X2)
a__U42(tt) → tt
a__U42(X) → U42(X)
a__U51(tt) → tt
a__U51(X) → U51(X)
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U61(X1, X2) → U61(X1, X2)
a__U62(tt) → tt
a__U62(X) → U62(X)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U91(X1, X2) → U91(X1, X2)
a__U92(tt) → 0
a__U92(X) → U92(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(X1, X2) → x(X1, X2)
a__plus(X1, X2) → plus(X1, X2)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)

(65) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(66) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(67) TRUE