(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U101(tt, M, N) → A__U102(a__isNatKind(M), M, N)
A__U101(tt, M, N) → A__ISNATKIND(M)
A__U102(tt, M, N) → A__U103(a__isNat(N), M, N)
A__U102(tt, M, N) → A__ISNAT(N)
A__U103(tt, M, N) → A__U104(a__isNatKind(N), M, N)
A__U103(tt, M, N) → A__ISNATKIND(N)
A__U104(tt, M, N) → A__PLUS(a__x(mark(N), mark(M)), mark(N))
A__U104(tt, M, N) → A__X(mark(N), mark(M))
A__U104(tt, M, N) → MARK(N)
A__U104(tt, M, N) → MARK(M)
A__U11(tt, V1, V2) → A__U12(a__isNatKind(V1), V1, V2)
A__U11(tt, V1, V2) → A__ISNATKIND(V1)
A__U12(tt, V1, V2) → A__U13(a__isNatKind(V2), V1, V2)
A__U12(tt, V1, V2) → A__ISNATKIND(V2)
A__U13(tt, V1, V2) → A__U14(a__isNatKind(V2), V1, V2)
A__U13(tt, V1, V2) → A__ISNATKIND(V2)
A__U14(tt, V1, V2) → A__U15(a__isNat(V1), V2)
A__U14(tt, V1, V2) → A__ISNAT(V1)
A__U15(tt, V2) → A__U16(a__isNat(V2))
A__U15(tt, V2) → A__ISNAT(V2)
A__U21(tt, V1) → A__U22(a__isNatKind(V1), V1)
A__U21(tt, V1) → A__ISNATKIND(V1)
A__U22(tt, V1) → A__U23(a__isNat(V1))
A__U22(tt, V1) → A__ISNAT(V1)
A__U31(tt, V1, V2) → A__U32(a__isNatKind(V1), V1, V2)
A__U31(tt, V1, V2) → A__ISNATKIND(V1)
A__U32(tt, V1, V2) → A__U33(a__isNatKind(V2), V1, V2)
A__U32(tt, V1, V2) → A__ISNATKIND(V2)
A__U33(tt, V1, V2) → A__U34(a__isNatKind(V2), V1, V2)
A__U33(tt, V1, V2) → A__ISNATKIND(V2)
A__U34(tt, V1, V2) → A__U35(a__isNat(V1), V2)
A__U34(tt, V1, V2) → A__ISNAT(V1)
A__U35(tt, V2) → A__U36(a__isNat(V2))
A__U35(tt, V2) → A__ISNAT(V2)
A__U41(tt, V2) → A__U42(a__isNatKind(V2))
A__U41(tt, V2) → A__ISNATKIND(V2)
A__U61(tt, V2) → A__U62(a__isNatKind(V2))
A__U61(tt, V2) → A__ISNATKIND(V2)
A__U71(tt, N) → A__U72(a__isNatKind(N), N)
A__U71(tt, N) → A__ISNATKIND(N)
A__U72(tt, N) → MARK(N)
A__U81(tt, M, N) → A__U82(a__isNatKind(M), M, N)
A__U81(tt, M, N) → A__ISNATKIND(M)
A__U82(tt, M, N) → A__U83(a__isNat(N), M, N)
A__U82(tt, M, N) → A__ISNAT(N)
A__U83(tt, M, N) → A__U84(a__isNatKind(N), M, N)
A__U83(tt, M, N) → A__ISNATKIND(N)
A__U84(tt, M, N) → A__PLUS(mark(N), mark(M))
A__U84(tt, M, N) → MARK(N)
A__U84(tt, M, N) → MARK(M)
A__U91(tt, N) → A__U92(a__isNatKind(N))
A__U91(tt, N) → A__ISNATKIND(N)
A__ISNAT(plus(V1, V2)) → A__U11(a__isNatKind(V1), V1, V2)
A__ISNAT(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__ISNAT(s(V1)) → A__ISNATKIND(V1)
A__ISNAT(x(V1, V2)) → A__U31(a__isNatKind(V1), V1, V2)
A__ISNAT(x(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(plus(V1, V2)) → A__U41(a__isNatKind(V1), V2)
A__ISNATKIND(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__U51(a__isNatKind(V1))
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
A__ISNATKIND(x(V1, V2)) → A__U61(a__isNatKind(V1), V2)
A__ISNATKIND(x(V1, V2)) → A__ISNATKIND(V1)
A__PLUS(N, 0) → A__U71(a__isNat(N), N)
A__PLUS(N, 0) → A__ISNAT(N)
A__PLUS(N, s(M)) → A__U81(a__isNat(M), M, N)
A__PLUS(N, s(M)) → A__ISNAT(M)
A__X(N, 0) → A__U91(a__isNat(N), N)
A__X(N, 0) → A__ISNAT(N)
A__X(N, s(M)) → A__U101(a__isNat(M), M, N)
A__X(N, s(M)) → A__ISNAT(M)
MARK(U101(X1, X2, X3)) → A__U101(mark(X1), X2, X3)
MARK(U101(X1, X2, X3)) → MARK(X1)
MARK(U102(X1, X2, X3)) → A__U102(mark(X1), X2, X3)
MARK(U102(X1, X2, X3)) → MARK(X1)
MARK(isNatKind(X)) → A__ISNATKIND(X)
MARK(U103(X1, X2, X3)) → A__U103(mark(X1), X2, X3)
MARK(U103(X1, X2, X3)) → MARK(X1)
MARK(isNat(X)) → A__ISNAT(X)
MARK(U104(X1, X2, X3)) → A__U104(mark(X1), X2, X3)
MARK(U104(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(x(X1, X2)) → A__X(mark(X1), mark(X2))
MARK(x(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X2)
MARK(U11(X1, X2, X3)) → A__U11(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2, X3)) → A__U12(mark(X1), X2, X3)
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(U13(X1, X2, X3)) → A__U13(mark(X1), X2, X3)
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → A__U14(mark(X1), X2, X3)
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → A__U15(mark(X1), X2)
MARK(U15(X1, X2)) → MARK(X1)
MARK(U16(X)) → A__U16(mark(X))
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → A__U21(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → A__U22(mark(X1), X2)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → A__U23(mark(X))
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2, X3)) → A__U31(mark(X1), X2, X3)
MARK(U31(X1, X2, X3)) → MARK(X1)
MARK(U32(X1, X2, X3)) → A__U32(mark(X1), X2, X3)
MARK(U32(X1, X2, X3)) → MARK(X1)
MARK(U33(X1, X2, X3)) → A__U33(mark(X1), X2, X3)
MARK(U33(X1, X2, X3)) → MARK(X1)
MARK(U34(X1, X2, X3)) → A__U34(mark(X1), X2, X3)
MARK(U34(X1, X2, X3)) → MARK(X1)
MARK(U35(X1, X2)) → A__U35(mark(X1), X2)
MARK(U35(X1, X2)) → MARK(X1)
MARK(U36(X)) → A__U36(mark(X))
MARK(U36(X)) → MARK(X)
MARK(U41(X1, X2)) → A__U41(mark(X1), X2)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → A__U42(mark(X))
MARK(U42(X)) → MARK(X)
MARK(U51(X)) → A__U51(mark(X))
MARK(U51(X)) → MARK(X)
MARK(U61(X1, X2)) → A__U61(mark(X1), X2)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → A__U62(mark(X))
MARK(U62(X)) → MARK(X)
MARK(U71(X1, X2)) → A__U71(mark(X1), X2)
MARK(U71(X1, X2)) → MARK(X1)
MARK(U72(X1, X2)) → A__U72(mark(X1), X2)
MARK(U72(X1, X2)) → MARK(X1)
MARK(U81(X1, X2, X3)) → A__U81(mark(X1), X2, X3)
MARK(U81(X1, X2, X3)) → MARK(X1)
MARK(U82(X1, X2, X3)) → A__U82(mark(X1), X2, X3)
MARK(U82(X1, X2, X3)) → MARK(X1)
MARK(U83(X1, X2, X3)) → A__U83(mark(X1), X2, X3)
MARK(U83(X1, X2, X3)) → MARK(X1)
MARK(U84(X1, X2, X3)) → A__U84(mark(X1), X2, X3)
MARK(U84(X1, X2, X3)) → MARK(X1)
MARK(U91(X1, X2)) → A__U91(mark(X1), X2)
MARK(U91(X1, X2)) → MARK(X1)
MARK(U92(X)) → A__U92(mark(X))
MARK(U92(X)) → MARK(X)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 54 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U41(tt, V2) → A__ISNATKIND(V2)
A__ISNATKIND(plus(V1, V2)) → A__U41(a__isNatKind(V1), V2)
A__ISNATKIND(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
A__ISNATKIND(x(V1, V2)) → A__U61(a__isNatKind(V1), V2)
A__U61(tt, V2) → A__ISNATKIND(V2)
A__ISNATKIND(x(V1, V2)) → A__ISNATKIND(V1)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U41(tt, V2) → A__ISNATKIND(V2)
A__ISNATKIND(plus(V1, V2)) → A__U41(a__isNatKind(V1), V2)
A__ISNATKIND(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
A__ISNATKIND(x(V1, V2)) → A__U61(a__isNatKind(V1), V2)
A__U61(tt, V2) → A__ISNATKIND(V2)
A__ISNATKIND(x(V1, V2)) → A__ISNATKIND(V1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
A__U41(x1, x2)  =  A__U41(x1, x2)
tt  =  tt
A__ISNATKIND(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
a__isNatKind(x1)  =  x1
s(x1)  =  s(x1)
x(x1, x2)  =  x(x1, x2)
A__U61(x1, x2)  =  A__U61(x2)
0  =  0
a__U41(x1, x2)  =  a__U41(x1, x2)
a__U51(x1)  =  x1
a__U61(x1, x2)  =  a__U61(x1, x2)
isNatKind(x1)  =  x1
a__U42(x1)  =  x1
a__U62(x1)  =  a__U62(x1)
U41(x1, x2)  =  U41(x1)
U51(x1)  =  x1
U61(x1, x2)  =  x1
U62(x1)  =  U62(x1)
U42(x1)  =  U42

Lexicographic path order with status [LPO].
Quasi-Precedence:
[tt, 0] > [aU621, U621] > U42
plus2 > AU412 > U42
plus2 > [aU412, U411] > U42
s1 > U42
x2 > AU611 > U42
x2 > aU612 > [aU621, U621] > U42

Status:
AU412: [2,1]
tt: []
plus2: [1,2]
s1: [1]
x2: [2,1]
AU611: [1]
0: []
aU412: [1,2]
aU612: [2,1]
aU621: [1]
U411: [1]
U621: [1]
U42: []


The following usable rules [FROCOS05] were oriented:

a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__isNatKind(X) → isNatKind(X)
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U41(X1, X2) → U41(X1, X2)
a__U51(tt) → tt
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(tt) → tt
a__U62(X) → U62(X)
a__U42(tt) → tt
a__U42(X) → U42(X)

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U12(tt, V1, V2) → A__U13(a__isNatKind(V2), V1, V2)
A__U13(tt, V1, V2) → A__U14(a__isNatKind(V2), V1, V2)
A__U14(tt, V1, V2) → A__U15(a__isNat(V1), V2)
A__U15(tt, V2) → A__ISNAT(V2)
A__ISNAT(plus(V1, V2)) → A__U11(a__isNatKind(V1), V1, V2)
A__U11(tt, V1, V2) → A__U12(a__isNatKind(V1), V1, V2)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__U21(tt, V1) → A__U22(a__isNatKind(V1), V1)
A__U22(tt, V1) → A__ISNAT(V1)
A__ISNAT(x(V1, V2)) → A__U31(a__isNatKind(V1), V1, V2)
A__U31(tt, V1, V2) → A__U32(a__isNatKind(V1), V1, V2)
A__U32(tt, V1, V2) → A__U33(a__isNatKind(V2), V1, V2)
A__U33(tt, V1, V2) → A__U34(a__isNatKind(V2), V1, V2)
A__U34(tt, V1, V2) → A__U35(a__isNat(V1), V2)
A__U35(tt, V2) → A__ISNAT(V2)
A__U34(tt, V1, V2) → A__ISNAT(V1)
A__U14(tt, V1, V2) → A__ISNAT(V1)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U12(tt, V1, V2) → A__U13(a__isNatKind(V2), V1, V2)
A__U13(tt, V1, V2) → A__U14(a__isNatKind(V2), V1, V2)
A__U14(tt, V1, V2) → A__U15(a__isNat(V1), V2)
A__U15(tt, V2) → A__ISNAT(V2)
A__U11(tt, V1, V2) → A__U12(a__isNatKind(V1), V1, V2)
A__U31(tt, V1, V2) → A__U32(a__isNatKind(V1), V1, V2)
A__U32(tt, V1, V2) → A__U33(a__isNatKind(V2), V1, V2)
A__U34(tt, V1, V2) → A__U35(a__isNat(V1), V2)
A__U35(tt, V2) → A__ISNAT(V2)
A__U34(tt, V1, V2) → A__ISNAT(V1)
A__U14(tt, V1, V2) → A__ISNAT(V1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
A__U12(x1, x2, x3)  =  A__U12(x1, x2, x3)
tt  =  tt
A__U13(x1, x2, x3)  =  A__U13(x1, x2, x3)
a__isNatKind(x1)  =  a__isNatKind
A__U14(x1, x2, x3)  =  A__U14(x1, x2, x3)
A__U15(x1, x2)  =  A__U15(x1, x2)
a__isNat(x1)  =  a__isNat
A__ISNAT(x1)  =  x1
plus(x1, x2)  =  plus(x1, x2)
A__U11(x1, x2, x3)  =  A__U11(x2, x3)
s(x1)  =  x1
A__U21(x1, x2)  =  x2
A__U22(x1, x2)  =  x2
x(x1, x2)  =  x(x1, x2)
A__U31(x1, x2, x3)  =  A__U31(x2, x3)
A__U32(x1, x2, x3)  =  A__U32(x1, x2, x3)
A__U33(x1, x2, x3)  =  A__U33(x2, x3)
A__U34(x1, x2, x3)  =  A__U34(x2, x3)
A__U35(x1, x2)  =  A__U35(x2)
0  =  0
a__U41(x1, x2)  =  a__U41
a__U51(x1)  =  x1
a__U61(x1, x2)  =  x1
isNatKind(x1)  =  isNatKind
a__U11(x1, x2, x3)  =  a__U11
a__U21(x1, x2)  =  a__U21(x1)
a__U31(x1, x2, x3)  =  a__U31
isNat(x1)  =  isNat
a__U12(x1, x2, x3)  =  a__U12
a__U22(x1, x2)  =  a__U22(x1)
a__U32(x1, x2, x3)  =  x1
a__U13(x1, x2, x3)  =  a__U13
a__U23(x1)  =  a__U23
a__U33(x1, x2, x3)  =  x1
a__U14(x1, x2, x3)  =  a__U14
a__U34(x1, x2, x3)  =  x1
a__U15(x1, x2)  =  x1
a__U35(x1, x2)  =  a__U35
a__U16(x1)  =  a__U16
a__U36(x1)  =  a__U36
U13(x1, x2, x3)  =  U13
U14(x1, x2, x3)  =  U14
U15(x1, x2)  =  x1
U11(x1, x2, x3)  =  U11
U12(x1, x2, x3)  =  U12
U21(x1, x2)  =  U21(x1)
U22(x1, x2)  =  U22
U23(x1)  =  U23
U31(x1, x2, x3)  =  U31
U32(x1, x2, x3)  =  U32
U33(x1, x2, x3)  =  U33
U34(x1, x2, x3)  =  U34
U35(x1, x2)  =  U35
U36(x1)  =  U36
U16(x1)  =  U16
a__U42(x1)  =  x1
a__U62(x1)  =  x1
U41(x1, x2)  =  U41
U51(x1)  =  x1
U61(x1, x2)  =  x1
U62(x1)  =  x1
U42(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[plus2, AU112] > AU123 > AU133 > AU143 > [aisNat, aU11, isNat, aU12, aU13, aU14, U13, U14, U12] > [aU211, aU221] > aU23 > [tt, aisNatKind, aU41, aU31, aU35, aU16, aU36, U35, U36, U16, U41] > AU152 > [U32, U33, U34]
[plus2, AU112] > AU123 > AU133 > AU143 > [aisNat, aU11, isNat, aU12, aU13, aU14, U13, U14, U12] > [aU211, aU221] > aU23 > [tt, aisNatKind, aU41, aU31, aU35, aU16, aU36, U35, U36, U16, U41] > isNatKind > [U32, U33, U34]
[plus2, AU112] > AU123 > AU133 > AU143 > [aisNat, aU11, isNat, aU12, aU13, aU14, U13, U14, U12] > [aU211, aU221] > aU23 > [tt, aisNatKind, aU41, aU31, aU35, aU16, aU36, U35, U36, U16, U41] > U31 > [U32, U33, U34]
[plus2, AU112] > AU123 > AU133 > AU143 > [aisNat, aU11, isNat, aU12, aU13, aU14, U13, U14, U12] > [aU211, aU221] > aU23 > U23 > [U32, U33, U34]
[plus2, AU112] > AU123 > AU133 > AU143 > [aisNat, aU11, isNat, aU12, aU13, aU14, U13, U14, U12] > [aU211, aU221] > U211 > [U32, U33, U34]
[plus2, AU112] > AU123 > AU133 > AU143 > [aisNat, aU11, isNat, aU12, aU13, aU14, U13, U14, U12] > [aU211, aU221] > U22 > [U32, U33, U34]
[plus2, AU112] > AU123 > AU133 > AU143 > [aisNat, aU11, isNat, aU12, aU13, aU14, U13, U14, U12] > U11 > [U32, U33, U34]
[x2, AU312] > [AU323, AU332, AU342, AU351] > [tt, aisNatKind, aU41, aU31, aU35, aU16, aU36, U35, U36, U16, U41] > AU152 > [U32, U33, U34]
[x2, AU312] > [AU323, AU332, AU342, AU351] > [tt, aisNatKind, aU41, aU31, aU35, aU16, aU36, U35, U36, U16, U41] > isNatKind > [U32, U33, U34]
[x2, AU312] > [AU323, AU332, AU342, AU351] > [tt, aisNatKind, aU41, aU31, aU35, aU16, aU36, U35, U36, U16, U41] > U31 > [U32, U33, U34]
0 > [U32, U33, U34]

Status:
AU123: [2,3,1]
tt: []
AU133: [3,2,1]
aisNatKind: []
AU143: [2,3,1]
AU152: [2,1]
aisNat: []
plus2: [2,1]
AU112: [2,1]
x2: [1,2]
AU312: [1,2]
AU323: [3,2,1]
AU332: [2,1]
AU342: [2,1]
AU351: [1]
0: []
aU41: []
isNatKind: []
aU11: []
aU211: [1]
aU31: []
isNat: []
aU12: []
aU221: [1]
aU13: []
aU23: []
aU14: []
aU35: []
aU16: []
aU36: []
U13: []
U14: []
U11: []
U12: []
U211: [1]
U22: []
U23: []
U31: []
U32: []
U33: []
U34: []
U35: []
U36: []
U16: []
U41: []


The following usable rules [FROCOS05] were oriented:

a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__isNatKind(X) → isNatKind(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNat(X) → isNat(X)
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(tt) → tt
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(tt) → tt
a__U36(X) → U36(X)
a__U16(tt) → tt
a__U16(X) → U16(X)
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U41(X1, X2) → U41(X1, X2)
a__U51(tt) → tt
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(tt) → tt
a__U62(X) → U62(X)
a__U42(tt) → tt
a__U42(X) → U42(X)

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__ISNAT(plus(V1, V2)) → A__U11(a__isNatKind(V1), V1, V2)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__U21(tt, V1) → A__U22(a__isNatKind(V1), V1)
A__U22(tt, V1) → A__ISNAT(V1)
A__ISNAT(x(V1, V2)) → A__U31(a__isNatKind(V1), V1, V2)
A__U33(tt, V1, V2) → A__U34(a__isNatKind(V2), V1, V2)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 3 less nodes.

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__U21(tt, V1) → A__U22(a__isNatKind(V1), V1)
A__U22(tt, V1) → A__ISNAT(V1)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U21(tt, V1) → A__U22(a__isNatKind(V1), V1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
A__ISNAT(x1)  =  x1
s(x1)  =  s(x1)
A__U21(x1, x2)  =  A__U21(x2)
a__isNatKind(x1)  =  a__isNatKind
tt  =  tt
A__U22(x1, x2)  =  x2
0  =  0
plus(x1, x2)  =  plus
a__U41(x1, x2)  =  x2
a__U51(x1)  =  x1
x(x1, x2)  =  x
a__U61(x1, x2)  =  x2
isNatKind(x1)  =  isNatKind
a__U42(x1)  =  x1
a__U62(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
U51(x1)  =  U51(x1)
U61(x1, x2)  =  U61(x1, x2)
U62(x1)  =  U62(x1)
U42(x1)  =  U42(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
aisNatKind > [tt, 0] > [s1, AU211, U612]
plus > [s1, AU211, U612]
x > [s1, AU211, U612]
isNatKind > [s1, AU211, U612]
U412 > [s1, AU211, U612]
U511 > [s1, AU211, U612]
U621 > [s1, AU211, U612]
U421 > [s1, AU211, U612]

Status:
s1: [1]
AU211: [1]
aisNatKind: []
tt: []
0: []
plus: []
x: []
isNatKind: []
U412: [2,1]
U511: [1]
U612: [2,1]
U621: [1]
U421: [1]


The following usable rules [FROCOS05] were oriented: none

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__U22(tt, V1) → A__ISNAT(V1)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(18) TRUE

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U102(tt, M, N) → A__U103(a__isNat(N), M, N)
A__U103(tt, M, N) → A__U104(a__isNatKind(N), M, N)
A__U104(tt, M, N) → A__PLUS(a__x(mark(N), mark(M)), mark(N))
A__PLUS(N, 0) → A__U71(a__isNat(N), N)
A__U71(tt, N) → A__U72(a__isNatKind(N), N)
A__U72(tt, N) → MARK(N)
MARK(U101(X1, X2, X3)) → A__U101(mark(X1), X2, X3)
A__U101(tt, M, N) → A__U102(a__isNatKind(M), M, N)
MARK(U101(X1, X2, X3)) → MARK(X1)
MARK(U102(X1, X2, X3)) → A__U102(mark(X1), X2, X3)
MARK(U102(X1, X2, X3)) → MARK(X1)
MARK(U103(X1, X2, X3)) → A__U103(mark(X1), X2, X3)
MARK(U103(X1, X2, X3)) → MARK(X1)
MARK(U104(X1, X2, X3)) → A__U104(mark(X1), X2, X3)
A__U104(tt, M, N) → A__X(mark(N), mark(M))
A__X(N, s(M)) → A__U101(a__isNat(M), M, N)
A__U104(tt, M, N) → MARK(N)
MARK(U104(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
A__PLUS(N, s(M)) → A__U81(a__isNat(M), M, N)
A__U81(tt, M, N) → A__U82(a__isNatKind(M), M, N)
A__U82(tt, M, N) → A__U83(a__isNat(N), M, N)
A__U83(tt, M, N) → A__U84(a__isNatKind(N), M, N)
A__U84(tt, M, N) → A__PLUS(mark(N), mark(M))
A__U84(tt, M, N) → MARK(N)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(x(X1, X2)) → A__X(mark(X1), mark(X2))
MARK(x(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X2)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → MARK(X1)
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2, X3)) → MARK(X1)
MARK(U32(X1, X2, X3)) → MARK(X1)
MARK(U33(X1, X2, X3)) → MARK(X1)
MARK(U34(X1, X2, X3)) → MARK(X1)
MARK(U35(X1, X2)) → MARK(X1)
MARK(U36(X)) → MARK(X)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
MARK(U71(X1, X2)) → A__U71(mark(X1), X2)
MARK(U71(X1, X2)) → MARK(X1)
MARK(U72(X1, X2)) → A__U72(mark(X1), X2)
MARK(U72(X1, X2)) → MARK(X1)
MARK(U81(X1, X2, X3)) → A__U81(mark(X1), X2, X3)
MARK(U81(X1, X2, X3)) → MARK(X1)
MARK(U82(X1, X2, X3)) → A__U82(mark(X1), X2, X3)
MARK(U82(X1, X2, X3)) → MARK(X1)
MARK(U83(X1, X2, X3)) → A__U83(mark(X1), X2, X3)
MARK(U83(X1, X2, X3)) → MARK(X1)
MARK(U84(X1, X2, X3)) → A__U84(mark(X1), X2, X3)
A__U84(tt, M, N) → MARK(M)
MARK(U84(X1, X2, X3)) → MARK(X1)
MARK(U91(X1, X2)) → MARK(X1)
MARK(U92(X)) → MARK(X)
MARK(s(X)) → MARK(X)
A__U104(tt, M, N) → MARK(M)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U104(tt, M, N) → A__PLUS(a__x(mark(N), mark(M)), mark(N))
A__PLUS(N, 0) → A__U71(a__isNat(N), N)
A__U71(tt, N) → A__U72(a__isNatKind(N), N)
MARK(U101(X1, X2, X3)) → A__U101(mark(X1), X2, X3)
MARK(U101(X1, X2, X3)) → MARK(X1)
MARK(U102(X1, X2, X3)) → A__U102(mark(X1), X2, X3)
MARK(U102(X1, X2, X3)) → MARK(X1)
MARK(U103(X1, X2, X3)) → A__U103(mark(X1), X2, X3)
MARK(U103(X1, X2, X3)) → MARK(X1)
MARK(U104(X1, X2, X3)) → A__U104(mark(X1), X2, X3)
A__U104(tt, M, N) → A__X(mark(N), mark(M))
A__X(N, s(M)) → A__U101(a__isNat(M), M, N)
A__U104(tt, M, N) → MARK(N)
MARK(U104(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
A__PLUS(N, s(M)) → A__U81(a__isNat(M), M, N)
A__U84(tt, M, N) → MARK(N)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(x(X1, X2)) → A__X(mark(X1), mark(X2))
MARK(x(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X2)
MARK(U71(X1, X2)) → A__U71(mark(X1), X2)
MARK(U71(X1, X2)) → MARK(X1)
MARK(U72(X1, X2)) → A__U72(mark(X1), X2)
MARK(U72(X1, X2)) → MARK(X1)
MARK(U81(X1, X2, X3)) → A__U81(mark(X1), X2, X3)
MARK(U81(X1, X2, X3)) → MARK(X1)
MARK(U82(X1, X2, X3)) → A__U82(mark(X1), X2, X3)
MARK(U82(X1, X2, X3)) → MARK(X1)
MARK(U83(X1, X2, X3)) → A__U83(mark(X1), X2, X3)
MARK(U83(X1, X2, X3)) → MARK(X1)
MARK(U84(X1, X2, X3)) → A__U84(mark(X1), X2, X3)
A__U84(tt, M, N) → MARK(M)
MARK(U84(X1, X2, X3)) → MARK(X1)
MARK(s(X)) → MARK(X)
A__U104(tt, M, N) → MARK(M)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
A__U102(x1, x2, x3)  =  A__U102(x1, x2, x3)
tt  =  tt
A__U103(x1, x2, x3)  =  A__U103(x1, x2, x3)
a__isNat(x1)  =  a__isNat
A__U104(x1, x2, x3)  =  A__U104(x1, x2, x3)
a__isNatKind(x1)  =  a__isNatKind
A__PLUS(x1, x2)  =  A__PLUS(x1, x2)
a__x(x1, x2)  =  a__x(x1, x2)
mark(x1)  =  x1
0  =  0
A__U71(x1, x2)  =  A__U71(x2)
A__U72(x1, x2)  =  A__U72(x2)
MARK(x1)  =  MARK(x1)
U101(x1, x2, x3)  =  U101(x1, x2, x3)
A__U101(x1, x2, x3)  =  A__U101(x1, x2, x3)
U102(x1, x2, x3)  =  U102(x1, x2, x3)
U103(x1, x2, x3)  =  U103(x1, x2, x3)
U104(x1, x2, x3)  =  U104(x1, x2, x3)
A__X(x1, x2)  =  A__X(x1, x2)
s(x1)  =  s(x1)
plus(x1, x2)  =  plus(x1, x2)
A__U81(x1, x2, x3)  =  A__U81(x2, x3)
A__U82(x1, x2, x3)  =  A__U82(x2, x3)
A__U83(x1, x2, x3)  =  A__U83(x2, x3)
A__U84(x1, x2, x3)  =  A__U84(x2, x3)
x(x1, x2)  =  x(x1, x2)
U11(x1, x2, x3)  =  x1
U12(x1, x2, x3)  =  x1
U13(x1, x2, x3)  =  x1
U14(x1, x2, x3)  =  x1
U15(x1, x2)  =  x1
U16(x1)  =  x1
U21(x1, x2)  =  x1
U22(x1, x2)  =  x1
U23(x1)  =  x1
U31(x1, x2, x3)  =  x1
U32(x1, x2, x3)  =  x1
U33(x1, x2, x3)  =  x1
U34(x1, x2, x3)  =  x1
U35(x1, x2)  =  x1
U36(x1)  =  x1
U41(x1, x2)  =  x1
U42(x1)  =  x1
U51(x1)  =  x1
U61(x1, x2)  =  x1
U62(x1)  =  x1
U71(x1, x2)  =  U71(x1, x2)
U72(x1, x2)  =  U72(x1, x2)
U81(x1, x2, x3)  =  U81(x1, x2, x3)
U82(x1, x2, x3)  =  U82(x1, x2, x3)
U83(x1, x2, x3)  =  U83(x1, x2, x3)
U84(x1, x2, x3)  =  U84(x1, x2, x3)
U91(x1, x2)  =  x1
U92(x1)  =  x1
a__U11(x1, x2, x3)  =  x1
a__U21(x1, x2)  =  x1
a__U31(x1, x2, x3)  =  x1
isNat(x1)  =  isNat
a__U41(x1, x2)  =  x1
a__U51(x1)  =  x1
a__U61(x1, x2)  =  x1
isNatKind(x1)  =  isNatKind
a__U102(x1, x2, x3)  =  a__U102(x1, x2, x3)
a__U103(x1, x2, x3)  =  a__U103(x1, x2, x3)
a__U104(x1, x2, x3)  =  a__U104(x1, x2, x3)
a__plus(x1, x2)  =  a__plus(x1, x2)
a__U71(x1, x2)  =  a__U71(x1, x2)
a__U72(x1, x2)  =  a__U72(x1, x2)
a__U101(x1, x2, x3)  =  a__U101(x1, x2, x3)
a__U12(x1, x2, x3)  =  x1
a__U13(x1, x2, x3)  =  x1
a__U14(x1, x2, x3)  =  x1
a__U15(x1, x2)  =  x1
a__U16(x1)  =  x1
a__U22(x1, x2)  =  x1
a__U23(x1)  =  x1
a__U32(x1, x2, x3)  =  x1
a__U33(x1, x2, x3)  =  x1
a__U34(x1, x2, x3)  =  x1
a__U35(x1, x2)  =  x1
a__U36(x1)  =  x1
a__U42(x1)  =  x1
a__U62(x1)  =  x1
a__U81(x1, x2, x3)  =  a__U81(x1, x2, x3)
a__U82(x1, x2, x3)  =  a__U82(x1, x2, x3)
a__U83(x1, x2, x3)  =  a__U83(x1, x2, x3)
a__U84(x1, x2, x3)  =  a__U84(x1, x2, x3)
a__U91(x1, x2)  =  x1
a__U92(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
[AU1023, AU1033, AU1043, ax2, U1013, AU1013, U1023, U1033, U1043, AX2, x2, aU1023, aU1033, aU1043, aU1013] > [plus2, U813, U823, U833, U843, aplus2, aU813, aU823, aU833, aU843] > [APLUS2, AU812, AU822, AU832, AU842] > AU711 > [tt, aisNat, aisNatKind, AU721, MARK1, s1, isNat, isNatKind] > 0
[AU1023, AU1033, AU1043, ax2, U1013, AU1013, U1023, U1033, U1043, AX2, x2, aU1023, aU1033, aU1043, aU1013] > [plus2, U813, U823, U833, U843, aplus2, aU813, aU823, aU833, aU843] > [APLUS2, AU812, AU822, AU832, AU842] > AU711 > [tt, aisNat, aisNatKind, AU721, MARK1, s1, isNat, isNatKind] > [U722, aU722]
[AU1023, AU1033, AU1043, ax2, U1013, AU1013, U1023, U1033, U1043, AX2, x2, aU1023, aU1033, aU1043, aU1013] > [plus2, U813, U823, U833, U843, aplus2, aU813, aU823, aU833, aU843] > [U712, aU712] > AU711 > [tt, aisNat, aisNatKind, AU721, MARK1, s1, isNat, isNatKind] > 0
[AU1023, AU1033, AU1043, ax2, U1013, AU1013, U1023, U1033, U1043, AX2, x2, aU1023, aU1033, aU1043, aU1013] > [plus2, U813, U823, U833, U843, aplus2, aU813, aU823, aU833, aU843] > [U712, aU712] > AU711 > [tt, aisNat, aisNatKind, AU721, MARK1, s1, isNat, isNatKind] > [U722, aU722]

Status:
AU1023: [3,2,1]
tt: []
AU1033: [3,2,1]
aisNat: []
AU1043: [3,2,1]
aisNatKind: []
APLUS2: [2,1]
ax2: [1,2]
0: []
AU711: [1]
AU721: [1]
MARK1: [1]
U1013: [3,2,1]
AU1013: [3,2,1]
U1023: [3,2,1]
U1033: [3,2,1]
U1043: [3,2,1]
AX2: [1,2]
s1: [1]
plus2: [1,2]
AU812: [1,2]
AU822: [1,2]
AU832: [1,2]
AU842: [1,2]
x2: [1,2]
U712: [1,2]
U722: [1,2]
U813: [3,2,1]
U823: [3,2,1]
U833: [3,2,1]
U843: [3,2,1]
isNat: []
isNatKind: []
aU1023: [3,2,1]
aU1033: [3,2,1]
aU1043: [3,2,1]
aplus2: [1,2]
aU712: [1,2]
aU722: [1,2]
aU1013: [3,2,1]
aU813: [3,2,1]
aU823: [3,2,1]
aU833: [3,2,1]
aU843: [3,2,1]


The following usable rules [FROCOS05] were oriented:

a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNat(X) → isNat(X)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__isNatKind(X) → isNatKind(X)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(isNat(X)) → a__isNat(X)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(X1, X2) → x(X1, X2)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U15(X1, X2) → U15(X1, X2)
a__U16(tt) → tt
a__U16(X) → U16(X)
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U21(X1, X2) → U21(X1, X2)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U22(X1, X2) → U22(X1, X2)
a__U23(tt) → tt
a__U23(X) → U23(X)
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U35(X1, X2) → U35(X1, X2)
a__U36(tt) → tt
a__U36(X) → U36(X)
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U41(X1, X2) → U41(X1, X2)
a__U42(tt) → tt
a__U42(X) → U42(X)
a__U51(tt) → tt
a__U51(X) → U51(X)
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U61(X1, X2) → U61(X1, X2)
a__U62(tt) → tt
a__U62(X) → U62(X)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U91(X1, X2) → U91(X1, X2)
a__U92(tt) → 0
a__U92(X) → U92(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)

(21) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U102(tt, M, N) → A__U103(a__isNat(N), M, N)
A__U103(tt, M, N) → A__U104(a__isNatKind(N), M, N)
A__U72(tt, N) → MARK(N)
A__U101(tt, M, N) → A__U102(a__isNatKind(M), M, N)
A__U81(tt, M, N) → A__U82(a__isNatKind(M), M, N)
A__U82(tt, M, N) → A__U83(a__isNat(N), M, N)
A__U83(tt, M, N) → A__U84(a__isNatKind(N), M, N)
A__U84(tt, M, N) → A__PLUS(mark(N), mark(M))
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → MARK(X1)
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2, X3)) → MARK(X1)
MARK(U32(X1, X2, X3)) → MARK(X1)
MARK(U33(X1, X2, X3)) → MARK(X1)
MARK(U34(X1, X2, X3)) → MARK(X1)
MARK(U35(X1, X2)) → MARK(X1)
MARK(U36(X)) → MARK(X)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
MARK(U91(X1, X2)) → MARK(X1)
MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(22) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 8 less nodes.

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → MARK(X1)
MARK(U16(X)) → MARK(X)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U23(X)) → MARK(X)
MARK(U31(X1, X2, X3)) → MARK(X1)
MARK(U32(X1, X2, X3)) → MARK(X1)
MARK(U33(X1, X2, X3)) → MARK(X1)
MARK(U34(X1, X2, X3)) → MARK(X1)
MARK(U35(X1, X2)) → MARK(X1)
MARK(U36(X)) → MARK(X)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U42(X)) → MARK(X)
MARK(U51(X)) → MARK(X)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U62(X)) → MARK(X)
MARK(U91(X1, X2)) → MARK(X1)
MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(24) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U12(X1, X2, X3)) → MARK(X1)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U13(X1, X2, X3)) → MARK(X1)
MARK(U14(X1, X2, X3)) → MARK(X1)
MARK(U15(X1, X2)) → MARK(X1)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X1, X2)) → MARK(X1)
MARK(U31(X1, X2, X3)) → MARK(X1)
MARK(U32(X1, X2, X3)) → MARK(X1)
MARK(U33(X1, X2, X3)) → MARK(X1)
MARK(U34(X1, X2, X3)) → MARK(X1)
MARK(U35(X1, X2)) → MARK(X1)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U61(X1, X2)) → MARK(X1)
MARK(U91(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
U12(x1, x2, x3)  =  U12(x1, x2, x3)
U11(x1, x2, x3)  =  U11(x1, x2, x3)
U13(x1, x2, x3)  =  U13(x1, x2, x3)
U14(x1, x2, x3)  =  U14(x1, x2, x3)
U15(x1, x2)  =  U15(x1, x2)
U16(x1)  =  x1
U21(x1, x2)  =  U21(x1, x2)
U22(x1, x2)  =  U22(x1, x2)
U23(x1)  =  x1
U31(x1, x2, x3)  =  U31(x1, x2, x3)
U32(x1, x2, x3)  =  U32(x1, x2, x3)
U33(x1, x2, x3)  =  U33(x1, x2, x3)
U34(x1, x2, x3)  =  U34(x1, x2, x3)
U35(x1, x2)  =  U35(x1, x2)
U36(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
U42(x1)  =  x1
U51(x1)  =  x1
U61(x1, x2)  =  U61(x1, x2)
U62(x1)  =  x1
U91(x1, x2)  =  U91(x1, x2)
U92(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
U123: [3,2,1]
U113: [3,2,1]
U133: [3,2,1]
U143: [3,2,1]
U152: [2,1]
U212: [2,1]
U222: [2,1]
U313: [3,2,1]
U323: [3,2,1]
U333: [3,2,1]
U343: [3,2,1]
U352: [2,1]
U412: [2,1]
U612: [2,1]
U912: [2,1]


The following usable rules [FROCOS05] were oriented: none

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U16(X)) → MARK(X)
MARK(U23(X)) → MARK(X)
MARK(U36(X)) → MARK(X)
MARK(U42(X)) → MARK(X)
MARK(U51(X)) → MARK(X)
MARK(U62(X)) → MARK(X)
MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(26) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U51(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
U16(x1)  =  x1
U23(x1)  =  x1
U36(x1)  =  x1
U42(x1)  =  x1
U51(x1)  =  U51(x1)
U62(x1)  =  x1
U92(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
MARK1: [1]
U511: [1]


The following usable rules [FROCOS05] were oriented: none

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U16(X)) → MARK(X)
MARK(U23(X)) → MARK(X)
MARK(U36(X)) → MARK(X)
MARK(U42(X)) → MARK(X)
MARK(U62(X)) → MARK(X)
MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(28) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U62(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
U16(x1)  =  x1
U23(x1)  =  x1
U36(x1)  =  x1
U42(x1)  =  x1
U62(x1)  =  U62(x1)
U92(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
MARK1: [1]
U621: [1]


The following usable rules [FROCOS05] were oriented: none

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U16(X)) → MARK(X)
MARK(U23(X)) → MARK(X)
MARK(U36(X)) → MARK(X)
MARK(U42(X)) → MARK(X)
MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(30) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U23(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
U16(x1)  =  x1
U23(x1)  =  U23(x1)
U36(x1)  =  x1
U42(x1)  =  x1
U92(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
MARK1: [1]
U231: [1]


The following usable rules [FROCOS05] were oriented: none

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U16(X)) → MARK(X)
MARK(U36(X)) → MARK(X)
MARK(U42(X)) → MARK(X)
MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U36(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
U16(x1)  =  x1
U36(x1)  =  U36(x1)
U42(x1)  =  x1
U92(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
U361: [1]


The following usable rules [FROCOS05] were oriented: none

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U16(X)) → MARK(X)
MARK(U42(X)) → MARK(X)
MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U16(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  MARK(x1)
U16(x1)  =  U16(x1)
U42(x1)  =  x1
U92(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
MARK1: [1]
U161: [1]


The following usable rules [FROCOS05] were oriented: none

(35) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U42(X)) → MARK(X)
MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U42(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
U42(x1)  =  U42(x1)
U92(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
U421: [1]


The following usable rules [FROCOS05] were oriented: none

(37) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U92(X)) → MARK(X)

The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(38) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U92(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Combined order from the following AFS and order.
MARK(x1)  =  x1
U92(x1)  =  U92(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
U921: [1]


The following usable rules [FROCOS05] were oriented: none

(39) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__U101(tt, M, N) → a__U102(a__isNatKind(M), M, N)
a__U102(tt, M, N) → a__U103(a__isNat(N), M, N)
a__U103(tt, M, N) → a__U104(a__isNatKind(N), M, N)
a__U104(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__U11(tt, V1, V2) → a__U12(a__isNatKind(V1), V1, V2)
a__U12(tt, V1, V2) → a__U13(a__isNatKind(V2), V1, V2)
a__U13(tt, V1, V2) → a__U14(a__isNatKind(V2), V1, V2)
a__U14(tt, V1, V2) → a__U15(a__isNat(V1), V2)
a__U15(tt, V2) → a__U16(a__isNat(V2))
a__U16(tt) → tt
a__U21(tt, V1) → a__U22(a__isNatKind(V1), V1)
a__U22(tt, V1) → a__U23(a__isNat(V1))
a__U23(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNatKind(V1), V1, V2)
a__U32(tt, V1, V2) → a__U33(a__isNatKind(V2), V1, V2)
a__U33(tt, V1, V2) → a__U34(a__isNatKind(V2), V1, V2)
a__U34(tt, V1, V2) → a__U35(a__isNat(V1), V2)
a__U35(tt, V2) → a__U36(a__isNat(V2))
a__U36(tt) → tt
a__U41(tt, V2) → a__U42(a__isNatKind(V2))
a__U42(tt) → tt
a__U51(tt) → tt
a__U61(tt, V2) → a__U62(a__isNatKind(V2))
a__U62(tt) → tt
a__U71(tt, N) → a__U72(a__isNatKind(N), N)
a__U72(tt, N) → mark(N)
a__U81(tt, M, N) → a__U82(a__isNatKind(M), M, N)
a__U82(tt, M, N) → a__U83(a__isNat(N), M, N)
a__U83(tt, M, N) → a__U84(a__isNatKind(N), M, N)
a__U84(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U91(tt, N) → a__U92(a__isNatKind(N))
a__U92(tt) → 0
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__isNatKind(V1), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__isNatKind(V1), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__U41(a__isNatKind(V1), V2)
a__isNatKind(s(V1)) → a__U51(a__isNatKind(V1))
a__isNatKind(x(V1, V2)) → a__U61(a__isNatKind(V1), V2)
a__plus(N, 0) → a__U71(a__isNat(N), N)
a__plus(N, s(M)) → a__U81(a__isNat(M), M, N)
a__x(N, 0) → a__U91(a__isNat(N), N)
a__x(N, s(M)) → a__U101(a__isNat(M), M, N)
mark(U101(X1, X2, X3)) → a__U101(mark(X1), X2, X3)
mark(U102(X1, X2, X3)) → a__U102(mark(X1), X2, X3)
mark(isNatKind(X)) → a__isNatKind(X)
mark(U103(X1, X2, X3)) → a__U103(mark(X1), X2, X3)
mark(isNat(X)) → a__isNat(X)
mark(U104(X1, X2, X3)) → a__U104(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2, X3)) → a__U12(mark(X1), X2, X3)
mark(U13(X1, X2, X3)) → a__U13(mark(X1), X2, X3)
mark(U14(X1, X2, X3)) → a__U14(mark(X1), X2, X3)
mark(U15(X1, X2)) → a__U15(mark(X1), X2)
mark(U16(X)) → a__U16(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X1, X2)) → a__U22(mark(X1), X2)
mark(U23(X)) → a__U23(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2, X3)) → a__U32(mark(X1), X2, X3)
mark(U33(X1, X2, X3)) → a__U33(mark(X1), X2, X3)
mark(U34(X1, X2, X3)) → a__U34(mark(X1), X2, X3)
mark(U35(X1, X2)) → a__U35(mark(X1), X2)
mark(U36(X)) → a__U36(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U42(X)) → a__U42(mark(X))
mark(U51(X)) → a__U51(mark(X))
mark(U61(X1, X2)) → a__U61(mark(X1), X2)
mark(U62(X)) → a__U62(mark(X))
mark(U71(X1, X2)) → a__U71(mark(X1), X2)
mark(U72(X1, X2)) → a__U72(mark(X1), X2)
mark(U81(X1, X2, X3)) → a__U81(mark(X1), X2, X3)
mark(U82(X1, X2, X3)) → a__U82(mark(X1), X2, X3)
mark(U83(X1, X2, X3)) → a__U83(mark(X1), X2, X3)
mark(U84(X1, X2, X3)) → a__U84(mark(X1), X2, X3)
mark(U91(X1, X2)) → a__U91(mark(X1), X2)
mark(U92(X)) → a__U92(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U101(X1, X2, X3) → U101(X1, X2, X3)
a__U102(X1, X2, X3) → U102(X1, X2, X3)
a__isNatKind(X) → isNatKind(X)
a__U103(X1, X2, X3) → U103(X1, X2, X3)
a__isNat(X) → isNat(X)
a__U104(X1, X2, X3) → U104(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__x(X1, X2) → x(X1, X2)
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2, X3) → U12(X1, X2, X3)
a__U13(X1, X2, X3) → U13(X1, X2, X3)
a__U14(X1, X2, X3) → U14(X1, X2, X3)
a__U15(X1, X2) → U15(X1, X2)
a__U16(X) → U16(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X1, X2) → U22(X1, X2)
a__U23(X) → U23(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2, X3) → U32(X1, X2, X3)
a__U33(X1, X2, X3) → U33(X1, X2, X3)
a__U34(X1, X2, X3) → U34(X1, X2, X3)
a__U35(X1, X2) → U35(X1, X2)
a__U36(X) → U36(X)
a__U41(X1, X2) → U41(X1, X2)
a__U42(X) → U42(X)
a__U51(X) → U51(X)
a__U61(X1, X2) → U61(X1, X2)
a__U62(X) → U62(X)
a__U71(X1, X2) → U71(X1, X2)
a__U72(X1, X2) → U72(X1, X2)
a__U81(X1, X2, X3) → U81(X1, X2, X3)
a__U82(X1, X2, X3) → U82(X1, X2, X3)
a__U83(X1, X2, X3) → U83(X1, X2, X3)
a__U84(X1, X2, X3) → U84(X1, X2, X3)
a__U91(X1, X2) → U91(X1, X2)
a__U92(X) → U92(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(40) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(41) TRUE