(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNat(V1), V2)
a__U32(tt, V2) → a__U33(a__isNat(V2))
a__U33(tt) → tt
a__U41(tt, N) → mark(N)
a__U51(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U61(tt) → 0
a__U71(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatKind(x(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__plus(N, 0) → a__U41(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U51(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
a__x(N, 0) → a__U61(a__and(a__isNat(N), isNatKind(N)))
a__x(N, s(M)) → a__U71(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2) → U41(X1, X2)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U61(X) → U61(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U11(tt, V1, V2) → A__U12(a__isNat(V1), V2)
A__U11(tt, V1, V2) → A__ISNAT(V1)
A__U12(tt, V2) → A__U13(a__isNat(V2))
A__U12(tt, V2) → A__ISNAT(V2)
A__U21(tt, V1) → A__U22(a__isNat(V1))
A__U21(tt, V1) → A__ISNAT(V1)
A__U31(tt, V1, V2) → A__U32(a__isNat(V1), V2)
A__U31(tt, V1, V2) → A__ISNAT(V1)
A__U32(tt, V2) → A__U33(a__isNat(V2))
A__U32(tt, V2) → A__ISNAT(V2)
A__U41(tt, N) → MARK(N)
A__U51(tt, M, N) → A__PLUS(mark(N), mark(M))
A__U51(tt, M, N) → MARK(N)
A__U51(tt, M, N) → MARK(M)
A__U71(tt, M, N) → A__PLUS(a__x(mark(N), mark(M)), mark(N))
A__U71(tt, M, N) → A__X(mark(N), mark(M))
A__U71(tt, M, N) → MARK(N)
A__U71(tt, M, N) → MARK(M)
A__AND(tt, X) → MARK(X)
A__ISNAT(plus(V1, V2)) → A__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
A__ISNAT(plus(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__ISNAT(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__ISNAT(s(V1)) → A__ISNATKIND(V1)
A__ISNAT(x(V1, V2)) → A__U31(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
A__ISNAT(x(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__ISNAT(x(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(plus(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__ISNATKIND(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
A__ISNATKIND(x(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__ISNATKIND(x(V1, V2)) → A__ISNATKIND(V1)
A__PLUS(N, 0) → A__U41(a__and(a__isNat(N), isNatKind(N)), N)
A__PLUS(N, 0) → A__AND(a__isNat(N), isNatKind(N))
A__PLUS(N, 0) → A__ISNAT(N)
A__PLUS(N, s(M)) → A__U51(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
A__PLUS(N, s(M)) → A__AND(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N)))
A__PLUS(N, s(M)) → A__AND(a__isNat(M), isNatKind(M))
A__PLUS(N, s(M)) → A__ISNAT(M)
A__X(N, 0) → A__U61(a__and(a__isNat(N), isNatKind(N)))
A__X(N, 0) → A__AND(a__isNat(N), isNatKind(N))
A__X(N, 0) → A__ISNAT(N)
A__X(N, s(M)) → A__U71(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
A__X(N, s(M)) → A__AND(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N)))
A__X(N, s(M)) → A__AND(a__isNat(M), isNatKind(M))
A__X(N, s(M)) → A__ISNAT(M)
MARK(U11(X1, X2, X3)) → A__U11(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2)) → A__U12(mark(X1), X2)
MARK(U12(X1, X2)) → MARK(X1)
MARK(isNat(X)) → A__ISNAT(X)
MARK(U13(X)) → A__U13(mark(X))
MARK(U13(X)) → MARK(X)
MARK(U21(X1, X2)) → A__U21(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → A__U22(mark(X))
MARK(U22(X)) → MARK(X)
MARK(U31(X1, X2, X3)) → A__U31(mark(X1), X2, X3)
MARK(U31(X1, X2, X3)) → MARK(X1)
MARK(U32(X1, X2)) → A__U32(mark(X1), X2)
MARK(U32(X1, X2)) → MARK(X1)
MARK(U33(X)) → A__U33(mark(X))
MARK(U33(X)) → MARK(X)
MARK(U41(X1, X2)) → A__U41(mark(X1), X2)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U51(X1, X2, X3)) → A__U51(mark(X1), X2, X3)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(U61(X)) → A__U61(mark(X))
MARK(U61(X)) → MARK(X)
MARK(U71(X1, X2, X3)) → A__U71(mark(X1), X2, X3)
MARK(U71(X1, X2, X3)) → MARK(X1)
MARK(x(X1, X2)) → A__X(mark(X1), mark(X2))
MARK(x(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X2)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatKind(X)) → A__ISNATKIND(X)
MARK(s(X)) → MARK(X)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNat(V1), V2)
a__U32(tt, V2) → a__U33(a__isNat(V2))
a__U33(tt) → tt
a__U41(tt, N) → mark(N)
a__U51(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U61(tt) → 0
a__U71(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatKind(x(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__plus(N, 0) → a__U41(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U51(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
a__x(N, 0) → a__U61(a__and(a__isNat(N), isNatKind(N)))
a__x(N, s(M)) → a__U71(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2) → U41(X1, X2)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U61(X) → U61(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 8 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__U12(tt, V2) → A__ISNAT(V2)
A__ISNAT(plus(V1, V2)) → A__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
A__U11(tt, V1, V2) → A__U12(a__isNat(V1), V2)
A__U11(tt, V1, V2) → A__ISNAT(V1)
A__ISNAT(plus(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__AND(tt, X) → MARK(X)
MARK(U11(X1, X2, X3)) → A__U11(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2)) → A__U12(mark(X1), X2)
MARK(U12(X1, X2)) → MARK(X1)
MARK(isNat(X)) → A__ISNAT(X)
A__ISNAT(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(plus(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__ISNATKIND(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
A__ISNATKIND(x(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__ISNATKIND(x(V1, V2)) → A__ISNATKIND(V1)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__U21(tt, V1) → A__ISNAT(V1)
A__ISNAT(s(V1)) → A__ISNATKIND(V1)
A__ISNAT(x(V1, V2)) → A__U31(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
A__U31(tt, V1, V2) → A__U32(a__isNat(V1), V2)
A__U32(tt, V2) → A__ISNAT(V2)
A__ISNAT(x(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__ISNAT(x(V1, V2)) → A__ISNATKIND(V1)
A__U31(tt, V1, V2) → A__ISNAT(V1)
MARK(U13(X)) → MARK(X)
MARK(U21(X1, X2)) → A__U21(mark(X1), X2)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → MARK(X)
MARK(U31(X1, X2, X3)) → A__U31(mark(X1), X2, X3)
MARK(U31(X1, X2, X3)) → MARK(X1)
MARK(U32(X1, X2)) → A__U32(mark(X1), X2)
MARK(U32(X1, X2)) → MARK(X1)
MARK(U33(X)) → MARK(X)
MARK(U41(X1, X2)) → A__U41(mark(X1), X2)
A__U41(tt, N) → MARK(N)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U51(X1, X2, X3)) → A__U51(mark(X1), X2, X3)
A__U51(tt, M, N) → A__PLUS(mark(N), mark(M))
A__PLUS(N, 0) → A__U41(a__and(a__isNat(N), isNatKind(N)), N)
A__PLUS(N, 0) → A__AND(a__isNat(N), isNatKind(N))
A__PLUS(N, 0) → A__ISNAT(N)
A__PLUS(N, s(M)) → A__U51(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
A__U51(tt, M, N) → MARK(N)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
A__PLUS(N, s(M)) → A__AND(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N)))
A__PLUS(N, s(M)) → A__AND(a__isNat(M), isNatKind(M))
A__PLUS(N, s(M)) → A__ISNAT(M)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(U61(X)) → MARK(X)
MARK(U71(X1, X2, X3)) → A__U71(mark(X1), X2, X3)
A__U71(tt, M, N) → A__PLUS(a__x(mark(N), mark(M)), mark(N))
A__U71(tt, M, N) → A__X(mark(N), mark(M))
A__X(N, 0) → A__AND(a__isNat(N), isNatKind(N))
A__X(N, 0) → A__ISNAT(N)
A__X(N, s(M)) → A__U71(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
A__U71(tt, M, N) → MARK(N)
MARK(U71(X1, X2, X3)) → MARK(X1)
MARK(x(X1, X2)) → A__X(mark(X1), mark(X2))
A__X(N, s(M)) → A__AND(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N)))
A__X(N, s(M)) → A__AND(a__isNat(M), isNatKind(M))
A__X(N, s(M)) → A__ISNAT(M)
MARK(x(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X2)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatKind(X)) → A__ISNATKIND(X)
MARK(s(X)) → MARK(X)
A__U71(tt, M, N) → MARK(M)
A__U51(tt, M, N) → MARK(M)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNat(V1), V2)
a__U32(tt, V2) → a__U33(a__isNat(V2))
a__U33(tt) → tt
a__U41(tt, N) → mark(N)
a__U51(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U61(tt) → 0
a__U71(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatKind(x(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__plus(N, 0) → a__U41(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U51(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
a__x(N, 0) → a__U61(a__and(a__isNat(N), isNatKind(N)))
a__x(N, s(M)) → a__U71(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2) → U41(X1, X2)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U61(X) → U61(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__U12(tt, V2) → A__ISNAT(V2)
A__ISNAT(plus(V1, V2)) → A__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
A__U11(tt, V1, V2) → A__U12(a__isNat(V1), V2)
A__U11(tt, V1, V2) → A__ISNAT(V1)
A__ISNAT(plus(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__AND(tt, X) → MARK(X)
MARK(U11(X1, X2, X3)) → A__U11(mark(X1), X2, X3)
MARK(U11(X1, X2, X3)) → MARK(X1)
MARK(U12(X1, X2)) → A__U12(mark(X1), X2)
MARK(U12(X1, X2)) → MARK(X1)
MARK(isNat(X)) → A__ISNAT(X)
A__ISNAT(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(plus(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__ISNATKIND(plus(V1, V2)) → A__ISNATKIND(V1)
A__ISNATKIND(s(V1)) → A__ISNATKIND(V1)
A__ISNATKIND(x(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__ISNATKIND(x(V1, V2)) → A__ISNATKIND(V1)
A__ISNAT(s(V1)) → A__U21(a__isNatKind(V1), V1)
A__U21(tt, V1) → A__ISNAT(V1)
A__ISNAT(s(V1)) → A__ISNATKIND(V1)
A__ISNAT(x(V1, V2)) → A__U31(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
A__U31(tt, V1, V2) → A__U32(a__isNat(V1), V2)
A__U32(tt, V2) → A__ISNAT(V2)
A__ISNAT(x(V1, V2)) → A__AND(a__isNatKind(V1), isNatKind(V2))
A__ISNAT(x(V1, V2)) → A__ISNATKIND(V1)
A__U31(tt, V1, V2) → A__ISNAT(V1)
MARK(U21(X1, X2)) → A__U21(mark(X1), X2)
MARK(U31(X1, X2, X3)) → A__U31(mark(X1), X2, X3)
MARK(U31(X1, X2, X3)) → MARK(X1)
MARK(U32(X1, X2)) → A__U32(mark(X1), X2)
MARK(U32(X1, X2)) → MARK(X1)
MARK(U41(X1, X2)) → A__U41(mark(X1), X2)
A__U41(tt, N) → MARK(N)
MARK(U41(X1, X2)) → MARK(X1)
MARK(U51(X1, X2, X3)) → A__U51(mark(X1), X2, X3)
A__PLUS(N, 0) → A__U41(a__and(a__isNat(N), isNatKind(N)), N)
A__PLUS(N, 0) → A__AND(a__isNat(N), isNatKind(N))
A__PLUS(N, 0) → A__ISNAT(N)
A__U51(tt, M, N) → MARK(N)
MARK(U51(X1, X2, X3)) → MARK(X1)
MARK(plus(X1, X2)) → A__PLUS(mark(X1), mark(X2))
A__PLUS(N, s(M)) → A__AND(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N)))
A__PLUS(N, s(M)) → A__AND(a__isNat(M), isNatKind(M))
A__PLUS(N, s(M)) → A__ISNAT(M)
MARK(plus(X1, X2)) → MARK(X1)
MARK(plus(X1, X2)) → MARK(X2)
MARK(U61(X)) → MARK(X)
MARK(U71(X1, X2, X3)) → A__U71(mark(X1), X2, X3)
A__U71(tt, M, N) → A__PLUS(a__x(mark(N), mark(M)), mark(N))
A__U71(tt, M, N) → A__X(mark(N), mark(M))
A__X(N, 0) → A__AND(a__isNat(N), isNatKind(N))
A__X(N, 0) → A__ISNAT(N)
A__X(N, s(M)) → A__U71(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
A__U71(tt, M, N) → MARK(N)
MARK(U71(X1, X2, X3)) → MARK(X1)
MARK(x(X1, X2)) → A__X(mark(X1), mark(X2))
A__X(N, s(M)) → A__AND(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N)))
A__X(N, s(M)) → A__AND(a__isNat(M), isNatKind(M))
A__X(N, s(M)) → A__ISNAT(M)
MARK(x(X1, X2)) → MARK(X1)
MARK(x(X1, X2)) → MARK(X2)
MARK(and(X1, X2)) → A__AND(mark(X1), X2)
MARK(and(X1, X2)) → MARK(X1)
MARK(isNatKind(X)) → A__ISNATKIND(X)
MARK(s(X)) → MARK(X)
A__U71(tt, M, N) → MARK(M)
A__U51(tt, M, N) → MARK(M)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
A__U12(x0, x1, x2)  =  A__U12(x1, x2)
A__ISNAT(x0, x1)  =  A__ISNAT(x0, x1)
A__U11(x0, x1, x2, x3)  =  A__U11(x1, x2, x3)
A__AND(x0, x1, x2)  =  A__AND(x1, x2)
MARK(x0, x1)  =  MARK(x0, x1)
A__ISNATKIND(x0, x1)  =  A__ISNATKIND(x0, x1)
A__U21(x0, x1, x2)  =  A__U21(x1, x2)
A__U31(x0, x1, x2, x3)  =  A__U31(x0, x3)
A__U32(x0, x1, x2)  =  A__U32(x0, x1, x2)
A__U41(x0, x1, x2)  =  A__U41(x1, x2)
A__U51(x0, x1, x2, x3)  =  A__U51(x0, x2)
A__PLUS(x0, x1, x2)  =  A__PLUS(x0, x1, x2)
A__U71(x0, x1, x2, x3)  =  A__U71(x0, x1, x2, x3)
A__X(x0, x1, x2)  =  A__X(x0)

Tags:
A__U12 has argument tags [50,1,32] and root tag 7
A__ISNAT has argument tags [1,5] and root tag 2
A__U11 has argument tags [13,32,58,37] and root tag 0
A__AND has argument tags [63,35,61] and root tag 10
MARK has argument tags [2,6] and root tag 0
A__ISNATKIND has argument tags [29,34] and root tag 4
A__U21 has argument tags [56,1,5] and root tag 7
A__U31 has argument tags [0,0,28,37] and root tag 4
A__U32 has argument tags [34,62,26] and root tag 8
A__U41 has argument tags [57,2,20] and root tag 2
A__U51 has argument tags [48,1,6,50] and root tag 12
A__PLUS has argument tags [48,19,6] and root tag 12
A__U71 has argument tags [1,0,56,40] and root tag 12
A__X has argument tags [0,8,6] and root tag 9

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
A__U12(x1, x2)  =  A__U12(x1, x2)
tt  =  tt
A__ISNAT(x1)  =  A__ISNAT
plus(x1, x2)  =  plus(x1, x2)
A__U11(x1, x2, x3)  =  A__U11(x1, x3)
a__and(x1, x2)  =  a__and(x1, x2)
a__isNatKind(x1)  =  a__isNatKind(x1)
isNatKind(x1)  =  isNatKind(x1)
a__isNat(x1)  =  x1
A__AND(x1, x2)  =  A__AND
MARK(x1)  =  MARK
U11(x1, x2, x3)  =  U11(x1, x2, x3)
mark(x1)  =  x1
U12(x1, x2)  =  U12(x1, x2)
isNat(x1)  =  x1
A__ISNATKIND(x1)  =  A__ISNATKIND
s(x1)  =  s(x1)
x(x1, x2)  =  x(x1, x2)
A__U21(x1, x2)  =  x2
A__U31(x1, x2, x3)  =  A__U31(x1, x2)
A__U32(x1, x2)  =  A__U32
U13(x1)  =  x1
U21(x1, x2)  =  U21(x1, x2)
U22(x1)  =  x1
U31(x1, x2, x3)  =  U31(x1, x2, x3)
U32(x1, x2)  =  U32(x1, x2)
U33(x1)  =  x1
U41(x1, x2)  =  U41(x1, x2)
A__U41(x1, x2)  =  A__U41(x2)
U51(x1, x2, x3)  =  U51(x1, x2, x3)
A__U51(x1, x2, x3)  =  A__U51(x3)
A__PLUS(x1, x2)  =  A__PLUS(x1)
0  =  0
and(x1, x2)  =  and(x1, x2)
U61(x1)  =  U61(x1)
U71(x1, x2, x3)  =  U71(x1, x2, x3)
A__U71(x1, x2, x3)  =  A__U71(x1, x2, x3)
a__x(x1, x2)  =  a__x(x1, x2)
A__X(x1, x2)  =  A__X(x1, x2)
a__U41(x1, x2)  =  a__U41(x1, x2)
a__plus(x1, x2)  =  a__plus(x1, x2)
a__U71(x1, x2, x3)  =  a__U71(x1, x2, x3)
a__U11(x1, x2, x3)  =  a__U11(x1, x2, x3)
a__U21(x1, x2)  =  a__U21(x1, x2)
a__U31(x1, x2, x3)  =  a__U31(x1, x2, x3)
a__U12(x1, x2)  =  a__U12(x1, x2)
a__U13(x1)  =  x1
a__U22(x1)  =  x1
a__U32(x1, x2)  =  a__U32(x1, x2)
a__U33(x1)  =  x1
a__U51(x1, x2, x3)  =  a__U51(x1, x2, x3)
a__U61(x1)  =  a__U61(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
AU112 > AU122 > [tt, AISNAT, aand2, MARK, U122, AU32, and2, aU122]
[x2, U713, AU713, ax2, AX2, aU713] > [plus2, U513, aplus2, aU513] > [U113, aU113] > [tt, AISNAT, aand2, MARK, U122, AU32, and2, aU122]
[x2, U713, AU713, ax2, AX2, aU713] > [plus2, U513, aplus2, aU513] > s1 > [AAND, AU511, APLUS1] > [aisNatKind1, isNatKind1] > [tt, AISNAT, aand2, MARK, U122, AU32, and2, aU122]
[x2, U713, AU713, ax2, AX2, aU713] > [plus2, U513, aplus2, aU513] > s1 > [AAND, AU511, APLUS1] > [aisNatKind1, isNatKind1] > AISNATKIND
[x2, U713, AU713, ax2, AX2, aU713] > [plus2, U513, aplus2, aU513] > s1 > [U212, aU212]
[x2, U713, AU713, ax2, AX2, aU713] > [plus2, U513, aplus2, aU513] > [U412, aU412] > [tt, AISNAT, aand2, MARK, U122, AU32, and2, aU122]
[x2, U713, AU713, ax2, AX2, aU713] > [U313, U322, aU313, aU322] > AU312 > [tt, AISNAT, aand2, MARK, U122, AU32, and2, aU122]
[x2, U713, AU713, ax2, AX2, aU713] > [0, U611, aU611] > [AAND, AU511, APLUS1] > [aisNatKind1, isNatKind1] > [tt, AISNAT, aand2, MARK, U122, AU32, and2, aU122]
[x2, U713, AU713, ax2, AX2, aU713] > [0, U611, aU611] > [AAND, AU511, APLUS1] > [aisNatKind1, isNatKind1] > AISNATKIND
[x2, U713, AU713, ax2, AX2, aU713] > [0, U611, aU611] > [U412, aU412] > [tt, AISNAT, aand2, MARK, U122, AU32, and2, aU122]
[x2, U713, AU713, ax2, AX2, aU713] > [0, U611, aU611] > AU411 > [tt, AISNAT, aand2, MARK, U122, AU32, and2, aU122]

Status:
AU122: [2,1]
tt: multiset
AISNAT: multiset
plus2: [2,1]
AU112: multiset
aand2: multiset
aisNatKind1: [1]
isNatKind1: [1]
AAND: multiset
MARK: multiset
U113: multiset
U122: multiset
AISNATKIND: []
s1: [1]
x2: [1,2]
AU312: multiset
AU32: []
U212: [2,1]
U313: multiset
U322: multiset
U412: multiset
AU411: multiset
U513: [2,3,1]
AU511: multiset
APLUS1: multiset
0: multiset
and2: multiset
U611: [1]
U713: [3,2,1]
AU713: [3,2,1]
ax2: [1,2]
AX2: [1,2]
aU412: multiset
aplus2: [2,1]
aU713: [3,2,1]
aU113: multiset
aU212: [2,1]
aU313: multiset
aU122: multiset
aU322: multiset
aU513: [2,3,1]
aU611: [1]


The following usable rules [FROCOS05] were oriented:

a__isNatKind(0) → tt
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
a__U41(tt, N) → mark(N)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
a__plus(N, 0) → a__U41(a__and(a__isNat(N), isNatKind(N)), N)
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
a__U71(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
a__x(N, s(M)) → a__U71(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(and(X1, X2)) → a__and(mark(X1), X2)
a__and(tt, X) → mark(X)
mark(isNatKind(X)) → a__isNatKind(X)
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatKind(x(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(X) → isNatKind(X)
a__and(X1, X2) → and(X1, X2)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(X) → isNat(X)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(U61(X)) → a__U61(mark(X))
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__x(N, 0) → a__U61(a__and(a__isNat(N), isNatKind(N)))
a__x(X1, X2) → x(X1, X2)
a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U31(tt, V1, V2) → a__U32(a__isNat(V1), V2)
a__plus(N, s(M)) → a__U51(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U32(tt, V2) → a__U33(a__isNat(V2))
a__U51(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__U21(X1, X2) → U21(X1, X2)
a__U22(tt) → tt
a__U22(X) → U22(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2) → U32(X1, X2)
a__U33(tt) → tt
a__U33(X) → U33(X)
a__U41(X1, X2) → U41(X1, X2)
a__plus(X1, X2) → plus(X1, X2)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__U13(tt) → tt
a__U13(X) → U13(X)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__U61(tt) → 0
a__U61(X) → U61(X)

(6) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U13(X)) → MARK(X)
MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → MARK(X)
MARK(U33(X)) → MARK(X)
A__U51(tt, M, N) → A__PLUS(mark(N), mark(M))
A__PLUS(N, s(M)) → A__U51(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNat(V1), V2)
a__U32(tt, V2) → a__U33(a__isNat(V2))
a__U33(tt) → tt
a__U41(tt, N) → mark(N)
a__U51(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U61(tt) → 0
a__U71(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatKind(x(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__plus(N, 0) → a__U41(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U51(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
a__x(N, 0) → a__U61(a__and(a__isNat(N), isNatKind(N)))
a__x(N, s(M)) → a__U71(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2) → U41(X1, X2)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U61(X) → U61(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.

(8) Complex Obligation (AND)

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

A__PLUS(N, s(M)) → A__U51(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
A__U51(tt, M, N) → A__PLUS(mark(N), mark(M))

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNat(V1), V2)
a__U32(tt, V2) → a__U33(a__isNat(V2))
a__U33(tt) → tt
a__U41(tt, N) → mark(N)
a__U51(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U61(tt) → 0
a__U71(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatKind(x(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__plus(N, 0) → a__U41(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U51(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
a__x(N, 0) → a__U61(a__and(a__isNat(N), isNatKind(N)))
a__x(N, s(M)) → a__U71(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2) → U41(X1, X2)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U61(X) → U61(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(10) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


A__PLUS(N, s(M)) → A__U51(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
A__U51(tt, M, N) → A__PLUS(mark(N), mark(M))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
A__PLUS(x0, x1, x2)  =  A__PLUS(x0, x2)
A__U51(x0, x1, x2, x3)  =  A__U51(x0, x1)

Tags:
A__PLUS has argument tags [3,1,4] and root tag 0
A__U51 has argument tags [4,3,1,2] and root tag 1

Comparison: MS
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
A__PLUS(x1, x2)  =  A__PLUS
s(x1)  =  s(x1)
A__U51(x1, x2, x3)  =  x2
a__and(x1, x2)  =  x2
a__isNat(x1)  =  a__isNat
isNatKind(x1)  =  isNatKind
and(x1, x2)  =  x2
isNat(x1)  =  isNat
tt  =  tt
mark(x1)  =  x1
0  =  0
plus(x1, x2)  =  plus(x1, x2)
a__U11(x1, x2, x3)  =  x1
a__isNatKind(x1)  =  a__isNatKind
a__U21(x1, x2)  =  a__U21
x(x1, x2)  =  x(x1, x2)
a__U31(x1, x2, x3)  =  a__U31
U41(x1, x2)  =  U41(x1, x2)
a__U41(x1, x2)  =  a__U41(x1, x2)
a__plus(x1, x2)  =  a__plus(x1, x2)
U71(x1, x2, x3)  =  U71(x1, x2, x3)
a__U71(x1, x2, x3)  =  a__U71(x1, x2, x3)
a__x(x1, x2)  =  a__x(x1, x2)
U11(x1, x2, x3)  =  x1
U12(x1, x2)  =  x1
a__U12(x1, x2)  =  x1
U13(x1)  =  x1
a__U13(x1)  =  x1
U21(x1, x2)  =  U21
U22(x1)  =  U22
a__U22(x1)  =  a__U22
U31(x1, x2, x3)  =  U31
U32(x1, x2)  =  x1
a__U32(x1, x2)  =  x1
U33(x1)  =  x1
a__U33(x1)  =  x1
U51(x1, x2, x3)  =  U51(x1, x2, x3)
a__U51(x1, x2, x3)  =  a__U51(x1, x2, x3)
U61(x1)  =  x1
a__U61(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[x2, U713, aU713, ax2] > [plus2, aplus2, U513, aU513] > [APLUS, s1, aisNat, isNatKind, isNat, tt, aisNatKind, aU21, aU31, U21, U22, aU22, U31] > 0
[x2, U713, aU713, ax2] > [plus2, aplus2, U513, aU513] > [U412, aU412]

Status:
APLUS: multiset
s1: [1]
aisNat: multiset
isNatKind: multiset
isNat: multiset
tt: multiset
0: multiset
plus2: [1,2]
aisNatKind: multiset
aU21: multiset
x2: [1,2]
aU31: multiset
U412: multiset
aU412: multiset
aplus2: [1,2]
U713: [3,2,1]
aU713: [3,2,1]
ax2: [1,2]
U21: multiset
U22: multiset
aU22: multiset
U31: multiset
U513: [3,2,1]
aU513: [3,2,1]


The following usable rules [FROCOS05] were oriented: none

(11) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNat(V1), V2)
a__U32(tt, V2) → a__U33(a__isNat(V2))
a__U33(tt) → tt
a__U41(tt, N) → mark(N)
a__U51(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U61(tt) → 0
a__U71(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatKind(x(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__plus(N, 0) → a__U41(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U51(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
a__x(N, 0) → a__U61(a__and(a__isNat(N), isNatKind(N)))
a__x(N, s(M)) → a__U71(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2) → U41(X1, X2)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U61(X) → U61(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(12) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(13) TRUE

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U21(X1, X2)) → MARK(X1)
MARK(U13(X)) → MARK(X)
MARK(U22(X)) → MARK(X)
MARK(U33(X)) → MARK(X)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNat(V1), V2)
a__U32(tt, V2) → a__U33(a__isNat(V2))
a__U33(tt) → tt
a__U41(tt, N) → mark(N)
a__U51(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U61(tt) → 0
a__U71(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatKind(x(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__plus(N, 0) → a__U41(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U51(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
a__x(N, 0) → a__U61(a__and(a__isNat(N), isNatKind(N)))
a__x(N, s(M)) → a__U71(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2) → U41(X1, X2)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U61(X) → U61(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U13(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x0, x1)

Tags:
MARK has argument tags [1,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(x1)  =  MARK
U21(x1, x2)  =  x1
U13(x1)  =  U13(x1)
U22(x1)  =  x1
U33(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
U131 > MARK

Status:
MARK: multiset
U131: multiset


The following usable rules [FROCOS05] were oriented: none

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U21(X1, X2)) → MARK(X1)
MARK(U22(X)) → MARK(X)
MARK(U33(X)) → MARK(X)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNat(V1), V2)
a__U32(tt, V2) → a__U33(a__isNat(V2))
a__U33(tt) → tt
a__U41(tt, N) → mark(N)
a__U51(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U61(tt) → 0
a__U71(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatKind(x(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__plus(N, 0) → a__U41(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U51(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
a__x(N, 0) → a__U61(a__and(a__isNat(N), isNatKind(N)))
a__x(N, s(M)) → a__U71(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2) → U41(X1, X2)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U61(X) → U61(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(17) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U21(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x0, x1)

Tags:
MARK has argument tags [1,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(x1)  =  MARK
U21(x1, x2)  =  U21(x1, x2)
U22(x1)  =  x1
U33(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
[MARK, U212]

Status:
MARK: multiset
U212: multiset


The following usable rules [FROCOS05] were oriented: none

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U22(X)) → MARK(X)
MARK(U33(X)) → MARK(X)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNat(V1), V2)
a__U32(tt, V2) → a__U33(a__isNat(V2))
a__U33(tt) → tt
a__U41(tt, N) → mark(N)
a__U51(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U61(tt) → 0
a__U71(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatKind(x(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__plus(N, 0) → a__U41(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U51(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
a__x(N, 0) → a__U61(a__and(a__isNat(N), isNatKind(N)))
a__x(N, s(M)) → a__U71(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2) → U41(X1, X2)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U61(X) → U61(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(19) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U22(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x0, x1)

Tags:
MARK has argument tags [0,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(x1)  =  MARK
U22(x1)  =  U22(x1)
U33(x1)  =  x1

Recursive path order with status [RPO].
Quasi-Precedence:
U221 > MARK

Status:
MARK: multiset
U221: multiset


The following usable rules [FROCOS05] were oriented: none

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(U33(X)) → MARK(X)

The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNat(V1), V2)
a__U32(tt, V2) → a__U33(a__isNat(V2))
a__U33(tt) → tt
a__U41(tt, N) → mark(N)
a__U51(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U61(tt) → 0
a__U71(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatKind(x(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__plus(N, 0) → a__U41(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U51(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
a__x(N, 0) → a__U61(a__and(a__isNat(N), isNatKind(N)))
a__x(N, s(M)) → a__U71(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2) → U41(X1, X2)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U61(X) → U61(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(21) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(U33(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
MARK(x0, x1)  =  MARK(x0, x1)

Tags:
MARK has argument tags [0,0] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
MARK(x1)  =  MARK
U33(x1)  =  U33(x1)

Recursive path order with status [RPO].
Quasi-Precedence:
[MARK, U331]

Status:
MARK: multiset
U331: multiset


The following usable rules [FROCOS05] were oriented: none

(22) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

a__U11(tt, V1, V2) → a__U12(a__isNat(V1), V2)
a__U12(tt, V2) → a__U13(a__isNat(V2))
a__U13(tt) → tt
a__U21(tt, V1) → a__U22(a__isNat(V1))
a__U22(tt) → tt
a__U31(tt, V1, V2) → a__U32(a__isNat(V1), V2)
a__U32(tt, V2) → a__U33(a__isNat(V2))
a__U33(tt) → tt
a__U41(tt, N) → mark(N)
a__U51(tt, M, N) → s(a__plus(mark(N), mark(M)))
a__U61(tt) → 0
a__U71(tt, M, N) → a__plus(a__x(mark(N), mark(M)), mark(N))
a__and(tt, X) → mark(X)
a__isNat(0) → tt
a__isNat(plus(V1, V2)) → a__U11(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNat(s(V1)) → a__U21(a__isNatKind(V1), V1)
a__isNat(x(V1, V2)) → a__U31(a__and(a__isNatKind(V1), isNatKind(V2)), V1, V2)
a__isNatKind(0) → tt
a__isNatKind(plus(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__isNatKind(s(V1)) → a__isNatKind(V1)
a__isNatKind(x(V1, V2)) → a__and(a__isNatKind(V1), isNatKind(V2))
a__plus(N, 0) → a__U41(a__and(a__isNat(N), isNatKind(N)), N)
a__plus(N, s(M)) → a__U51(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
a__x(N, 0) → a__U61(a__and(a__isNat(N), isNatKind(N)))
a__x(N, s(M)) → a__U71(a__and(a__and(a__isNat(M), isNatKind(M)), and(isNat(N), isNatKind(N))), M, N)
mark(U11(X1, X2, X3)) → a__U11(mark(X1), X2, X3)
mark(U12(X1, X2)) → a__U12(mark(X1), X2)
mark(isNat(X)) → a__isNat(X)
mark(U13(X)) → a__U13(mark(X))
mark(U21(X1, X2)) → a__U21(mark(X1), X2)
mark(U22(X)) → a__U22(mark(X))
mark(U31(X1, X2, X3)) → a__U31(mark(X1), X2, X3)
mark(U32(X1, X2)) → a__U32(mark(X1), X2)
mark(U33(X)) → a__U33(mark(X))
mark(U41(X1, X2)) → a__U41(mark(X1), X2)
mark(U51(X1, X2, X3)) → a__U51(mark(X1), X2, X3)
mark(plus(X1, X2)) → a__plus(mark(X1), mark(X2))
mark(U61(X)) → a__U61(mark(X))
mark(U71(X1, X2, X3)) → a__U71(mark(X1), X2, X3)
mark(x(X1, X2)) → a__x(mark(X1), mark(X2))
mark(and(X1, X2)) → a__and(mark(X1), X2)
mark(isNatKind(X)) → a__isNatKind(X)
mark(tt) → tt
mark(s(X)) → s(mark(X))
mark(0) → 0
a__U11(X1, X2, X3) → U11(X1, X2, X3)
a__U12(X1, X2) → U12(X1, X2)
a__isNat(X) → isNat(X)
a__U13(X) → U13(X)
a__U21(X1, X2) → U21(X1, X2)
a__U22(X) → U22(X)
a__U31(X1, X2, X3) → U31(X1, X2, X3)
a__U32(X1, X2) → U32(X1, X2)
a__U33(X) → U33(X)
a__U41(X1, X2) → U41(X1, X2)
a__U51(X1, X2, X3) → U51(X1, X2, X3)
a__plus(X1, X2) → plus(X1, X2)
a__U61(X) → U61(X)
a__U71(X1, X2, X3) → U71(X1, X2, X3)
a__x(X1, X2) → x(X1, X2)
a__and(X1, X2) → and(X1, X2)
a__isNatKind(X) → isNatKind(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(24) TRUE