(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

U11(tt, N, X, XS) → U12(splitAt(activate(N), activate(XS)), activate(X))
U12(pair(YS, ZS), X) → pair(cons(activate(X), YS), ZS)
afterNth(N, XS) → snd(splitAt(N, XS))
and(tt, X) → activate(X)
fst(pair(X, Y)) → X
head(cons(N, XS)) → N
natsFrom(N) → cons(N, n__natsFrom(s(N)))
sel(N, XS) → head(afterNth(N, XS))
snd(pair(X, Y)) → Y
splitAt(0, XS) → pair(nil, XS)
splitAt(s(N), cons(X, XS)) → U11(tt, N, X, activate(XS))
tail(cons(N, XS)) → activate(XS)
take(N, XS) → fst(splitAt(N, XS))
natsFrom(X) → n__natsFrom(X)
activate(n__natsFrom(X)) → natsFrom(X)
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(tt, N, X, XS) → U121(splitAt(activate(N), activate(XS)), activate(X))
U111(tt, N, X, XS) → SPLITAT(activate(N), activate(XS))
U111(tt, N, X, XS) → ACTIVATE(N)
U111(tt, N, X, XS) → ACTIVATE(XS)
U111(tt, N, X, XS) → ACTIVATE(X)
U121(pair(YS, ZS), X) → ACTIVATE(X)
AFTERNTH(N, XS) → SND(splitAt(N, XS))
AFTERNTH(N, XS) → SPLITAT(N, XS)
AND(tt, X) → ACTIVATE(X)
SEL(N, XS) → HEAD(afterNth(N, XS))
SEL(N, XS) → AFTERNTH(N, XS)
SPLITAT(s(N), cons(X, XS)) → U111(tt, N, X, activate(XS))
SPLITAT(s(N), cons(X, XS)) → ACTIVATE(XS)
TAIL(cons(N, XS)) → ACTIVATE(XS)
TAKE(N, XS) → FST(splitAt(N, XS))
TAKE(N, XS) → SPLITAT(N, XS)
ACTIVATE(n__natsFrom(X)) → NATSFROM(X)

The TRS R consists of the following rules:

U11(tt, N, X, XS) → U12(splitAt(activate(N), activate(XS)), activate(X))
U12(pair(YS, ZS), X) → pair(cons(activate(X), YS), ZS)
afterNth(N, XS) → snd(splitAt(N, XS))
and(tt, X) → activate(X)
fst(pair(X, Y)) → X
head(cons(N, XS)) → N
natsFrom(N) → cons(N, n__natsFrom(s(N)))
sel(N, XS) → head(afterNth(N, XS))
snd(pair(X, Y)) → Y
splitAt(0, XS) → pair(nil, XS)
splitAt(s(N), cons(X, XS)) → U11(tt, N, X, activate(XS))
tail(cons(N, XS)) → activate(XS)
take(N, XS) → fst(splitAt(N, XS))
natsFrom(X) → n__natsFrom(X)
activate(n__natsFrom(X)) → natsFrom(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 15 less nodes.

(4) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U111(tt, N, X, XS) → SPLITAT(activate(N), activate(XS))
SPLITAT(s(N), cons(X, XS)) → U111(tt, N, X, activate(XS))

The TRS R consists of the following rules:

U11(tt, N, X, XS) → U12(splitAt(activate(N), activate(XS)), activate(X))
U12(pair(YS, ZS), X) → pair(cons(activate(X), YS), ZS)
afterNth(N, XS) → snd(splitAt(N, XS))
and(tt, X) → activate(X)
fst(pair(X, Y)) → X
head(cons(N, XS)) → N
natsFrom(N) → cons(N, n__natsFrom(s(N)))
sel(N, XS) → head(afterNth(N, XS))
snd(pair(X, Y)) → Y
splitAt(0, XS) → pair(nil, XS)
splitAt(s(N), cons(X, XS)) → U11(tt, N, X, activate(XS))
tail(cons(N, XS)) → activate(XS)
take(N, XS) → fst(splitAt(N, XS))
natsFrom(X) → n__natsFrom(X)
activate(n__natsFrom(X)) → natsFrom(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(5) QDPSizeChangeProof (EQUIVALENT transformation)

We used the following order and afs together with the size-change analysis [AAECC05] to show that there are no infinite chains for this DP problem.

Order:Combined order from the following AFS and order.
activate(x1)  =  x1
n__natsFrom(x1)  =  n__natsFrom
natsFrom(x1)  =  natsFrom
cons(x1, x2)  =  cons
s(x1)  =  s(x1)
tt  =  tt

Recursive path order with status [RPO].
Quasi-Precedence:

[nnatsFrom, natsFrom, cons]

Status:
nnatsFrom: []
natsFrom: []
cons: []
s1: multiset
tt: multiset

AFS:
activate(x1)  =  x1
n__natsFrom(x1)  =  n__natsFrom
natsFrom(x1)  =  natsFrom
cons(x1, x2)  =  cons
s(x1)  =  s(x1)
tt  =  tt

From the DPs we obtained the following set of size-change graphs:

  • SPLITAT(s(N), cons(X, XS)) → U111(tt, N, X, activate(XS)) (allowed arguments on rhs = {2, 3})
    The graph contains the following edges 1 > 2

  • U111(tt, N, X, XS) → SPLITAT(activate(N), activate(XS)) (allowed arguments on rhs = {1})
    The graph contains the following edges 2 >= 1

We oriented the following set of usable rules [AAECC05,FROCOS05].


activate(n__natsFrom(X)) → natsFrom(X)
activate(X) → X
natsFrom(N) → cons(N, n__natsFrom(s(N)))
natsFrom(X) → n__natsFrom(X)

(6) TRUE