0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 AND
↳5 QDP
↳6 QDPSizeChangeProof (⇔)
↳7 TRUE
↳8 QDP
↳9 QDPSizeChangeProof (⇔)
↳10 TRUE
↳11 QDP
↳12 QDPSizeChangeProof (⇔)
↳13 TRUE
↳14 QDP
↳15 QDPSizeChangeProof (⇔)
↳16 TRUE
terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y)) → cons(Y)
half(0) → 0
half(s(0)) → 0
half(s(s(X))) → s(half(X))
half(dbl(X)) → X
TERMS(N) → SQR(N)
SQR(s(X)) → ADD(sqr(X), dbl(X))
SQR(s(X)) → SQR(X)
SQR(s(X)) → DBL(X)
DBL(s(X)) → DBL(X)
ADD(s(X), Y) → ADD(X, Y)
HALF(s(s(X))) → HALF(X)
terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y)) → cons(Y)
half(0) → 0
half(s(0)) → 0
half(s(s(X))) → s(half(X))
half(dbl(X)) → X
HALF(s(s(X))) → HALF(X)
terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y)) → cons(Y)
half(0) → 0
half(s(0)) → 0
half(s(s(X))) → s(half(X))
half(dbl(X)) → X
Order:Homeomorphic Embedding Order
AFS:
s(x1) = s(x1)
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
none
ADD(s(X), Y) → ADD(X, Y)
terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y)) → cons(Y)
half(0) → 0
half(s(0)) → 0
half(s(s(X))) → s(half(X))
half(dbl(X)) → X
Order:Homeomorphic Embedding Order
AFS:
s(x1) = s(x1)
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
none
DBL(s(X)) → DBL(X)
terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y)) → cons(Y)
half(0) → 0
half(s(0)) → 0
half(s(s(X))) → s(half(X))
half(dbl(X)) → X
Order:Homeomorphic Embedding Order
AFS:
s(x1) = s(x1)
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
none
SQR(s(X)) → SQR(X)
terms(N) → cons(recip(sqr(N)))
sqr(0) → 0
sqr(s(X)) → s(add(sqr(X), dbl(X)))
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
first(0, X) → nil
first(s(X), cons(Y)) → cons(Y)
half(0) → 0
half(s(0)) → 0
half(s(s(X))) → s(half(X))
half(dbl(X)) → X
Order:Homeomorphic Embedding Order
AFS:
s(x1) = s(x1)
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
none