0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 QDPOrderProof (⇔)
↳4 QDP
↳5 DependencyGraphProof (⇔)
↳6 AND
↳7 QDP
↳8 QDPOrderProof (⇔)
↳9 QDP
↳10 QDPOrderProof (⇔)
↳11 QDP
↳12 PisEmptyProof (⇔)
↳13 TRUE
↳14 QDP
↳15 QDPOrderProof (⇔)
↳16 QDP
↳17 PisEmptyProof (⇔)
↳18 TRUE
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__half(0) → 0
a__half(s(0)) → 0
a__half(s(s(X))) → s(a__half(mark(X)))
a__half(dbl(X)) → mark(X)
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(half(X)) → a__half(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
a__half(X) → half(X)
A__TERMS(N) → A__SQR(mark(N))
A__TERMS(N) → MARK(N)
A__SQR(s(X)) → A__ADD(a__sqr(mark(X)), a__dbl(mark(X)))
A__SQR(s(X)) → A__SQR(mark(X))
A__SQR(s(X)) → MARK(X)
A__SQR(s(X)) → A__DBL(mark(X))
A__DBL(s(X)) → A__DBL(mark(X))
A__DBL(s(X)) → MARK(X)
A__ADD(0, X) → MARK(X)
A__ADD(s(X), Y) → A__ADD(mark(X), mark(Y))
A__ADD(s(X), Y) → MARK(X)
A__ADD(s(X), Y) → MARK(Y)
A__FIRST(s(X), cons(Y, Z)) → MARK(Y)
A__HALF(s(s(X))) → A__HALF(mark(X))
A__HALF(s(s(X))) → MARK(X)
A__HALF(dbl(X)) → MARK(X)
MARK(terms(X)) → A__TERMS(mark(X))
MARK(terms(X)) → MARK(X)
MARK(sqr(X)) → A__SQR(mark(X))
MARK(sqr(X)) → MARK(X)
MARK(add(X1, X2)) → A__ADD(mark(X1), mark(X2))
MARK(add(X1, X2)) → MARK(X1)
MARK(add(X1, X2)) → MARK(X2)
MARK(dbl(X)) → A__DBL(mark(X))
MARK(dbl(X)) → MARK(X)
MARK(first(X1, X2)) → A__FIRST(mark(X1), mark(X2))
MARK(first(X1, X2)) → MARK(X1)
MARK(first(X1, X2)) → MARK(X2)
MARK(half(X)) → A__HALF(mark(X))
MARK(half(X)) → MARK(X)
MARK(cons(X1, X2)) → MARK(X1)
MARK(recip(X)) → MARK(X)
MARK(s(X)) → MARK(X)
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__half(0) → 0
a__half(s(0)) → 0
a__half(s(s(X))) → s(a__half(mark(X)))
a__half(dbl(X)) → mark(X)
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(half(X)) → a__half(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
a__half(X) → half(X)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A__TERMS(N) → A__SQR(mark(N))
A__TERMS(N) → MARK(N)
A__SQR(s(X)) → A__ADD(a__sqr(mark(X)), a__dbl(mark(X)))
A__SQR(s(X)) → A__SQR(mark(X))
A__SQR(s(X)) → MARK(X)
A__SQR(s(X)) → A__DBL(mark(X))
A__DBL(s(X)) → A__DBL(mark(X))
A__DBL(s(X)) → MARK(X)
A__ADD(0, X) → MARK(X)
A__ADD(s(X), Y) → MARK(X)
A__ADD(s(X), Y) → MARK(Y)
A__FIRST(s(X), cons(Y, Z)) → MARK(Y)
A__HALF(s(s(X))) → A__HALF(mark(X))
A__HALF(s(s(X))) → MARK(X)
A__HALF(dbl(X)) → MARK(X)
MARK(terms(X)) → A__TERMS(mark(X))
MARK(terms(X)) → MARK(X)
MARK(sqr(X)) → A__SQR(mark(X))
MARK(sqr(X)) → MARK(X)
MARK(add(X1, X2)) → A__ADD(mark(X1), mark(X2))
MARK(add(X1, X2)) → MARK(X1)
MARK(add(X1, X2)) → MARK(X2)
MARK(dbl(X)) → A__DBL(mark(X))
MARK(dbl(X)) → MARK(X)
MARK(first(X1, X2)) → A__FIRST(mark(X1), mark(X2))
MARK(first(X1, X2)) → MARK(X1)
MARK(first(X1, X2)) → MARK(X2)
MARK(half(X)) → A__HALF(mark(X))
MARK(cons(X1, X2)) → MARK(X1)
MARK(s(X)) → MARK(X)
[ATERMS1, terms1, aterms1] > [ASQR1, asqr1, sqr1] > [AADD1, add2, aadd2] > [MARK1, s1] > cons1
[ATERMS1, terms1, aterms1] > [ASQR1, asqr1, sqr1] > [adbl1, dbl1] > [MARK1, s1] > cons1
ADBL1 > [MARK1, s1] > cons1
0 > [MARK1, s1] > cons1
0 > nil
AHALF > [MARK1, s1] > cons1
[first2, afirst2] > AFIRST2 > [MARK1, s1] > cons1
[first2, afirst2] > nil
ATERMS1: multiset
ASQR1: multiset
MARK1: [1]
s1: [1]
AADD1: [1]
asqr1: multiset
adbl1: [1]
ADBL1: multiset
0: multiset
AFIRST2: multiset
cons1: multiset
AHALF: multiset
dbl1: [1]
terms1: multiset
sqr1: multiset
add2: [2,1]
first2: multiset
aterms1: multiset
aadd2: [2,1]
afirst2: multiset
nil: multiset
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
a__add(0, X) → mark(X)
mark(half(X)) → a__half(mark(X))
a__half(dbl(X)) → mark(X)
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__sqr(X) → sqr(X)
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__dbl(X) → dbl(X)
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__half(s(s(X))) → s(a__half(mark(X)))
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__terms(X) → terms(X)
a__add(X1, X2) → add(X1, X2)
a__half(0) → 0
a__half(s(0)) → 0
a__half(X) → half(X)
a__first(0, X) → nil
a__first(X1, X2) → first(X1, X2)
A__ADD(s(X), Y) → A__ADD(mark(X), mark(Y))
MARK(half(X)) → MARK(X)
MARK(recip(X)) → MARK(X)
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__half(0) → 0
a__half(s(0)) → 0
a__half(s(s(X))) → s(a__half(mark(X)))
a__half(dbl(X)) → mark(X)
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(half(X)) → a__half(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
a__half(X) → half(X)
MARK(recip(X)) → MARK(X)
MARK(half(X)) → MARK(X)
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__half(0) → 0
a__half(s(0)) → 0
a__half(s(s(X))) → s(a__half(mark(X)))
a__half(dbl(X)) → mark(X)
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(half(X)) → a__half(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
a__half(X) → half(X)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(recip(X)) → MARK(X)
trivial
MARK: multiset
recip1: multiset
MARK(half(X)) → MARK(X)
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__half(0) → 0
a__half(s(0)) → 0
a__half(s(s(X))) → s(a__half(mark(X)))
a__half(dbl(X)) → mark(X)
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(half(X)) → a__half(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
a__half(X) → half(X)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(half(X)) → MARK(X)
[MARK, half1]
MARK: multiset
half1: multiset
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__half(0) → 0
a__half(s(0)) → 0
a__half(s(s(X))) → s(a__half(mark(X)))
a__half(dbl(X)) → mark(X)
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(half(X)) → a__half(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
a__half(X) → half(X)
A__ADD(s(X), Y) → A__ADD(mark(X), mark(Y))
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__half(0) → 0
a__half(s(0)) → 0
a__half(s(s(X))) → s(a__half(mark(X)))
a__half(dbl(X)) → mark(X)
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(half(X)) → a__half(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
a__half(X) → half(X)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
A__ADD(s(X), Y) → A__ADD(mark(X), mark(Y))
AADD2 > s1
[terms, aterms] > [sqr1, asqr1] > [add2, aadd2] > s1
[terms, aterms] > [sqr1, asqr1] > [dbl1, adbl1] > s1
[terms, aterms] > recip > s1
0 > s1
[first2, afirst2, nil] > s1
AADD2: multiset
s1: multiset
terms: []
aterms: []
sqr1: multiset
asqr1: multiset
add2: multiset
aadd2: multiset
0: multiset
dbl1: [1]
adbl1: [1]
first2: multiset
afirst2: multiset
recip: multiset
nil: multiset
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
a__add(0, X) → mark(X)
mark(half(X)) → a__half(mark(X))
a__half(dbl(X)) → mark(X)
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__half(s(s(X))) → s(a__half(mark(X)))
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__terms(X) → terms(X)
a__sqr(0) → 0
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__half(0) → 0
a__half(s(0)) → 0
a__half(X) → half(X)
a__dbl(0) → 0
a__dbl(X) → dbl(X)
a__first(0, X) → nil
a__first(X1, X2) → first(X1, X2)
a__terms(N) → cons(recip(a__sqr(mark(N))), terms(s(N)))
a__sqr(0) → 0
a__sqr(s(X)) → s(a__add(a__sqr(mark(X)), a__dbl(mark(X))))
a__dbl(0) → 0
a__dbl(s(X)) → s(s(a__dbl(mark(X))))
a__add(0, X) → mark(X)
a__add(s(X), Y) → s(a__add(mark(X), mark(Y)))
a__first(0, X) → nil
a__first(s(X), cons(Y, Z)) → cons(mark(Y), first(X, Z))
a__half(0) → 0
a__half(s(0)) → 0
a__half(s(s(X))) → s(a__half(mark(X)))
a__half(dbl(X)) → mark(X)
mark(terms(X)) → a__terms(mark(X))
mark(sqr(X)) → a__sqr(mark(X))
mark(add(X1, X2)) → a__add(mark(X1), mark(X2))
mark(dbl(X)) → a__dbl(mark(X))
mark(first(X1, X2)) → a__first(mark(X1), mark(X2))
mark(half(X)) → a__half(mark(X))
mark(cons(X1, X2)) → cons(mark(X1), X2)
mark(recip(X)) → recip(mark(X))
mark(s(X)) → s(mark(X))
mark(0) → 0
mark(nil) → nil
a__terms(X) → terms(X)
a__sqr(X) → sqr(X)
a__add(X1, X2) → add(X1, X2)
a__dbl(X) → dbl(X)
a__first(X1, X2) → first(X1, X2)
a__half(X) → half(X)