(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

fib(N) → sel(N, fib1(s(0), s(0)))
fib1(X, Y) → cons(X, n__fib1(Y, n__add(X, Y)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
fib1(X1, X2) → n__fib1(X1, X2)
add(X1, X2) → n__add(X1, X2)
activate(n__fib1(X1, X2)) → fib1(activate(X1), activate(X2))
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(X) → X

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FIB(N) → SEL(N, fib1(s(0), s(0)))
FIB(N) → FIB1(s(0), s(0))
ADD(s(X), Y) → ADD(X, Y)
SEL(s(N), cons(X, XS)) → SEL(N, activate(XS))
SEL(s(N), cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__fib1(X1, X2)) → FIB1(activate(X1), activate(X2))
ACTIVATE(n__fib1(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__fib1(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__add(X1, X2)) → ADD(activate(X1), activate(X2))
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X2)

The TRS R consists of the following rules:

fib(N) → sel(N, fib1(s(0), s(0)))
fib1(X, Y) → cons(X, n__fib1(Y, n__add(X, Y)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
fib1(X1, X2) → n__fib1(X1, X2)
add(X1, X2) → n__add(X1, X2)
activate(n__fib1(X1, X2)) → fib1(activate(X1), activate(X2))
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 3 SCCs with 5 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ADD(s(X), Y) → ADD(X, Y)

The TRS R consists of the following rules:

fib(N) → sel(N, fib1(s(0), s(0)))
fib1(X, Y) → cons(X, n__fib1(Y, n__add(X, Y)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
fib1(X1, X2) → n__fib1(X1, X2)
add(X1, X2) → n__add(X1, X2)
activate(n__fib1(X1, X2)) → fib1(activate(X1), activate(X2))
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ADD(s(X), Y) → ADD(X, Y)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ADD(x1, x2)  =  ADD(x1)

Tags:
ADD has tags [1,0]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(s(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

fib(N) → sel(N, fib1(s(0), s(0)))
fib1(X, Y) → cons(X, n__fib1(Y, n__add(X, Y)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
fib1(X1, X2) → n__fib1(X1, X2)
add(X1, X2) → n__add(X1, X2)
activate(n__fib1(X1, X2)) → fib1(activate(X1), activate(X2))
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__fib1(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__fib1(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X2)

The TRS R consists of the following rules:

fib(N) → sel(N, fib1(s(0), s(0)))
fib1(X, Y) → cons(X, n__fib1(Y, n__add(X, Y)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
fib1(X1, X2) → n__fib1(X1, X2)
add(X1, X2) → n__add(X1, X2)
activate(n__fib1(X1, X2)) → fib1(activate(X1), activate(X2))
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__fib1(X1, X2)) → ACTIVATE(X2)
ACTIVATE(n__fib1(X1, X2)) → ACTIVATE(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ACTIVATE(x1)  =  ACTIVATE(x1)

Tags:
ACTIVATE has tags [0]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(n__add(x1, x2)) = x1 + x2   
POL(n__fib1(x1, x2)) = 1 + x1 + x2   

The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X2)

The TRS R consists of the following rules:

fib(N) → sel(N, fib1(s(0), s(0)))
fib1(X, Y) → cons(X, n__fib1(Y, n__add(X, Y)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
fib1(X1, X2) → n__fib1(X1, X2)
add(X1, X2) → n__add(X1, X2)
activate(n__fib1(X1, X2)) → fib1(activate(X1), activate(X2))
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__add(X1, X2)) → ACTIVATE(X1)
ACTIVATE(n__add(X1, X2)) → ACTIVATE(X2)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
ACTIVATE(x1)  =  ACTIVATE(x1)

Tags:
ACTIVATE has tags [0]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(n__add(x1, x2)) = 1 + x1 + x2   

The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

fib(N) → sel(N, fib1(s(0), s(0)))
fib1(X, Y) → cons(X, n__fib1(Y, n__add(X, Y)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
fib1(X1, X2) → n__fib1(X1, X2)
add(X1, X2) → n__add(X1, X2)
activate(n__fib1(X1, X2)) → fib1(activate(X1), activate(X2))
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

SEL(s(N), cons(X, XS)) → SEL(N, activate(XS))

The TRS R consists of the following rules:

fib(N) → sel(N, fib1(s(0), s(0)))
fib1(X, Y) → cons(X, n__fib1(Y, n__add(X, Y)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
fib1(X1, X2) → n__fib1(X1, X2)
add(X1, X2) → n__add(X1, X2)
activate(n__fib1(X1, X2)) → fib1(activate(X1), activate(X2))
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


SEL(s(N), cons(X, XS)) → SEL(N, activate(XS))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
SEL(x1, x2)  =  SEL(x1)

Tags:
SEL has tags [1,1]

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Polynomial interpretation [POLO]:

POL(0) = 0   
POL(activate(x1)) = 0   
POL(add(x1, x2)) = 1   
POL(cons(x1, x2)) = x2   
POL(fib1(x1, x2)) = 1   
POL(n__add(x1, x2)) = x1 + x2   
POL(n__fib1(x1, x2)) = x2   
POL(s(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(19) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

fib(N) → sel(N, fib1(s(0), s(0)))
fib1(X, Y) → cons(X, n__fib1(Y, n__add(X, Y)))
add(0, X) → X
add(s(X), Y) → s(add(X, Y))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, activate(XS))
fib1(X1, X2) → n__fib1(X1, X2)
add(X1, X2) → n__add(X1, X2)
activate(n__fib1(X1, X2)) → fib1(activate(X1), activate(X2))
activate(n__add(X1, X2)) → add(activate(X1), activate(X2))
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(21) TRUE