(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(first(X1, X2)) → active(first(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(s(X)) → active(s(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
first(mark(X1), X2) → first(X1, X2)
first(X1, mark(X2)) → first(X1, X2)
first(active(X1), X2) → first(X1, X2)
first(X1, active(X2)) → first(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(first(0, X)) → MARK(nil)
ACTIVE(first(s(X), cons(Y, Z))) → MARK(cons(Y, first(X, Z)))
ACTIVE(first(s(X), cons(Y, Z))) → CONS(Y, first(X, Z))
ACTIVE(first(s(X), cons(Y, Z))) → FIRST(X, Z)
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
ACTIVE(from(X)) → CONS(X, from(s(X)))
ACTIVE(from(X)) → FROM(s(X))
ACTIVE(from(X)) → S(X)
MARK(first(X1, X2)) → ACTIVE(first(mark(X1), mark(X2)))
MARK(first(X1, X2)) → FIRST(mark(X1), mark(X2))
MARK(first(X1, X2)) → MARK(X1)
MARK(first(X1, X2)) → MARK(X2)
MARK(0) → ACTIVE(0)
MARK(nil) → ACTIVE(nil)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → S(mark(X))
MARK(s(X)) → MARK(X)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(cons(X1, X2)) → CONS(mark(X1), X2)
MARK(cons(X1, X2)) → MARK(X1)
MARK(from(X)) → ACTIVE(from(mark(X)))
MARK(from(X)) → FROM(mark(X))
MARK(from(X)) → MARK(X)
FIRST(mark(X1), X2) → FIRST(X1, X2)
FIRST(X1, mark(X2)) → FIRST(X1, X2)
FIRST(active(X1), X2) → FIRST(X1, X2)
FIRST(X1, active(X2)) → FIRST(X1, X2)
S(mark(X)) → S(X)
S(active(X)) → S(X)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
FROM(mark(X)) → FROM(X)
FROM(active(X)) → FROM(X)

The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(first(X1, X2)) → active(first(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(s(X)) → active(s(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
first(mark(X1), X2) → first(X1, X2)
first(X1, mark(X2)) → first(X1, X2)
first(active(X1), X2) → first(X1, X2)
first(X1, active(X2)) → first(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 5 SCCs with 12 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FROM(active(X)) → FROM(X)
FROM(mark(X)) → FROM(X)

The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(first(X1, X2)) → active(first(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(s(X)) → active(s(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
first(mark(X1), X2) → first(X1, X2)
first(X1, mark(X2)) → first(X1, X2)
first(active(X1), X2) → first(X1, X2)
first(X1, active(X2)) → first(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FROM(active(X)) → FROM(X)
FROM(mark(X)) → FROM(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(FROM(x1)) = x1   
POL(active(x1)) = 1 + x1   
POL(mark(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(first(X1, X2)) → active(first(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(s(X)) → active(s(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
first(mark(X1), X2) → first(X1, X2)
first(X1, mark(X2)) → first(X1, X2)
first(active(X1), X2) → first(X1, X2)
first(X1, active(X2)) → first(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(first(X1, X2)) → active(first(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(s(X)) → active(s(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
first(mark(X1), X2) → first(X1, X2)
first(X1, mark(X2)) → first(X1, X2)
first(active(X1), X2) → first(X1, X2)
first(X1, active(X2)) → first(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(mark(X1), X2) → CONS(X1, X2)
CONS(active(X1), X2) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(CONS(x1, x2)) = x1   
POL(active(x1)) = 1 + x1   
POL(mark(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)

The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(first(X1, X2)) → active(first(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(s(X)) → active(s(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
first(mark(X1), X2) → first(X1, X2)
first(X1, mark(X2)) → first(X1, X2)
first(active(X1), X2) → first(X1, X2)
first(X1, active(X2)) → first(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


CONS(X1, mark(X2)) → CONS(X1, X2)
CONS(X1, active(X2)) → CONS(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(CONS(x1, x2)) = x2   
POL(active(x1)) = 1 + x1   
POL(mark(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(first(X1, X2)) → active(first(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(s(X)) → active(s(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
first(mark(X1), X2) → first(X1, X2)
first(X1, mark(X2)) → first(X1, X2)
first(active(X1), X2) → first(X1, X2)
first(X1, active(X2)) → first(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S(active(X)) → S(X)
S(mark(X)) → S(X)

The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(first(X1, X2)) → active(first(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(s(X)) → active(s(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
first(mark(X1), X2) → first(X1, X2)
first(X1, mark(X2)) → first(X1, X2)
first(active(X1), X2) → first(X1, X2)
first(X1, active(X2)) → first(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


S(active(X)) → S(X)
S(mark(X)) → S(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(S(x1)) = x1   
POL(active(x1)) = 1 + x1   
POL(mark(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(19) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(first(X1, X2)) → active(first(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(s(X)) → active(s(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
first(mark(X1), X2) → first(X1, X2)
first(X1, mark(X2)) → first(X1, X2)
first(active(X1), X2) → first(X1, X2)
first(X1, active(X2)) → first(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(21) TRUE

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FIRST(X1, mark(X2)) → FIRST(X1, X2)
FIRST(mark(X1), X2) → FIRST(X1, X2)
FIRST(active(X1), X2) → FIRST(X1, X2)
FIRST(X1, active(X2)) → FIRST(X1, X2)

The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(first(X1, X2)) → active(first(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(s(X)) → active(s(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
first(mark(X1), X2) → first(X1, X2)
first(X1, mark(X2)) → first(X1, X2)
first(active(X1), X2) → first(X1, X2)
first(X1, active(X2)) → first(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FIRST(mark(X1), X2) → FIRST(X1, X2)
FIRST(active(X1), X2) → FIRST(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(FIRST(x1, x2)) = x1   
POL(active(x1)) = 1 + x1   
POL(mark(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FIRST(X1, mark(X2)) → FIRST(X1, X2)
FIRST(X1, active(X2)) → FIRST(X1, X2)

The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(first(X1, X2)) → active(first(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(s(X)) → active(s(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
first(mark(X1), X2) → first(X1, X2)
first(X1, mark(X2)) → first(X1, X2)
first(active(X1), X2) → first(X1, X2)
first(X1, active(X2)) → first(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FIRST(X1, mark(X2)) → FIRST(X1, X2)
FIRST(X1, active(X2)) → FIRST(X1, X2)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(FIRST(x1, x2)) = x2   
POL(active(x1)) = 1 + x1   
POL(mark(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(26) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(first(X1, X2)) → active(first(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(s(X)) → active(s(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
first(mark(X1), X2) → first(X1, X2)
first(X1, mark(X2)) → first(X1, X2)
first(active(X1), X2) → first(X1, X2)
first(X1, active(X2)) → first(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(28) TRUE

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(first(s(X), cons(Y, Z))) → MARK(cons(Y, first(X, Z)))
MARK(first(X1, X2)) → ACTIVE(first(mark(X1), mark(X2)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(first(X1, X2)) → MARK(X1)
MARK(first(X1, X2)) → MARK(X2)
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(s(X)) → MARK(X)
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(cons(X1, X2)) → MARK(X1)
MARK(from(X)) → ACTIVE(from(mark(X)))
MARK(from(X)) → MARK(X)

The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(first(X1, X2)) → active(first(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(s(X)) → active(s(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
first(mark(X1), X2) → first(X1, X2)
first(X1, mark(X2)) → first(X1, X2)
first(active(X1), X2) → first(X1, X2)
first(X1, active(X2)) → first(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(30) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


ACTIVE(first(s(X), cons(Y, Z))) → MARK(cons(Y, first(X, Z)))
ACTIVE(from(X)) → MARK(cons(X, from(s(X))))
MARK(first(X1, X2)) → MARK(X1)
MARK(first(X1, X2)) → MARK(X2)
MARK(s(X)) → MARK(X)
MARK(from(X)) → MARK(X)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 1   
POL(ACTIVE(x1)) = x1   
POL(MARK(x1)) = x1   
POL(active(x1)) = x1   
POL(cons(x1, x2)) = x1   
POL(first(x1, x2)) = 1 + x1 + x2   
POL(from(x1)) = 1 + x1   
POL(mark(x1)) = x1   
POL(nil) = 1   
POL(s(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented:

first(X1, mark(X2)) → first(X1, X2)
first(mark(X1), X2) → first(X1, X2)
first(active(X1), X2) → first(X1, X2)
first(X1, active(X2)) → first(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(mark(X1), X2) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
mark(first(X1, X2)) → active(first(mark(X1), mark(X2)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(s(X)) → active(s(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
mark(0) → active(0)
mark(nil) → active(nil)
s(active(X)) → s(X)
s(mark(X)) → s(X)
from(active(X)) → from(X)
from(mark(X)) → from(X)
active(first(0, X)) → mark(nil)

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(first(X1, X2)) → ACTIVE(first(mark(X1), mark(X2)))
MARK(s(X)) → ACTIVE(s(mark(X)))
MARK(cons(X1, X2)) → ACTIVE(cons(mark(X1), X2))
MARK(cons(X1, X2)) → MARK(X1)
MARK(from(X)) → ACTIVE(from(mark(X)))

The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(first(X1, X2)) → active(first(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(s(X)) → active(s(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
first(mark(X1), X2) → first(X1, X2)
first(X1, mark(X2)) → first(X1, X2)
first(active(X1), X2) → first(X1, X2)
first(X1, active(X2)) → first(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(32) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 4 less nodes.

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MARK(cons(X1, X2)) → MARK(X1)

The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(first(X1, X2)) → active(first(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(s(X)) → active(s(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
first(mark(X1), X2) → first(X1, X2)
first(X1, mark(X2)) → first(X1, X2)
first(active(X1), X2) → first(X1, X2)
first(X1, active(X2)) → first(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(34) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MARK(cons(X1, X2)) → MARK(X1)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(MARK(x1)) = x1   
POL(cons(x1, x2)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(35) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(first(0, X)) → mark(nil)
active(first(s(X), cons(Y, Z))) → mark(cons(Y, first(X, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
mark(first(X1, X2)) → active(first(mark(X1), mark(X2)))
mark(0) → active(0)
mark(nil) → active(nil)
mark(s(X)) → active(s(mark(X)))
mark(cons(X1, X2)) → active(cons(mark(X1), X2))
mark(from(X)) → active(from(mark(X)))
first(mark(X1), X2) → first(X1, X2)
first(X1, mark(X2)) → first(X1, X2)
first(active(X1), X2) → first(X1, X2)
first(X1, active(X2)) → first(X1, X2)
s(mark(X)) → s(X)
s(active(X)) → s(X)
cons(mark(X1), X2) → cons(X1, X2)
cons(X1, mark(X2)) → cons(X1, X2)
cons(active(X1), X2) → cons(X1, X2)
cons(X1, active(X2)) → cons(X1, X2)
from(mark(X)) → from(X)
from(active(X)) → from(X)

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(36) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(37) TRUE