0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 AND
↳5 QDP
↳6 QDPSizeChangeProof (⇔)
↳7 TRUE
↳8 QDP
↳9 QDPSizeChangeProof (⇔)
↳10 TRUE
↳11 QDP
↳12 QDPSizeChangeProof (⇔)
↳13 TRUE
active(c) → mark(f(g(c)))
active(f(g(X))) → mark(g(X))
mark(c) → active(c)
mark(f(X)) → active(f(X))
mark(g(X)) → active(g(X))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
ACTIVE(c) → MARK(f(g(c)))
ACTIVE(c) → F(g(c))
ACTIVE(c) → G(c)
ACTIVE(f(g(X))) → MARK(g(X))
MARK(c) → ACTIVE(c)
MARK(f(X)) → ACTIVE(f(X))
MARK(g(X)) → ACTIVE(g(X))
F(mark(X)) → F(X)
F(active(X)) → F(X)
G(mark(X)) → G(X)
G(active(X)) → G(X)
active(c) → mark(f(g(c)))
active(f(g(X))) → mark(g(X))
mark(c) → active(c)
mark(f(X)) → active(f(X))
mark(g(X)) → active(g(X))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
G(active(X)) → G(X)
G(mark(X)) → G(X)
active(c) → mark(f(g(c)))
active(f(g(X))) → mark(g(X))
mark(c) → active(c)
mark(f(X)) → active(f(X))
mark(g(X)) → active(g(X))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
Order:Homeomorphic Embedding Order
AFS:
active(x1) = active(x1)
mark(x1) = mark(x1)
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
none
F(active(X)) → F(X)
F(mark(X)) → F(X)
active(c) → mark(f(g(c)))
active(f(g(X))) → mark(g(X))
mark(c) → active(c)
mark(f(X)) → active(f(X))
mark(g(X)) → active(g(X))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
Order:Homeomorphic Embedding Order
AFS:
active(x1) = active(x1)
mark(x1) = mark(x1)
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
none
ACTIVE(f(g(X))) → MARK(g(X))
MARK(f(X)) → ACTIVE(f(X))
MARK(g(X)) → ACTIVE(g(X))
active(c) → mark(f(g(c)))
active(f(g(X))) → mark(g(X))
mark(c) → active(c)
mark(f(X)) → active(f(X))
mark(g(X)) → active(g(X))
f(mark(X)) → f(X)
f(active(X)) → f(X)
g(mark(X)) → g(X)
g(active(X)) → g(X)
Order:Combined order from the following AFS and order.
g(x1) = g
active(x1) = x1
mark(x1) = mark(x1)
f(x1) = f(x1)
Lexicographic path order with status [LPO].
Quasi-Precedence:
f1 > [g, mark1]
g: []
mark1: [1]
f1: [1]
AFS:
g(x1) = g
active(x1) = x1
mark(x1) = mark(x1)
f(x1) = f(x1)
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
g(active(X)) → g(X)
g(mark(X)) → g(X)
f(active(X)) → f(X)
f(mark(X)) → f(X)