(0) Obligation:

Q restricted rewrite system:
The TRS R consists of the following rules:

active(c) → mark(f(g(c)))
active(f(g(X))) → mark(g(X))
proper(c) → ok(c)
proper(f(X)) → f(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.

(1) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem.

(2) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ACTIVE(c) → F(g(c))
ACTIVE(c) → G(c)
PROPER(f(X)) → F(proper(X))
PROPER(f(X)) → PROPER(X)
PROPER(g(X)) → G(proper(X))
PROPER(g(X)) → PROPER(X)
F(ok(X)) → F(X)
G(ok(X)) → G(X)
TOP(mark(X)) → TOP(proper(X))
TOP(mark(X)) → PROPER(X)
TOP(ok(X)) → TOP(active(X))
TOP(ok(X)) → ACTIVE(X)

The TRS R consists of the following rules:

active(c) → mark(f(g(c)))
active(f(g(X))) → mark(g(X))
proper(c) → ok(c)
proper(f(X)) → f(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(3) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 4 SCCs with 6 less nodes.

(4) Complex Obligation (AND)

(5) Obligation:

Q DP problem:
The TRS P consists of the following rules:

G(ok(X)) → G(X)

The TRS R consists of the following rules:

active(c) → mark(f(g(c)))
active(f(g(X))) → mark(g(X))
proper(c) → ok(c)
proper(f(X)) → f(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(6) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


G(ok(X)) → G(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
G(x0, x1)  =  G(x0)

Tags:
G has argument tags [0,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
G(x1)  =  x1
ok(x1)  =  ok(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
ok1: [1]


The following usable rules [FROCOS05] were oriented: none

(7) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(c) → mark(f(g(c)))
active(f(g(X))) → mark(g(X))
proper(c) → ok(c)
proper(f(X)) → f(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(8) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(9) TRUE

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F(ok(X)) → F(X)

The TRS R consists of the following rules:

active(c) → mark(f(g(c)))
active(f(g(X))) → mark(g(X))
proper(c) → ok(c)
proper(f(X)) → f(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(11) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F(ok(X)) → F(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
F(x0, x1)  =  F(x0)

Tags:
F has argument tags [0,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
F(x1)  =  x1
ok(x1)  =  ok(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
ok1: [1]


The following usable rules [FROCOS05] were oriented: none

(12) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(c) → mark(f(g(c)))
active(f(g(X))) → mark(g(X))
proper(c) → ok(c)
proper(f(X)) → f(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(13) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(14) TRUE

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(g(X)) → PROPER(X)
PROPER(f(X)) → PROPER(X)

The TRS R consists of the following rules:

active(c) → mark(f(g(c)))
active(f(g(X))) → mark(g(X))
proper(c) → ok(c)
proper(f(X)) → f(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(16) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(g(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
PROPER(x0, x1)  =  PROPER(x0, x1)

Tags:
PROPER has argument tags [1,0] and root tag 0

Comparison: MS
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
PROPER(x1)  =  PROPER
g(x1)  =  g(x1)
f(x1)  =  x1

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
PROPER: []
g1: [1]


The following usable rules [FROCOS05] were oriented: none

(17) Obligation:

Q DP problem:
The TRS P consists of the following rules:

PROPER(f(X)) → PROPER(X)

The TRS R consists of the following rules:

active(c) → mark(f(g(c)))
active(f(g(X))) → mark(g(X))
proper(c) → ok(c)
proper(f(X)) → f(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(18) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


PROPER(f(X)) → PROPER(X)
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
PROPER(x0, x1)  =  PROPER(x0)

Tags:
PROPER has argument tags [0,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
PROPER(x1)  =  x1
f(x1)  =  f(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
trivial

Status:
f1: [1]


The following usable rules [FROCOS05] were oriented: none

(19) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(c) → mark(f(g(c)))
active(f(g(X))) → mark(g(X))
proper(c) → ok(c)
proper(f(X)) → f(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(20) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(21) TRUE

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))
TOP(mark(X)) → TOP(proper(X))

The TRS R consists of the following rules:

active(c) → mark(f(g(c)))
active(f(g(X))) → mark(g(X))
proper(c) → ok(c)
proper(f(X)) → f(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(23) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TOP(mark(X)) → TOP(proper(X))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
TOP(x0, x1)  =  TOP(x1)

Tags:
TOP has argument tags [0,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
TOP(x1)  =  TOP
ok(x1)  =  x1
active(x1)  =  x1
mark(x1)  =  mark(x1)
proper(x1)  =  x1
c  =  c
f(x1)  =  f(x1)
g(x1)  =  g

Lexicographic path order with status [LPO].
Quasi-Precedence:
c > [mark1, f1] > TOP
c > [mark1, f1] > g

Status:
TOP: []
mark1: [1]
c: []
f1: [1]
g: []


The following usable rules [FROCOS05] were oriented: none

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

TOP(ok(X)) → TOP(active(X))

The TRS R consists of the following rules:

active(c) → mark(f(g(c)))
active(f(g(X))) → mark(g(X))
proper(c) → ok(c)
proper(f(X)) → f(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(25) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


TOP(ok(X)) → TOP(active(X))
The remaining pairs can at least be oriented weakly.
Used ordering: SCNP Order with the following components:
Level mapping:
Top level AFS:
TOP(x0, x1)  =  TOP(x0, x1)

Tags:
TOP has argument tags [0,1] and root tag 0

Comparison: MAX
Underlying order for the size change arcs and the rules of R:
Combined order from the following AFS and order.
TOP(x1)  =  TOP(x1)
ok(x1)  =  ok
active(x1)  =  active
c  =  c
mark(x1)  =  mark
f(x1)  =  f(x1)
g(x1)  =  g(x1)

Lexicographic path order with status [LPO].
Quasi-Precedence:
c > f1 > [active, mark]
c > g1 > [TOP1, ok] > [active, mark]

Status:
TOP1: [1]
ok: []
active: []
c: []
mark: []
f1: [1]
g1: [1]


The following usable rules [FROCOS05] were oriented:

active(c) → mark(f(g(c)))
active(f(g(X))) → mark(g(X))

(26) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

active(c) → mark(f(g(c)))
active(f(g(X))) → mark(g(X))
proper(c) → ok(c)
proper(f(X)) → f(proper(X))
proper(g(X)) → g(proper(X))
f(ok(X)) → ok(f(X))
g(ok(X)) → ok(g(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

(27) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(28) TRUE