0 QTRS
↳1 DependencyPairsProof (⇔)
↳2 QDP
↳3 DependencyGraphProof (⇔)
↳4 QDP
↳5 QDPSizeChangeProof (⇔)
↳6 TRUE
2nd(cons1(X, cons(Y, Z))) → Y
2nd(cons(X, X1)) → 2nd(cons1(X, activate(X1)))
from(X) → cons(X, n__from(n__s(X)))
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
2ND(cons(X, X1)) → 2ND(cons1(X, activate(X1)))
2ND(cons(X, X1)) → ACTIVATE(X1)
ACTIVATE(n__from(X)) → FROM(activate(X))
ACTIVATE(n__from(X)) → ACTIVATE(X)
ACTIVATE(n__s(X)) → S(activate(X))
ACTIVATE(n__s(X)) → ACTIVATE(X)
2nd(cons1(X, cons(Y, Z))) → Y
2nd(cons(X, X1)) → 2nd(cons1(X, activate(X1)))
from(X) → cons(X, n__from(n__s(X)))
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
ACTIVATE(n__s(X)) → ACTIVATE(X)
ACTIVATE(n__from(X)) → ACTIVATE(X)
2nd(cons1(X, cons(Y, Z))) → Y
2nd(cons(X, X1)) → 2nd(cons1(X, activate(X1)))
from(X) → cons(X, n__from(n__s(X)))
from(X) → n__from(X)
s(X) → n__s(X)
activate(n__from(X)) → from(activate(X))
activate(n__s(X)) → s(activate(X))
activate(X) → X
Order:Homeomorphic Embedding Order
AFS:
n__from(x1) = n__from(x1)
n__s(x1) = n__s(x1)
From the DPs we obtained the following set of size-change graphs:
We oriented the following set of usable rules [AAECC05,FROCOS05].
none